CMSC 433 — Programming Language

. 1 « Let’s consider a simplified report generator that can operate on 5
TeChHOIOgleS and Paradlgms columns of data in a table and return various reports on the data.
Sprin g 2007 » Suppose we have the following results from a swimming competition:

Amanda McCarthy 12 WcCha 296.28

Jamie Falco 12 HNHS 29.80

Meaghan O'Donnell 12 EDST 30.00

Interpreter Pattern Greer Gibbs 12 cpav 30.04

Rhiannon Jeffrey 11 WYw 30.04

Apr- 12, 2007 Sophie Connolly 12 WAC 30.05

Dana Helyer 12 ARAC 30.18

« where the 5 columns are frname, Iname, age, club and time.

Need for Reports The Language

« Ifwe consider the complete race results of 51 * We’ll define a very simple non-recursive grammar of the sort
. — e.g., Print Lname Frname Club Time SortBy Club ThenBy Time
swimmers, we realize that it might be convenient « For the purposes of this example, we define the 3 verbs:
to sort these results by club, by last name or by ~ Print, Sortby, Thenby
age. « and the 5 column names:
— Frname, Lname, Age, Club, Time
« Since there are a number of useful reports we » For convenience, we’ll assume that the language is case insensitive.
could produce from these data in which the order - We'll alsp note that the simple grammar of this language is
. punctuation free, and amounts in brief to
of the columns changes as well as the sorting, a _ Print var [var] [SortBy var [ThenBy var]]
language is one useful way to handle these reports. « Finally, there is only one main verb; there is no assignment statement

or computational ability in this language.

The Strategy

« Interpreting the language takes place in three steps:
— Parsing the language symbols into tokens.
— Reducing the tokens into actions.
— Executing the actions.

* We parse the language into tokens by simply scanning
each statement with a StringTokenizer and then
substituting a number for each word.

» Usually parsers push each parsed token onto a stack -- we
will use that technique here.

— We implement the Stack class using a Vector, where we have
push, pop, top and nextTop methods to examine and manipulate
the stack contents.

The Stack

» After parsing, our stack

could look like this:
Type Token
Top of Stack >> Var Time
Verb ThenBy
Var Club
Verb SortBy
Var Time
Var Club
Var Frname
Verb Lname
Verb Print 6

Eliminating thenby

* Werealize that the “verb” thenby has no real meaning other than
clarification, and it is more likely that we’d parse the tokens and skip
the thenby word altogether.

* Our initial stack then, looks like: Type Token
Top of Stack >> Var Time
Var Club
Verb SortBy
Var Time
Var Club
Var Frname
Var Lname
Verb Print 7

Objects Used for Parsing

* We do not push just a numeric token onto the stack, but a ParseObject
which has the both a type and a value property.

public class ParseCbject
{
public static final int VERB=1000, VAR = 1010,
MULTVAR = 1020;
protected int wvalue;
protected int type;

public int getValue() {return value;}
public int getType() {return tyvpe;}

* These objects can take on the type VERB or VAR.

Object Hierarchy

« Then we extend this object into ParseVerb and ParseVar objects, whose value
fields can take on PRINT or SORT for ParseVerb and FRNAME, LNAME,
etc. for ParseVar.

« For later use in reducing the parse list, we then derive Print and Sort objects
from ParseVerb.

ParseObject

' .

ParseVerb

ParseVar

Lets Start Parsing!

* The parsing process is just the following simple
code, using the StringTokenizer and the parse
objects.

public Parser (String line) {
stk new Stack();
actionLizt = new Vector();

StringTokenizer tok = new StringTokenizer (line);
while (tok.hasMoreElemants () {
ParseObject token = tokenize (tok.nextToken());
if(token != null)

stk.push (token) ;

private ParseObject tokenize(String =) {
ParseCbject obj = getVerb(s);
if (obj == null)

obj = getvVar(s);
return obj;

private ParseVerb gstVerb (String s) |
ParseVerb v;
v = new ParseVerb(s);
if (v.isLegal())
return v.getVerb(s);
else
return null;

private ParsevVar getVar(string =) {
ParseVar v;
v = new ParseVar(s);
if (v.isLegal())
return v;
else

return null;

* The ParseVerb and ParseVar classes return objects : Thi/t"kens on the stack have the form
. . . . - ar
with isLegal set to true if they recognize the word. _ Var
public class Par=seVerb extends ParseCbject — Verb
{) .)) — Var
static public final int PRINT=100, v
SORTBY=110, THENBY=120; - var
protected Vector args; — Var
— Var
public ParseVerb(String s) { — Verb
args = new Vector(); . . .
= = s.tolowerCass(); * We reduce the stack a token at a time, folding successive
value = -1; Vars into a MultVar class until the arguments are folded
type = VERB; into the verb objects.
if (s.equals("print™)) wvalue = PRINT;
if (s.equals("sortby")) value = SORTBY;
}
13 14

The Reduction Reduction (contd...)

Verb
Time Var
\—P MultVar Time
MultVar
Var
Club Var
—» Verb Club
Verb Multvar
SortBy A N e—
Frname
* When the stack reduces to a verb, this verb and its arguments are Vorb
placed in an action list; when the stack is empty the actions are Var
executed. Lname

The Ul

+ This entire process is carried out by | __
creating a Parser class thatisa 3 Interpreter Demo
Command object, and executing it

B |print Iname fmame time sortby Iname |
when the Go button is pressed on h

the user interface. Ament Kaithm 30.83
Brookman Rachel 30.81
public veoid actionPerformed (ActionEvent o)l ||Brudvig Karin 31.84
Bullock Margan 3333
Coelho Colleen 325
Coia Micole 31.94

Parser p = new Parser (tx.getText());
p.setData (kdata, ptable);
p.Execute (

J Colling Kathy 33.11
Connolly Sophie 30,05
* The parser itself just reduces the Cooke Diana 3233
tokens. It checks for various pairs Cowles Lindsay 31.79
of tokens on the stack and reduces Danais Karleen 30.7
each pair to a single one for each of ||Ducharme Michelle 30.51
five different cases. Duffy Annie 1.9

Duffy Katie 34.24

Reduce (Var Var) to MultVar

//executes parse of command line
public volid Execute() {
while (stk.hasMoreElements ()) {
if (topStack (ParseCbject . VAR, ParseCbiject.VAR))

{
//reduce (Var var) to Multvar
ParseVar v = (ParseVar)stk.pop();
ParseVar vl = (ParseVar)stk.popl();
MultvVar mv = new Multvar(vl, v);
stk.push (mv) ;
}

Reduce (MultVar Var) to MultVar

//reduce MULTVAR VAR to MULTVAR
if (topStack(ParseObject .MULTVAR, ParseCbject.VAR))

{

MultVar mv = new MultVar();
MultVar mvo = (MultVar)stk.pop();
ParseVar v = (ParseVar)stk.popl();

mv.add(v) ;

Vector mvec = mvo.getVector ();

for (int i1 = 0; i< mvec.size(); i++)
mv.add((ParseVar)mvec.slemsentAt (1)) ;

stk.push (mv) ;

Reduce (Var MultVar) to MultVar

if{topStack (ParzeCbject. VAR, ParseObject.MULTVAR))
{

ParseVar v = (ParseVar)stk.pop();
MultVar mv = (MultVar)stk.popl();
mv.add (v);

stk.push (mv) ;

}

20

erb Var) and (Verb MultVar)

//reduce Verb Var to Verb containing vars
if (topStack(ParseCbject.VAR, Parss0bject.VERE))
{
addArgsToVerb () ;
}
//reduce Verb MultvVar to Verb containing vars
if (topStack (ParseCbject .MULTVAR, ParseObject.VERRB))
{
addArgsToVerb () ;
}

21

Preparing for Execution!

//méve top verb to action list
if(stk.top() .getType () == ParseCbject.VERB)
{

actionlist.addElement (stk.pop());

22

Execution!

//now exscute the verbs

for (int i =0; i< actionLiszt.size() ; i++)
Verkb v = (Verb)actionList.elemsentt (i);
v.Execute (),

* We also make the Print and Sort verb classes Command
objects and Execute them one by one as the action list is
enumerated.

23

{

Concluding Remarks

* Whenever you introduce an interpreter into a program, you need to
provide a simple way for the program user to enter commands in that
language.

— It can be an editable text field like the one in the program above.

* However, introducing a language and its accompanying grammar also
requires fairly extensive error checking for misspelled terms or
misplaced grammatical elements.

— This can easily consume a great deal of programming effort unless some
template code is available for implementing this checking.

— Further, effective methods for notifying the users of these errors are not
easy to design and implement.

* In the Interpreter example above, the only error handling is that
keywords that are not recognized are not converted to ParseObjects
and pushed onto the stack.

— Thus, nothing will happen, because the resulting stack sequence probably
cannot be parsed successfully, or if it can, the item represented by the
misspelled keyword will not be included. e

Concluding Remarks (contd...)

* The Interpreter pattern has the advantage that you
can extend or revise the grammar fairly easily
once you have built the general parsing and
reduction tools.

* You can also add new verbs or variables quite
easily once the foundation is constructed.

25

