
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Flyweight Pattern
Apr. 05, 2007

2

Example

• We want to draw a small folder 
icon with a name under it for 
each person in a an 
organization. 

• We want two types of icons, 
one for “is Selected” and one 
for “not Selected.”

• We can have an icon object for 
each person, with its own 
coordinates, name and selected 
state. 

– Each icon can then draw() 
itself.

• Lets code it.

3

Efficiency Issues

• If this is a large organization, there could be a 
large number of such icons, but they are actually 
all the same graphical image. 

• Even if we have two icons, one for “is Selected”
and one for “not Selected” the number of different 
icons is small. 

• In such a system, having an icon object for each 
person, with its own coordinates, name and 
selected state is a waste of resources.

4

A “better” Approach

• Instead, we’ll create a 
FolderFactory that returns 
either the selected or the 
unselected folder drawing 
class, but does not create 
additional instances once 
one of each has been 
created. 

• Since this is such a simple 
case, we just create them 
both at the outset and then 
return one or the other.



5

More Complex Cases

• For cases where more instances could exist, the 
factory could keep a table of the ones it had 
already created and only create new ones if they 
weren’t already in the table.

6

Flyweight Pattern

• The unique thing about using Flyweights in this 
example is that we pass the coordinates and the 
name to be drawn into the folder when we draw it.

• These coordinates are the extrinsic data that allow 
us to share the folder objects, and in this case 
create only two instances.
– an instance’s intrinsic data makes the instance unique, 

and the extrinsic data is passed in as arguments.

7

The Folder class

• We’ll develop a folder class that simply creates a 
folder instance with one background color or the 
other and has a public Draw method that draws the 
folder at the point you specify.

8



9

The paint() routine

• To use a Flyweight class like this, your main program must 
calculate the position of each folder as part of its paint 
routine and then pass the coordinates to the folder instance.

• This is actually rather common, since you need a different 
layout depending on the window’s dimensions, and you 
would not want to have to keep telling each instance where 
its new location is going to be. 

• Hence, we compute the position dynamically during the 
paint routine.

10

11

Selecting a Folder

• Since we have two folder instances, that we termed 
selected and unselected, we’d like to be able to select 
folders by moving the mouse over them.

• In the paint routine, we simply remember the name of the 
folder which was selected and ask the factory to return a 
“selected’ folder for it.

• We’ll now check for mouse motion at the window level 
and if the mouse is found to be within a Rectangle, we 
make that corresponding name the selected name.

• This allows us to just check each name when we redraw 
and create a selected folder instance where it is needed.

12

Checking Mouse Coordinates



13

What is it?

• There are cases in programming where it seems that you need to 
generate a very large number of small class instances to represent data.

• Sometimes you can greatly reduce the number of different classes that 
you need to instantiate if you can recognize that the instances are 
fundamentally the same except for a few parameters. 

• If you can move those variables outside the class instance and pass 
them in as part of a method call, the number of separate instances can 
be greatly reduced.

• The Flyweight design pattern provides an approach for handling such 
classes. 

• It refers to the instance’s intrinsic data that makes the instance unique, 
and the extrinsic data which is passed in as arguments. 

• The Flyweight is appropriate for small, fine-grained classes like 
individual characters or icons on the screen.


