Design Patterns Taxonomy

* Creational patterns

— Concern the process of object creation

* Structural patterns

— Deal with the composition of classes or objects

» Behavioral patterns

— Characterize the ways in which classes or objects
interact and distribute responsibility

Structural Patterns

An Example Application

Lets create a simple Java program that

— allows you to enter names into a list,

— and then select some of those names to
be transferred to another list.

— Our initial list consists of a class roster
and the second list, those who will be
doing advanced work.

In the example Ul,

— You enter names into the top entry
field and click on Insert to move the
names into the left-hand list box.

— To move names to the right-hand list
box, you click on them, and then click
on Add.

— To remove a name from the right hand
list box, click on it and then on
Remove. This moves the name back to
the left-hand list.

=1 Two Lists

|Anna Green

Charlie Harse
Darren Steal
Evan Essent
Fred Farkle

Barry Pye |

Lets Look at some Code!

* The code will consist of a GUI creation

constructor and an actionListener routine for the
three buttons:

public void actionPerformed (RctionEvent &)
{
Button b = (Button)e.getSource();
if (b == Rdd)
addName () ;

if (b == MoveRight)
moveNameRight () ;
if (b == Moveleft)

moveNameLeft () ;

ActionListener

— public interface ActionListener extends EventListener

* The listener interface for receiving action events.

— The class that is interested in processing an action event
implements this interface, and the object created with
that class is registered with a component, using the
component's addActionListener method. When the
action event occurs, that object's actionPerformed
method is invoked.

ActionEvent

— public class ActionEvent extends AWTEvent

* A semantic event which indicates that a component-defined action occurred.

« This high-level event is generated by a component (such as a Button) when the
component-specific action occurs (such as being pressed).

* The event is passed to every ActionListener object that registered to receive
such events using the component's addActionListener method.

* The object that implements the ActionListener interface gets this ActionEvent
when the event occurs.

* The listener is therefore spared the details of processing individual mouse
movements and mouse clicks, and can instead process a "meaningful"
(semantic) event like "button pressed".

java.lang.Object
java.util. EventObject
java.awt. AWTEvent
java.awt.event. ActionEvent

getSource()

* Method inherited from class java.util. EventObject

* public Object getSource()

— Returns: The object on which the Event initially
occurred.

addName()

private void addName ()

{

if (txt.getText().lsngth() > 0)
{
leftlist.add (txt.getText());
txt.setText ("");
1

* add() is a method of AWT List class.

moveNameRight() and moveNameLeft()

private void moveNamsRight ()

{
String sel[] = leftlist.getSelectedItenms();
if (zel != null)
{
rightList.add(sel[0]);
leftlList.remove (s21[0]1);
}

}

public void moveNameLeft ()
{
String sel[] = rightlist.getSelectedItems();
if (s=2l != null)
{
leftlList.add(se1[0]);
rightList.remove(sel[0]);
}
}

AWT List class

awt List class

add(String);

remove(String)

String[] getSelectedItems()

Code Maintenance Task

» Suppose you would like to rewrite the program using the
Java Foundation Classes (JFC or “Swing”).

* Most of the methods you use for creating and manipulating
the user interface remain the same.

* However, the JFC JList class is markedly different than the
AWT List class.

* In fact, because the JList class was designed to represent
far more complex kinds of lists, there are virtually no
methods in common between the classes.

» Both classes (AWT List class, JFC JList class) have quite a
number of other methods and almost none of them are
closely correlated.

A Possible Solution

* However, since we have already written the
program once, and make use of two different list
boxes, writing “some auxiliary code” to make the
JList class look like the List class seems a sensible
solution to our problem.

More on JList...

» The JList class is a window container which has an array,
vector or other ListModel class associated with it.

* It is this ListModel that actually contains and manipulates
the data.

e The JList class does not contain a scroll bar, but instead
relies on being inserted in the viewport of the JScrollPane
class.

+ Data in the JList class and its associated ListModel are not
limited to strings, but may be almost any kind of objects,
as long as you provide the cell drawing routine for them.

» This makes it possible to have list boxes with pictures
illustrating each choice in the list.

Our Task is Much Simpler!

* We are only going to create a class that emulates the List class, and
that in this simple case, needs only the three methods:
— add(String);
— remove(String);
— String[] getSelectedItems()
* We define the needed methods as an interface and then make sure that
the class we create implements those methods:

public interface awtlist
public void add(String s);
public wvoid remove (String s);
public String[] getSslectedItems ()

JScrollPane

¢ We create a class that contains a JList class but
which implements the methods of the awtList
interface.

 This is a pretty good choice here, because the

outer container for a JList is not the list element at
all, but the JScrollPane that encloses it.

public class JawtlList extends JScrollPans
implements awtList

{
private JLiszt listWindow;
private JListData listContents;

public Jawtlist (int rows) {
listContents = new JListDatal();
listwindow = new JList(listContents);
getViewport () .add(listWindow) ;

public void add(String s) {
liztContents.addElemsent (3);

public void remove (String =) {
liztContents.removeElement (s) ;

public Stringl] getsSelectedItems () {
Object[] obj = liztWindow.getSelectedvValues();
string[] s = new Stringlobj.length];
for (int 1 =0; i<cb]j.length; i++)
s[1] = objli].tosString();
return s;

* Note that the actual data handling takes place in
the JListData class. This class is derived from the
AbstractListModel, which defines the following
methods:

| addListDataListener(1) Add a listener for changes in the
data.
removeListDataListener(l) Remove a listener

fireContentsChanged(obj. min.max) | Call this after any change occurs
between the two indexes min and
max

fireInterval Added(obj.min.max) Call this after any data has been
added between min and max.

fireIntervalRemoved(obj. min. max) | Call this after any data has been
removed between min and max. 18

* The three fire methods are the communication
path between the data stored in the ListModel and
the actual displayed list data.

* Firing them causes the displayed list to be
updated.

¢ Hence, Each time we add data to the data vector,
we call the firelntervalAdded method to tell the
list display to refresh that area of the displayed
list.

Final Touches

class JListData extends AbstractListModel
{

private Vector data;

public JListData() {
data = new Vector();

public void addElement (String =)
{
data.addElement (3);
fireIntervalAdded (this, data.size()-1,
data.size());

public void removeElement (String s) {
data.removeElemsnt (3);
fireIntervalRemoved (this, 0, data.size());

20

CMSC 433 — Programming Language

Technologies and Paradigms
Spring 2007

Adapter Pattern
Mar. 27, 2007

21

What is it?

» The Adapter pattern is used to convert the
programming interface of one class into that of
another.

* We use adapters whenever we want unrelated
classes to work together in a single program.
* The concept of an adapter is thus pretty simple;

— we write a class that has the desired interface and then
make it communicate with the class that has a different
interface.

22

Two-way Adapter

» The two-way adapter is a clever concept that
allows an object to be viewed by different classes
as being either of type X or a type Y.

23

Pluggable Adapter

* A pluggable adapter is one that adapts
dynamically to one of several classes.

* Of course, the adapter can only adapt to classes it
can recognize, and usually the adapter decides
which class it is adapting.

24

Java has yet another way for adapters to recognize which of several classes it
must adapt to: reflection.

You can use reflection to discover the names of public methods and their
parameters for any class.

For example, for any arbitrary object you can use the getClass() method to
obtain its class and the getMethods() method to obtain an array of the method
names.

JList list = new JList();
Method[] methods = list.getClass().getMethods();
//print out methods

for (int i = 0; i < methods.length; i++) {
System.out.println(methods([i] .getName());
//print out parameter types
Class cl[] = methods[i].getParameterTypes () ;

for(int j=0; j < cl.length; j++)
System.out.println(cl[j].toString());

* A “method dump” like the one produced by the
code shown in the previous slide can generate a
very large list of methods.

* It is easier if you know the name of the method
you are looking for and simply want to find out
which arguments that method requires.

* From that method signature, you can then deduce
the adapting you need to carry out.

26

