
1

CMSC 433 – Programming Language
Technologies and Paradigms

Spring 2007

Builder Pattern
Mar. 13, 2007

2

Revisit the Factory Pattern

• Factory Pattern returns one of several different
subclasses depending on the data passed via
parameters to the creation method(s).

• Suppose we aren’t interested in returning objects
that are simple descendents of a base object, but
are assembled from different combinations of
(unrelated) objects.

3

What is the Builder Pattern?

• The Builder Pattern assembles and returns a
number of objects in various ways depending on
the data passed via parameters to the creation
method(s).

4

An Example

• Lets design a class that will build a User Interface
for us.

• Requirements: write a program to keep track of
the performance of our investments. We might
have stocks, bonds and mutual funds, and we’d
like to display a list of our holdings in each
category so we can select one or more of the
investments and plot their comparative
performance.
– Wealth Builder

5

Example (contd…)

• We cannot predict in advance how many of each kind of
investment we might own at any given time.

• We’d like to have a display that is easy to use for either a
large number of funds (such as stocks) or a small number
of funds (such as mutual funds).
– In each case, we want some kind of a multiple-choice display so

that we can select one or more funds to plot.
– If there is a large number of funds, we’ll use a multi-choice list box

and if there are 3 or fewer funds, we’ll use a set of check boxes.
• We want our Builder class to generate an interface that

depends on the number of items to be displayed, and yet
have the same methods for returning the results.

6

An Example Final Display

7

Let’s See Some Code!

• start with a multiChoice abstract class that defines
the methods we need to implement

8

Lets Plan for a Second

• The getUI method returns a Panel container with a
multiple-choice display.

• The two displays we’re using here
– a checkbox panel or
– a list box panel
– are derived from this abstract class:

• class listboxChoice extends multiChoice

– or
• class checkBoxChoice extends multiChoice

9

Throw in a Factory for Variety!
• create a simple Factory class that decides which of

these two classes to return

Fine Print: this factory class is called the Director, and the
actual classes derived from multiChoice are each Builders. 10

Main Class

• In the main class
– create the user interface, consisting of a BorderLayout

with the center divided into a 1 x 2 GridLayout.
– The left part contains our list of investment types and

the right an empty panel that we’ll fill depending on
which kind of investments are selected.

• In the main class code
– choiceFactory cfact; //the factory

11

Invoking the Factory
• when the user clicks on one of the three investment types in the left list

box, we pass the equivalent vector to our Factory, which returns one of
the builders:

save the multiChoice
panel the factory creates
in the mchoice
variable so we can
pass it to the Plot dialog.

12

Finally, the Builders!
• the List box builder returns a panel containing a

list box showing the list of investments.

13

getSelected()

the getSelected method
returns a String array
of the investments
the user selects.

14

Summary

• A Builder lets you vary the internal representation of the product it
builds.

– It also hides the details of how the product is assembled.
• Each specific builder is independent of the others and of the rest of the

program.
– This improves modularity and makes the addition of other builders

relatively simple.
• Because each builder constructs the final product step-by-step,

depending on the data, you have more control over each final product
that a Builder constructs.

• A Builder pattern is somewhat like a Factory pattern in that:
– The main difference is that while the Factory returns a family of related

objects, the Builder constructs a complex object step by step depending on
the data presented to it.

