
1

Design Patterns Taxonomy

• Creational patterns 
– Concern the process of object creation

• Structural patterns 
– Deal with the composition of classes or objects

• Behavioral patterns 
– Characterize the ways in which classes or objects 

interact and distribute responsibility

2

Structural Patterns

3

An Example Application

• Lets create a simple Java program that 
– allows you to enter names into a list, 
– and then select some of those names to 

be transferred to another list. 
– Our initial list consists of a class roster 

and the second list, those who will be 
doing advanced work.

• In the example UI, 
– You enter names into the top entry 

field and click on Insert to move the 
names into the left-hand list box. 

– To move names to the right-hand list 
box, you click on them, and then click 
on Add. 

– To remove a name from the right hand 
list box, click on it and then on 
Remove. This moves the name back to 
the left-hand list.

4

Lets Look at some Code!

• The code will consist of a GUI creation 
constructor and an actionListener routine for the 
three buttons:



5

ActionListener

– public interface ActionListener extends EventListener
• The listener interface for receiving action events.

– The class that is interested in processing an action event 
implements this interface, and the object created with 
that class is registered with a component, using the 
component's addActionListener method. When the 
action event occurs, that object's actionPerformed
method is invoked.

6

ActionEvent

– public class ActionEvent extends AWTEvent
• A semantic event which indicates that a component-defined action occurred. 
• This high-level event is generated by a component (such as a Button) when the 

component-specific action occurs (such as being pressed). 
• The event is passed to every ActionListener object that registered to receive 

such events using the component's addActionListener method. 
• The object that implements the ActionListener interface gets this ActionEvent

when the event occurs. 
• The listener is therefore spared the details of processing individual mouse 

movements and mouse clicks, and can instead process a "meaningful" 
(semantic) event like "button pressed".

java.lang.Object
java.util.EventObject

java.awt.AWTEvent
java.awt.event.ActionEvent

7

getSource()

• Method inherited from class java.util.EventObject

• public Object getSource()
– Returns: The object on which the Event initially 

occurred.

8

addName()

• add() is a method of AWT List class.



9

moveNameRight() and moveNameLeft()

10

AWT List class

11

Code Maintenance Task

• Suppose you would like to rewrite the program using the 
Java Foundation Classes (JFC or “Swing”).

• Most of the methods you use for creating and manipulating 
the user interface remain the same. 

• However, the JFC JList class is markedly different than the 
AWT List class. 

• In fact, because the JList class was designed to represent 
far more complex kinds of lists, there are virtually no 
methods in common between the classes.

• Both classes (AWT List class, JFC JList class) have quite a 
number of other methods and almost none of them are 
closely correlated. 

12

A Possible Solution

• However, since we have already written the 
program once, and make use of two different list 
boxes, writing “some auxiliary code” to make the 
JList class look like the List class seems a sensible 
solution to our problem.



13

More on JList…

• The JList class is a window container which has an array, 
vector or other ListModel class associated with it. 

• It is this ListModel that actually contains and manipulates 
the data. 

• The JList class does not contain a scroll bar, but instead 
relies on being inserted in the viewport of the JScrollPane
class. 

• Data in the JList class and its associated ListModel are not 
limited to strings, but may be almost any kind of objects, 
as long as you provide the cell drawing routine for them. 

• This makes it possible to have list boxes with pictures 
illustrating each choice in the list.

14

Our Task is Much Simpler!

• We are only going to create a class that emulates the List class, and 
that in this simple case, needs only the three methods: 

– add(String); 
– remove(String); 
– String[] getSelectedItems()

• We define the needed methods as an interface and then make sure that 
the class we create implements those methods:

15

JScrollPane

• We create a class that contains a JList class but 
which implements the methods of the awtList
interface. 

• This is a pretty good choice here, because the 
outer container for a JList is not the list element at 
all, but the JScrollPane that encloses it.

16



17 18

JListData

• Note that the actual data handling takes place in 
the JListData class. This class is derived from the 
AbstractListModel, which defines the following 
methods:

19

Fire?

• The three fire methods are the communication 
path between the data stored in the ListModel and 
the actual displayed list data. 

• Firing them causes the displayed list to be 
updated.

• Hence, Each time we add data to the data vector, 
we call the fireIntervalAdded method to tell the 
list display to refresh that area of the displayed 
list.

20

Final Touches



21

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Adapter Pattern
Mar. 27, 2007

22

What is it?

• The Adapter pattern is used to convert the 
programming interface of one class into that of 
another. 

• We use adapters whenever we want unrelated 
classes to work together in a single program. 

• The concept of an adapter is thus pretty simple; 
– we write a class that has the desired interface and then 

make it communicate with the class that has a different 
interface.

23

Two-way Adapter

• The two-way adapter is a clever concept that 
allows an object to be viewed by different classes 
as being either of type X or a type Y.

24

Pluggable Adapter

• A pluggable adapter is one that adapts 
dynamically to one of several classes. 

• Of course, the adapter can only adapt to classes it 
can recognize, and usually the adapter decides 
which class it is adapting.



25

Reflection

• Java has yet another way for adapters to recognize which of several classes it 
must adapt to: reflection. 

• You can use reflection to discover the names of public methods and their 
parameters for any class. 

• For example, for any arbitrary object you can use the getClass() method to 
obtain its class and the getMethods() method to obtain an array of the method 
names.

26

Fine Print

• A “method dump” like the one produced by the 
code shown in the previous slide can generate a 
very large list of methods.

• It is easier if you know the name of the method 
you are looking for and simply want to find out 
which arguments that method requires. 

• From that method signature, you can then deduce 
the adapting you need to carry out.


