
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Memento Pattern
Apr. 17, 2007

2

What is it?

• Suppose you would like to save the internal state 
of an object so you can restore it later. 

• Ideally, it should be possible to save and restore 
this state without making the object itself take care 
of this task, and without violating encapsulation. 

• This is the purpose of the Memento pattern.

3

Preliminary Discussion

• Objects frequently expose only some of their internal state 
using public methods, but you would still like to be able to 
save the entire state of an object because you might need to 
restore it later. 

• In some cases, you could obtain enough information from 
the public interfaces (such as the drawing position of 
graphical objects) to save and restore that data. 

• In other cases, the color, shading, angle and connection 
relationship to other graphical objects need to be saved and 
this information is not readily available. 

• This sort of information saving and restoration is common 
in systems that need to support Undo commands.

4

Preliminary Discussion (contd…)

• If all of the information describing an object is 
available in public variables, it is not that difficult 
to save them in some external store. 

• However, making these data public makes the 
entire system vulnerable to change by external 
program code, when we usually expect data inside 
an object to be private and encapsulated from the 
outside world.



5

The Memento Philosophy

• The Memento pattern attempts to solve this problem by 
having privileged access to the state of the object you want 
to save. 

• Other objects have only a more restricted access to the 
object, thus preserving their encapsulation. 

• This pattern defines three roles for objects:
– The Originator is the object whose state we want to save.
– The Memento is another object that saves the state of the 

Originator.
– The Caretaker manages the timing of the saving of the state, saves 

the Memento and, if needed, uses the Memento to restore the state 
of the Originator.

6

In Java

• Saving the state of an object without making all of 
its variables publicly available is tricky and can be 
done with varying degrees of success in various 
languages. 

• In Java, this privileged access is possible using a 
little known and infrequently used protection 
mode.

7

“private_protected” mode

• Suppose you have classes A and B declared in the same module (file).

• Class A contains a private-protected variable x. 
• In class B in the same module, we create an instance of A, which

automatically initializes x to 5.
• Class B has direct access to the variable x in class A and can print it 

out without compilation or execution error. 8

“private_protected” mode

• Variables with no declaration are treated as private 
protected. 

• Other classes can access public variables, and 
derived classes can access protected variables. 

• However, another class in the same module can 
access protected or private-protected variables. 

• It is this last feature of Java that we can use to 
build Memento objects.



9

An Example

• Consider a simple 
prototype of a graphics 
drawing program that 
creates rectangles, and 
allows you to select them 
and move them around by 
dragging them with the 
mouse. 

• This program has a toolbar 
containing three buttons: 
Rectangle, Undo and 
Clear.

10

An Example (contd…)

• The Rectangle button is a 
JToggleButton which stays 
selected until you click the 
mouse to draw a new rectangle. 

• Once you have drawn the 
rectangle, you can click in any 
rectangle to select it.

• And once it is selected, you can 
drag that rectangle to a new 
position using the mouse.

11

An Example (contd…)

• The Undo button can undo 
a succession of operations. 

• Specifically, it can undo 
moving a rectangle and it 
can undo the creation of 
each rectangle.

12

The Strategy

• There are 5 actions we need to respond to in this program:
– Rectangle button click
– Undo button click
– Clear button click
– Mouse click
– Mouse drag

• The three buttons can be constructed as Command objects 
and the mouse click and drag can be treated as commands 
as well. 

• This suggests an opportunity to use the Mediator pattern, 
and that is, in fact, the way this program will be 
constructed.



13

The “Undo” Strategy

• The Mediator is an ideal place to manage the Undo action 
list; it can keep a list of the last n operations so that they 
can be undone. 

• Thus, the Mediator also functions as the Caretaker object 
discussed earlier. 

• In fact, since there could be any number of actions to save 
and undo in such a program, a Mediator is required so that 
there is a single place where these commands can be stored 
for undoing later.

• In this program we save and undo only two actions: 
creating new rectangles and changing the position of 
rectangles.

14

Lets See Some Code!
• Let’s start with our visRectangle class which actually 

draws each instance of the rectangles.

15

visRectangle

16

The Memento Class

• Drawing the rectangle is pretty straightforward. 
• Now, let’s look at our simple Memento class, 

which is contained in the same file, 
visRectangle.java, and thus has access to the 
position and size variables.



17

The Memento Class

18

The Memento Class Code Explained

• When we create an instance of the Memento class, 
we pass it the visRectangle instance we want to 
save. 

• It copies the size and position parameters and 
saves a copy of the instance of the visRectangle
itself.

• Later, when we want to restore these parameters, 
the Memento knows which instance it has to 
restore them to and can do it directly, as we see in 
the restore() method.

19

createRect

• The rest of the activity takes place in the Mediator class, where we save the 
previous state of the list of drawings as an Integer on the undo list.

20

Saving the Previous Position

• We also save the previous position of a rectangle 
before moving it in a Memento.



21

undo()

• The undo method simply decides whether to 
reduce the drawing list by one or to invoke the 
restore method of a Memento.

22

undo() Code

23

Concluding Remarks

• The Memento provides a way to preserve the state 
of an object while preserving encapsulation, in 
languages where this is possible. 

• Thus, data that only the Originator class should 
have access to effectively remains private. 

• It also preserves the simplicity of the Originator 
class by delegating the saving and restoring of 
information to the Memento class.

24

Concluding Remarks (2)

• On the other hand, the amount of information that a 
Memento has to save might be quite large, thus taking up 
fair amounts of storage. 
– This further has an effect on the Caretaker class (here the 

Mediator) which may have to design strategies to limit the number 
of objects for which it saves state. 

– In our simple example, we impose no such limits. 
– In cases where objects change in a predictable manner, each 

Memento may be able to get by with saving only incremental 
changes of an object’s state.

• While supporting undo/redo operations in graphical 
interfaces is one significant use of the Memento pattern, 
you will also see Mementos used in database transactions. 
– Here they save the state of data in a transaction where it is 

necessary to restore the data if the transaction fails or is 
incomplete.


