
1

Classification according to 
underlying testing approach
• Structural testing

– Coverage of a particular set of 
elements in the structure of the 
program

• Fault-based testing
– Some measurement of the fault 
detecting ability of test sets

• Error-based testing
– Check on some error-prone points

Structural Testing
• Program-based structural testing

– Control-flow based adequacy criteria
• Statement coverage
• Branch coverage
• Path coverage

– Length-i path coverage
• Multiple condition coverage

– All possible combinations of truth values of 
predicates

– Data-flow based adequacy criteria

Structural Testing
– Data-flow based adequacy criteria

• All definitions criterion
– Each definition to some reachable use

• All uses criterion
– Definition to each reachable use

• All def-use criterion
– Each definition to each reachable use

Fault-based Adequacy
• Error seeding

– Introducing artificial faults to 
estimate the actual number of faults

• Program mutation testing
– Distinguishing between original and 
mutants
• Competent programmer assumption

– Mutants are close to the program
• Coupling effect assumption

– Simple and complex errors are coupled

Test Oracles
• Discussion

– Automation of oracle necessary
– Expected behavior given
– Necessary parts of an oracle

Test Oracle
• A test oracle determines whether a 
system behaves correctly for test 
execution

• Webster Dictionary - Oracle
– a person giving wise or authoritative 
decisions or opinions 

– an authoritative or wise expression or 
answer



2

Purpose of Test Oracle
• Sequential Systems

– Check functionality
• Reactive (event-driven) Systems

– Check functionality
– Timing
– Safety

Reactive Systems
• Complete specification requires use 
of multiple computational paradigms

• Oracles must judge all behavioral 
aspects in comparison with all 
system specifications and 
requirements

• Hence oracles may be developed 
directly from formal specifications

Parts of an Oracle
• Oracle information

– Specifies what constitutes correct behavior
• Examples: input/output pairs, embedded assertions

• Oracle procedure
– Verifies the test execution results with 

respect to the oracle information
• Examples: equality

• Test monitor
– Captures the execution information from the 

run-time environment
• Examples

– Simple systems: directly from output
– Reactive systems: events, timing information, stimuli, 

and responses

Regression Testing
• Developed first version of software
• Adequately tested the first version
• Modified the software; version 2 now 

needs to be tested
• How to test version 2?
• Approaches

– Retest entire software from scratch
– Only test the changed parts, ignoring 

unchanged parts since they have already 
been tested

– Could modifications have adversely affected 
unchanged parts of the software?

Regression Testing
• “Software maintenance task 
performed on a modified program to 
instill confidence that changes are 
correct and have not adversely 
affected unchanged portions of the 
program.”

Regression Testing vs. 
Development Testing

• During regression testing, an 
established test set may be 
available for reuse

• Approaches
– Retest all
– Selective retest (selective regression 
testing) ←←←← Main focus of research



3

Formal Definition
• Given a program P, 
• its modified version P’, and 
• a test set T

– used previously to test P
• find a way, making use of T to gain 
sufficient confidence in the 
correctness of P’

Regression Testing Steps
1. Identify the modifications that were 

made to P
– Either assume availability of a list of 

modifications, or
– Mapping of code segments of P to their 

corresponding segments in P’
2. Select T’ ⊆⊆⊆⊆ T, the set of tests to re-

execute on P’
– May need results of step 1 above
– May need test history information, i.e., the 

input, output, and execution history for 
each test

Regression Testing Steps
3. Retest P’ with T’

– Use expected output of P, if same
4. Create new tests for P’, if needed

– Examine whether coverage criterion 
is achieved

5. Create T’’
– The new test suite, consisting of 

tests from steps 2 and 4, and old 
tests that were not selected

Selective Retesting

• Tests to rerun
– Select those tests that will produce 

different output when run on P’
• Modification-revealing test cases
• It is impossible to always find the set of 

modification-revealing test cases – (we cannot predict 
when P’ will halt for a test)

– Select modification-traversing test cases
• If it executes a new or modified statement in P’ or 

misses a statement in P’ that it executed in P

T

Tests to rerun Tests not to rerun



4

1 1 1

1

1

1
1

2 2 2

2

2

2

2

3

3 3 3
3

3
3

3
3

33

3

T’ = {t2, t3}

Cost of Regression Testing

Retest All
Selective Retest

Analysis
Cost = Cx Cost = Cy

We want Cx < Cy

Key is the test selection algorithm/technique

We want to maintain the same “quality of testing”

+

Factors to consider
• Testing costs
• Fault-detection ability
• Test suite size vs. fault-detection 
ability

• Specific situations where one 
technique is superior to another



5

Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:

All Definitions Criterion
• A set P of execution 

paths satisfies the all-
definitions criterion iff 
– for all definition 

occurrences of a 
variable x such that 

• there is a use of x, 
which is feasibly 
reachable from that 
definition, 

– there is at least one 
path p in P such that 

• p includes a subpath 
through which the 
definition of x reaches 
some use occurrence of 
x

• A set P of execution 
paths satisfies the all-
definitions criterion iff 
– for all definition 

occurrences of a 
variable x such that 

• there is a use of x, 
which is feasibly 
reachable from that 
definition, 

– there is at least one 
path p in P such that 

• p includes a subpath 
through which the 
definition of x reaches 
some use occurrence of 
x

read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:

All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + z + 2;7:

8:

y := y * 2;4:

• A set P of 
execution paths 
satisfies the all-
uses criterion iff 
– for all definition 

occurrences of a 
variable x and all 
use occurrences of 
x, 

• that the definition 
feasibly reaches, 

– there is at least 
one path p in P such 
that 

• p includes a subpath 
through which that 
definition reaches 
the use

• A set P of 
execution paths 
satisfies the all-
uses criterion iff 
– for all definition 

occurrences of a 
variable x and all 
use occurrences of 
x, 

• that the definition 
feasibly reaches, 

– there is at least 
one path p in P such 
that 

• p includes a subpath 
through which that 
definition reaches 
the use

All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + z + 2;7:

8:

y := y * 2;4:

All DU-paths criterion
• A set P of execution paths satisfies 
the all-DU paths criterion iff 
– for all definitions of a variable x and 
all paths q through which that 
definition reaches a use of x,

– there is at least one path p in P such 
that 
• q is a subpath of p and q is cycle-free


