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Example

• Let’s consider a simplified report generator that can operate on 5 
columns of data in a table and return various reports on the data.

• Suppose we have the following results from a swimming competition:

• where the 5 columns are frname, lname, age, club and time.
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Need for Reports

• If we consider the complete race results of 51 
swimmers, we realize that it might be convenient 
to sort these results by club, by last name or by 
age. 

• Since there are a number of useful reports we 
could produce from these data in which the order 
of the columns changes as well as the sorting, a 
language is one useful way to handle these reports.
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The Language

• We’ll define a very simple non-recursive grammar of the sort
– e.g., Print Lname Frname Club Time SortBy Club ThenBy Time

• For the purposes of this example, we define the 3 verbs:
– Print, Sortby, Thenby

• and the 5 column names:
– Frname, Lname, Age, Club, Time

• For convenience, we’ll assume that the language is case insensitive.
• We’ll also note that the simple grammar of this language is 

punctuation free, and amounts in brief to
– Print var [var] [SortBy var [ThenBy var]]

• Finally, there is only one main verb; there is no assignment statement 
or computational ability in this language.
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The Strategy

• Interpreting the language takes place in three steps:
– Parsing the language symbols into tokens.
– Reducing the tokens into actions.
– Executing the actions.

• We parse the language into tokens by simply scanning 
each statement with a StringTokenizer and then 
substituting a number for each word. 

• Usually parsers push each parsed token onto a stack -- we 
will use that technique here.
– We implement the Stack class using a Vector, where we have 

push, pop, top and nextTop methods to examine and manipulate 
the stack contents.
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The Stack

• After parsing, our stack 
could look like this:

PrintVerb
LnameVerb
FrnameVar

ClubVar
TimeVar

SortByVerb
ClubVar

ThenByVerb
TimeVar
TokenType

Top of Stack >>
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Eliminating thenby

• We realize that the “verb” thenby has no real meaning other than 
clarification, and it is more likely that we’d parse the tokens and skip 
the thenby word altogether. 

• Our initial stack then, looks like:

PrintVerb
LnameVar
FrnameVar

ClubVar
TimeVar

SortByVerb
ClubVar
TimeVar
TokenType

Top of Stack >>
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Objects Used for Parsing

• We do not push just a numeric token onto the stack, but a ParseObject
which has the both a type and a value property.

• These objects can take on the type VERB or VAR. 
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Object Hierarchy

• Then we extend this object into ParseVerb and ParseVar objects, whose value 
fields can take on PRINT or SORT for ParseVerb and FRNAME, LNAME, 
etc. for ParseVar. 

• For later use in reducing the parse list, we then derive Print and Sort objects 
from ParseVerb.
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Lets Start Parsing!

• The parsing process is just the following simple 
code, using the StringTokenizer and the parse 
objects.

11

tokenize()
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getVar()
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ParseVerb

• The ParseVerb and ParseVar classes return objects 
with isLegal set to true if they recognize the word.
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Reducing the Stack

• The tokens on the stack have the form
– Var
– Var
– Verb
– Var
– Var
– Var
– Var
– Verb

• We reduce the stack a token at a time, folding successive 
Vars into a MultVar class until the arguments are folded 
into the verb objects.
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The Reduction

• When the stack reduces to a verb, this verb and its arguments are 
placed in an action list; when the stack is empty the actions are 
executed.

16

Reduction (contd…)
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The UI

• This entire process is carried out by 
creating a Parser class that is a 
Command object, and executing it 
when the Go button is pressed on 
the user interface.

• The parser itself just reduces the 
tokens. It checks for various pairs 
of tokens on the stack and reduces 
each pair to a single one for each of 
five different cases.
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Reduce (Var Var) to MultVar
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Reduce (MultVar Var) to MultVar
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Reduce (Var MultVar) to MultVar
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Reducing (Verb Var) and (Verb MultVar)
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Preparing for Execution!
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Execution!

• We also make the Print and Sort verb classes Command 
objects and Execute them one by one as the action list is 
enumerated.
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Concluding Remarks

• Whenever you introduce an interpreter into a program, you need to 
provide a simple way for the program user to enter commands in that 
language. 

– It can be an editable text field like the one in the program above.
• However, introducing a language and its accompanying grammar also 

requires fairly extensive error checking for misspelled terms or
misplaced grammatical elements. 

– This can easily consume a great deal of programming effort unless some 
template code is available for implementing this checking. 

– Further, effective methods for notifying the users of these errors are not 
easy to design and implement.

• In the Interpreter example above, the only error handling is that 
keywords that are not recognized are not converted to ParseObjects
and pushed onto the stack. 

– Thus, nothing will happen, because the resulting stack sequence probably 
cannot be parsed successfully, or if it can, the item represented by the 
misspelled keyword will not be included.
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Concluding Remarks (contd…)

• The Interpreter pattern has the advantage that you 
can extend or revise the grammar fairly easily 
once you have built the general parsing and 
reduction tools. 

• You can also add new verbs or variables quite 
easily once the foundation is constructed.


