
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Logic Programming
May 1, 2007

2

A Prolog Example

• Facts
– 'It is sunny'. 
– 'It is summer'. 

• Query
– ?- 'It is sunny'. 

• Yes

• Rules
– 'It is hot' :- 'It is summer', 'It is sunny'. 
– 'It is cold' :- 'It is winter', 'It is snowing'. 

• Queries
– ?- 'It is cold'. 

• No
– ?- 'It is hot'. 

• Yes

3

Another Example

• female(amy). 
• female(johnette). 

• male(anthony). 
• male(bruce). 
• male(ogden). 

• parentof(amy, johnette). 
• parentof(amy, anthony). 
• parentof(amy, bruce). 
• parentof(ogden, johnette). 
• parentof(ogden, anthony). 
• parentof(ogden, bruce). 

• siblingof(X,Y) :-
parentof(Z,X), 
parentof(Z,Y), X != Y. 

• brotherof(X,Y) :-
parentof(Z,X), 
male(X), 
parentof(Z,Y), 
X != Y. 

• ? – parentof(amy, Y).
• ? – parentof(X, anthony).
• ? – siblingof(X, Y).
• ? – siblingof(johnette, Y).
• ? – siblingof(johnette, bruce).

4

SWI Prolog

• A Prolog program consists of a database of facts and rules, 
and queries (questions). 
– Fact: ... . 

• 'It is sunny'. 
• male(anthony). 

– Rule: ... :- ... . 
• 'It is hot' :- 'It is summer', 'It is sunny'.
• siblingof(X,Y) :- parentof(Z,X), parentof(Z,Y). 

– Query: ?- ... . 
• ?- 'It is hot'. 

– Variables: must begin with an upper case letter. 
– Constants: numbers, begin with lowercase letter, or enclosed in 

single quotes. 



5

Important Concepts

• Unification
– Pattern matching

• Backtracking

6

Lists

• Find the total cost of a list of items
– cost(cornflakes, 230). 
– cost(cocacola, 210). 
– cost(chocolate, 250). 
– cost(crisps, 190). 

– total_cost([], 0). 
– total_cost([Item|Rest], Cost) :-

cost(Item, ItemCost), 
total_cost(Rest, CostOfRest), 
Cost is ItemCost + CostOfRest. 

• Sample query: 
– ?- total_cost([cornflakes, crisps], X).

• Output
– X = 420

7

Complex Structures

• tree(
– tree(empty, jack, empty), 
– fred, 
– tree(empty, jill, empty)

• ).

8

Computing the Size of a Tree

• Size of tree = number of nodes
• The size of an empty tree is zero. 

– tree_size(empty, 0). 
• The size of a non-empty tree is the size of the left 

sub-tree plus the size of the right sub-tree plus one 
for the current tree node. 
– tree_size(tree(L, _, R), Total_Size) :-

tree_size(L, Left_Size), 
tree_size(R, Right_Size), 
Total_Size is Left_Size + Right_Size + 1. 



9

Learning

• assert
• siblingof(X,Y) :-

parentof(Z,X), 
parentof(Z,Y), X != Y,
asserta(siblingof(X,Y)). 

• brotherof(X,Y) :-
parentof(Z,X), 
male(X), 
parentof(Z,Y), 
X != Y, 
asserta(brotherof(X,Y)). 

• retract


