CMSC 433 - Programming Language

Technologies and Paradigms
Spring 2007

Logic Programming
May 1, 2007

A Prolog Example

e Facts
— 'lItissunny".
— It is summer'.
e Query
— ?-'ltissunny".
* Yes
* Rules
— 'lItis hot' :- "It is summer’, 'It is sunny".
— 'lItis cold" :- "It is winter', 'It is snowing'.
e Queries
— ?-'ltis cold".
+ No
- ?-'ltis hot'.
* Yes

Another Example

+ female(amy). « siblingof(X,Y) :-
« female(johnette). parentof(Z,X),
parentof(Z,Y), X =Y.

- male(anthony). brotherof(X,Y) :-

« male(bruce).

parentof(Z,X),
male(ogden). male(X),
« parentof(amy, johnette). &al;gn\tff(z’Y)'
« parentof(amy, anthony). -
« parentof(amy, bruce). * ?-parentof(amy, Y).
« parentof(ogden, johnette). e ?—parentof(X, anthony).
« parentof(ogden, anthony). « ?—siblingof(X, Y).

parentof(ogden, bruce). » ?-siblingof(johnette, Y).

¢ ?-—siblingof(johnette, bruce).

SWI Prolog

» A Prolog program consists of a database of facts and rules,
and queries (questions).
- Fact: ...
* 'Itis sunny
« male(anthony).
Rule: ... :- ...
¢ 'Itishot':- "It is summer', It is sunny'.
« siblingof(X,Y) :- parentof(Z,X), parentof(Z,Y).
— Query: ?- ...
e 2-'Itis hot'.
Variables: must begin with an upper case letter.
— Constants: numbers, begin with lowercase letter, or enclosed in
single quotes.

Important Concepts

* Unification
— Pattern matching
 Backtracking

» Find the total cost of a list of items
— cost(cornflakes, 230).
— cost(cocacola, 210).
— cost(chocolate, 250).
— cost(crisps, 190).

— total_cost([], 0).

— total_cost([Item|Rest], Cost) :-
cost(Item, ltemCost),
total_cost(Rest, CostOfRest),

Cost is ItemCost + CostOfRest.
e Sample query:
— ?-total_cost([cornflakes, crisps], X).
e Output
- X =420

Complex Structures

o tree(
— tree(empty, jack, empty),
— fred,
— tree(empty, jill, empty)

o)_

Computing the Size of a Tree

¢ Size of tree = number of nodes

* The size of an empty tree is zero.
— tree_size(empty, 0).

» The size of a non-empty tree is the size of the left
sub-tree plus the size of the right sub-tree plus one
for the current tree node.

— tree_size(tree(L, _, R), Total_Size) :-
tree_size(L, Left_Size),
tree_size(R, Right_Size),
Total_Size is Left_Size + Right_Size + 1.

e assert * retract

¢ siblingof(X,Y) :-
parentof(Z,X),
parentof(Z,Y), X 1=,
asserta(siblingof(X,Y)).

« brotherof(X,Y) :-
parentof(Z,X),
male(X),
parentof(Z,Y),
XI=Y,
asserta(brotherof(X,Y)).

