CMSC 433 — Programming Language

Technologies and Paradigms
Spring 2007

Command Pattern
Apr. 10, 2007

What is 1t?

* The Chain of Responsibility forwards requests
along a chain of classes, but the Command pattern
forwards a request only to a specific module.

+ It encloses a request for a specific action inside an
object and gives it a known public interface.

+ It lets you give the client the ability to make
requests without knowing anything about the
actual action that will be performed, and allows
you to change that action without affecting the
client program in any way.

For Example

¢ When you build a Java user
interface, you provide menu items,
buttons, and checkboxes and so
forth to allow the user to tell the
program what to do.

« When a user selects one of these
controls, the program receives an
ActionEvent, which it must trap by
subclassing, the actionPerformed
event.

¢ Let's suppose we build a very
simple program that allows you to
select the menu items File | Open
and File | Exit, and click on a
button marked Red which turns the
background of the window red.

* The program consists of the File
Menu object with the mnuOpen
and mnuExit Menultems added to
it.

» Italso contains one button called
btnRed.

« A click on any of these causes an
actionPerformed event that we can
trap.

File

The actionPerformed() Code

public void actionPerformed (ActionEvent &) {
Chijsct ob] = =.gstSource();
if(cbj == mnuOpen)
fileCpent); //open file
if (obj == mnuExit)
exlitClicked(); //exit from program
if (obj == btnRed)
redclicked(); //turn red

The Methods Code

* The three private methods this method calls are...

private wvoid exitClicksed() {
System.sxit(0);

private void fileOpen()
FileDialog fDlg = new FileDialog(this, "Open a file",
FileDialog.LOAD);
fDlg.show();

private void redClicked() {
p.setBackground (Color.red) ;
I

Good for Small Examples but...

» This approach works fine as long as there are only a few

menu items and buttons, but
— when you have dozens of menu items and several buttons, the
actionPerformed code can get pretty unwieldy.

 In addition, this really seems a little inelegant, since we'd
really hope that in an object-oriented language like Java,
we could avoid a long series of if statements to identify the
selected object.

» Instead, we'd like to find a way to have each object receive
its commands directly.

» The objective is to reduce the actionPerformed
method to:

public void actionPerformed (ActionEvent e) {
Command cmd = (Command)e.getSource();
cmd .Execute () ;

The Command Object

* One way to assure that every object receives its own
commands directly is to use the Command object
approach.

* A Command object always has an Execute() method that is
called when an action occurs on that object.

* Most simply, a Command object implements at least the
following interface.

public interface Command {
public void Execute();

}

The Command Philosophy Approach

« Provide an Execute method for each object which carries out the desired « Derive new classes from the Menultem and Button classes and
action, thus keeping the knowledge of what to do inside the object where it imol h interface i h
belongs, instead of having another part of the program make these decisions. implement the Command interface in each.

* One important purpose of the Command pattern is to keep the program and class btnRedcommand extends Button
user interface objects completely separate from the actions that they initiate. implements Command {
— In other words, these program objects should be completely separate from each public btnRedCommand (String caption) {
other and should not have to know how other objects work. super (caption) ; //initialize the kbutton
« The user interface receives a command and tells a Command object to carry 1
out whatever duties it has been instructed to do. public void Execute() {
— The UI does not and should not need to know what tasks will be executed. p.setBackground (Color.red);
« The Command object can also be used when you need to tell the program to
execute the command when the resources are available rather than

h ? F e e e P
immediately. X class fileExitCommand extends Menultem
— In such cases, you are queuing commands to be executed later. implements Command {
« Finally, you can use Command objects to remember operations so that you can public fileExitCommand(String caption) {
support Undo requests. super (caption); //initialize the Menu
1
public void Execute () {
9 sSystem.exit (0); 10

}

dvantages/Disadvantages

* This lets us simplify the calls made in the
actionPerformed method.

* But it requires that we create and instantiate a new
class for each action we want to execute.

mnuopen.addactionlListensr (new fileOpen())
mnuExit.addActionlListener (new fileExit())
btnRed.addActionListener (new btnRed());

v
r

