CMSC 433 — Programming Language

Technologies and Paradigms
Spring 2007

Builder Pattern
Mar. 13, 2007

Revisit the Factory Pattern

* Factory Pattern returns one of several different
subclasses depending on the data passed via
parameters to the creation method(s).

» Suppose we aren’t interested in returning objects
that are simple descendents of a base object, but
are assembled from different combinations of
(unrelated) objects.

What is the Builder Pattern?

* The Builder Pattern assembles and returns a
number of objects in various ways depending on
the data passed via parameters to the creation
method(s).

An Example

* Lets design a class that will build a User Interface
for us.

* Requirements: write a program to keep track of
the performance of our investments. We might
have stocks, bonds and mutual funds, and we’d
like to display a list of our holdings in each
category so we can select one or more of the
investments and plot their comparative
performance.

— Wealth Builder

Example (contd...)

* We cannot predict in advance how many of each kind of
investment we might own at any given time.

» We’d like to have a display that is easy to use for either a
large number of funds (such as stocks) or a small number
of funds (such as mutual funds).

— In each case, we want some kind of a multiple-choice display so
that we can select one or more funds to plot.

— Ifthere is a large number of funds, we’ll use a multi-choice list box
and if there are 3 or fewer funds, we’ll use a set of check boxes.
* We want our Builder class to generate an interface that
depends on the number of items to be displayed, and yet
have the same methods for returning the results.

An Example Final Display

f& Wealth Builder [_ O] [Wealth Builder 1[=] E3

Bonds Cisco

[~ CT state G0 2012
ca Cola s

[GE corp Bonds

hiutual Funds

[[

Let’s See Some Code!

« start with a multiChoice abstract class that defines
the methods we need to implement

abstract class multiChoice

{

}

//This is the abstract base class

//that the listbox and checkbox cholice pansls
//are derived from

Vector choices; /farray of labsls

public multicChoice (Vector choiceList)
{
choices = choicelist; //save list

}

//to be implemented in derived classes
abstract public Panel getUI(); //return a Pansl of components
abstract public Stringl[] getSelected(); /fget list of items
abstract public void clearall(); //clear selections

Lets Plan for a Second

* The getUI method returns a Panel container with a
multiple-choice display.

* The two displays we’re using here

a checkbox panel or

a list box panel

— are derived from this abstract class:
« class listboxChoice extends multiChoice

—or

« class checkBoxChoice extends multiChoice

Throw in a Factory for Variety!

* create a simple Factory class that decides which of
these two classes to return

class choiceFactory
{
multiCholice ul;
//This class returns a Panel containing
//a ==t of choices displayed by one of
//several UI methods.
public multichoice getChoiceUI(Vector choices)
{
if{cholices.size() <=3)
//return a panel of checkboxes
1l = new checkBoxChoice (cholces);
else
//return a multi-zslect list box pansl
1l = new listbhoxChoice (choices);
return ui;

* In the main class

— create the user interface, consisting of a BorderLayout
with the center divided into a 1 x 2 GridLayout.

— The left part contains our list of investment types and
the right an empty panel that we’ll fill depending on
which kind of investments are selected.

 In the main class code
— choiceFactory cfact; //the factory

} Fine Print: this factory class is called the Director, and the 10
} actual classes derived from multiChoice are each Builders.
Invoking the Factory Finally, the Builders!
+ when the user clicks on one of the three investment types in the left list * the List box builder returns a panel containing a
box, we pass the equivalent vector to our Factory, which returns one of : : : :
N dp ot as S astonys list box showing the list of investments.
the but ers.{ - class listboxChoice extends multiChoice
vector v = null; {
int index = stockList.getSelectedIndex(); List list; //investment list goes here
choicePanel.removeAll (); //remove previous ui panel e
public listboxChoice (Vector choilces)
//this just switches among 3 different Vectors {
//and passes the one you select to the Builder pattern super (choices);
switch (index) }
t 2
case 0: public Panel getUI()
v = Stocks; break; {
case 1: //create a panel containing a list box
i f Bonds; brealk; Panel p = new Panel();
save the multiChoice case i: - list = new List(choices.size()); //list box
panel the factory creates) N7 S T lis:.se?MultiplEMode(tILE); //multiple
in the mchoice mchoice = cfact.getChoiceUI (v); //get one of the UId //add P'a?lf‘llsti; . 1 5
variable so we can choicePanel.add (mchoice.getUI () ; //insert in right pd add investments into 1ist box
pass it to the Plot dialog. choicePanel .validate(); //re-layout and disq for fi““ 1*‘J1F1< ChO}C55-51?=fl: 14:*) R o
Plot.setEnabled [true) ; //allow plots list.addItem((String)choices.elementAt(i)); 1
} return p; //return the panesl
1

getSelected()

public String[] getSelected()

{

int count =0;
//count the selected listbox lines

for (int i=0; i < list.getItemCount(); i++) .
(of the investments
if (list.isIndexSelectad(i)) the user selects.

the getSelected method
returns a String array

count++;
}
//create a string array big enough for those selectead
String[] slist = new Stringlcount];

//copy list elements into string array
int j = 0;
for (int i=0; i < list.getItemCount(); i++)
{
1f (list.isIndexSslected(i))
slist[j++] = list.getItem(i);
}

return(slist);

* A Builder lets you vary the internal representation of the product it
builds.

— It also hides the details of how the product is assembled.

» Each specific builder is independent of the others and of the rest of the
program.

— This improves modularity and makes the addition of other builders
relatively simple.

* Because each builder constructs the final product step-by-step,
depending on the data, you have more control over each final product
that a Builder constructs.

* A Builder pattern is somewhat like a Factory pattern in that:

— The main difference is that while the Factory returns a family of related

objects, the Builder constructs a complex object step by step depending on
the data presented to it.

