
1

An Example Application

• We want a program that displays a list of products in a 
window. 
– The simplest interface for that display is a simple JList box. 

• Once a significant number of products have been sold, we 
want to display the products in a table along with their 
sales figures.

• We need to produce two kinds of displays from our 
product data, 
– a customer view that is just the list of products we’ve mentioned, 

and 
– an executive view which also shows the number of units shipped. 

• We’ll display the product list in an ordinary JList box and 
the executive view in a JTable table display. 

2

The UI

• For simplicity, lets just show both displays in a 
single window:

3

The Adapter Pattern?

• Can someone implement it?

4

Top Programming Level

• At the top programming level, we just create instances of a 
table and a list from classes derived from JList and JTable
but designed to parse apart the names and the quantities of 
data.



5

productList

• We derive the productList class directly from the JawtList class we 
wrote in the Adapter pattern slides, so that the Vector containing the 
list of products is the only input to the class.

6

productTable

• Something similar?

7

Maintenance Task

• Suppose that we need to make some changes in 
the way these lists display the data. 
– For example, you might want to have the products 

displayed in alphabetical order. 
– In order to continue with this approach, you’d need to 

either modify or subclass both of these list classes. 
• This can quickly get to be a maintenance 

nightmare, especially if more than two such 
displays eventually are needed. 

8

The Bridge Pattern

• So rather than deriving new classes whenever we 
need to change these displays further, let’s build a 
single “bridge” that does this work for us



9

What kind of Bridge?

• We want the bridge class to return an appropriate visual 
component so we’ll make it a kind of scroll pane class:
– public class listBridge extends JScrollPane

• When we design a bridge class, we have to decide how the 
bridge will determine which of the several classes it is to 
instantiate. 
– It could decide based on the values or quantity of data to be 

displayed, or 
– it could decide based on some simple constants. 

• Here we define the two constants inside the listBridge
class:
– static public final int TABLE = 1, LIST = 2;

10

At the Top Programming Level

• We’ll keep the main program constructor much the same, replacing 
specialized classes with two calls to the constructor of our new
listBridge class:

11

listBridge()

• Our constructor for the listBridge class is then 
simply

12

• We can use the JTable and JList class directly in our bridge 
class without modification and thus can put any adapting 
interface computations in the data models that construct 
the data for the list and table.



13

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Bridge Pattern
Mar. 29, 2007

14

What is it?

• The Bridge pattern is used to separate the interface of class from its 
implementation, so that either can be varied separately. 

• At first sight, the bridge pattern looks much like the Adapter pattern, in 
that a class is used to convert one kind of interface to another. 

– However, the intent of the Adapter pattern is to make one or more classes’
interfaces look the same as that of a particular class. 

• The Bridge pattern is designed to separate a class’s interface from its 
implementation, so that you can vary or replace the implementation 
without changing the client code.

• The Bridge pattern is intended to keep the interface to your client 
program constant while allowing you to change the actual kind of class 
you display or use. This can prevent you from recompiling a 
complicated set of user interface modules, and only require that you 
recompile the bridge itself and the actual end display class.


