
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Interpreter Pattern
Apr. 12, 2007

2

Example

• Let’s consider a simplified report generator that can operate on 5 
columns of data in a table and return various reports on the data.

• Suppose we have the following results from a swimming competition:

• where the 5 columns are frname, lname, age, club and time.

3

Need for Reports

• If we consider the complete race results of 51 
swimmers, we realize that it might be convenient 
to sort these results by club, by last name or by 
age. 

• Since there are a number of useful reports we 
could produce from these data in which the order 
of the columns changes as well as the sorting, a 
language is one useful way to handle these reports.

4

The Language

• We’ll define a very simple non-recursive grammar of the sort
– e.g., Print Lname Frname Club Time SortBy Club ThenBy Time

• For the purposes of this example, we define the 3 verbs:
– Print, Sortby, Thenby

• and the 5 column names:
– Frname, Lname, Age, Club, Time

• For convenience, we’ll assume that the language is case insensitive.
• We’ll also note that the simple grammar of this language is 

punctuation free, and amounts in brief to
– Print var [var] [SortBy var [ThenBy var]]

• Finally, there is only one main verb; there is no assignment statement 
or computational ability in this language.



5

The Strategy

• Interpreting the language takes place in three steps:
– Parsing the language symbols into tokens.
– Reducing the tokens into actions.
– Executing the actions.

• We parse the language into tokens by simply scanning 
each statement with a StringTokenizer and then 
substituting a number for each word. 

• Usually parsers push each parsed token onto a stack -- we 
will use that technique here.
– We implement the Stack class using a Vector, where we have 

push, pop, top and nextTop methods to examine and manipulate 
the stack contents.

6

The Stack

• After parsing, our stack 
could look like this:

PrintVerb
LnameVerb
FrnameVar

ClubVar
TimeVar

SortByVerb
ClubVar

ThenByVerb
TimeVar
TokenType

Top of Stack >>

7

Eliminating thenby

• We realize that the “verb” thenby has no real meaning other than 
clarification, and it is more likely that we’d parse the tokens and skip 
the thenby word altogether. 

• Our initial stack then, looks like:

PrintVerb
LnameVar
FrnameVar

ClubVar
TimeVar

SortByVerb
ClubVar
TimeVar
TokenType

Top of Stack >>

8

Objects Used for Parsing

• We do not push just a numeric token onto the stack, but a ParseObject
which has the both a type and a value property.

• These objects can take on the type VERB or VAR. 



9

Object Hierarchy

• Then we extend this object into ParseVerb and ParseVar objects, whose value 
fields can take on PRINT or SORT for ParseVerb and FRNAME, LNAME, 
etc. for ParseVar. 

• For later use in reducing the parse list, we then derive Print and Sort objects 
from ParseVerb.

10

Lets Start Parsing!

• The parsing process is just the following simple 
code, using the StringTokenizer and the parse 
objects.

11

tokenize()

12

getVar()



13

ParseVerb

• The ParseVerb and ParseVar classes return objects 
with isLegal set to true if they recognize the word.

14

Reducing the Stack

• The tokens on the stack have the form
– Var
– Var
– Verb
– Var
– Var
– Var
– Var
– Verb

• We reduce the stack a token at a time, folding successive 
Vars into a MultVar class until the arguments are folded 
into the verb objects.

15

The Reduction

• When the stack reduces to a verb, this verb and its arguments are 
placed in an action list; when the stack is empty the actions are 
executed.

16

Reduction (contd…)



17

The UI

• This entire process is carried out by 
creating a Parser class that is a 
Command object, and executing it 
when the Go button is pressed on 
the user interface.

• The parser itself just reduces the 
tokens. It checks for various pairs 
of tokens on the stack and reduces 
each pair to a single one for each of 
five different cases.

18

Reduce (Var Var) to MultVar

19

Reduce (MultVar Var) to MultVar

20

Reduce (Var MultVar) to MultVar



21

Reducing (Verb Var) and (Verb MultVar)

22

Preparing for Execution!

23

Execution!

• We also make the Print and Sort verb classes Command 
objects and Execute them one by one as the action list is 
enumerated.

24

Concluding Remarks

• Whenever you introduce an interpreter into a program, you need to 
provide a simple way for the program user to enter commands in that 
language. 

– It can be an editable text field like the one in the program above.
• However, introducing a language and its accompanying grammar also 

requires fairly extensive error checking for misspelled terms or
misplaced grammatical elements. 

– This can easily consume a great deal of programming effort unless some 
template code is available for implementing this checking. 

– Further, effective methods for notifying the users of these errors are not 
easy to design and implement.

• In the Interpreter example above, the only error handling is that 
keywords that are not recognized are not converted to ParseObjects
and pushed onto the stack. 

– Thus, nothing will happen, because the resulting stack sequence probably 
cannot be parsed successfully, or if it can, the item represented by the 
misspelled keyword will not be included.



25

Concluding Remarks (contd…)

• The Interpreter pattern has the advantage that you 
can extend or revise the grammar fairly easily 
once you have built the general parsing and 
reduction tools. 

• You can also add new verbs or variables quite 
easily once the foundation is constructed.


