
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Prototype Pattern
Mar. 27, 2007

2

What is it?

• When creating an instance of a class is very time-
consuming or complex in some way. 
– Rather than creating more instances, you make copies 

of the original instance, modifying them as appropriate.

3

An Example

• Consider a database of a large number of swimmers in a league or
statewide organization. 

– Each swimmer swims several strokes and distances throughout a season. 
• The “best times” for swimmers are tabulated by age group,

– many swimmers will have birthdays and fall into new age groups within a 
single season. Thus the query to determine which swimmers did the best 
in their age group that season is dependent on the date of each meet and 
on each swimmer’s birthday. 

– The computational cost of assembling this table of times is therefore fairly 
high. 

• Once we have a class containing this table, sorted by sex, we could 
imagine wanting to examine this information sorted just by time, or by 
actual age rather than by age group. 

– It would not be sensible to recompute these data, and we don’t want to 
destroy the original data order, so some sort of copy of the data object is 
desirable.

4

Cloning in Java

• You can make a copy of any Java object using the clone() 
method.
– Jobj j1 = (Jobj) j0.clone();

• The clone method returns an object of type Object. 
– cast it to the actual type of the object you are cloning.

• Notes:
– It is a protected method and can only be called from within the 

same class or the module that contains that class.
– You can only clone objects which are declared to implement the 

Cloneable interface.
– Objects that cannot be cloned throw the CloneNotSupported

Exception.



5

A Typical Implementation

• package the actual clone method inside the class 
where it can access the real clone method:

6

Points to Note

• Advantage: encapsulates the try-catch block inside 
the public clone method. 

• Note that if you declare this public method to have 
the same name “clone,” it must be of type Object, 
since the internal protected method has that 
signature.

7

A Better Implementation

• You could, however, change the name and do the 
typecasting within the method instead of forcing it 
onto the user:

8

“make” vs. clone

• You can also make “special cloning procedures”
that change the data or processing methods in the 
cloned class, based on arguments you pass to the 
clone method. 

• In this case, method names such as “make” are 
probably more descriptive and suitable.



9

Implementing the Prototype

• Let’s write a simple program that reads data from 
a database and then clones the resulting object. 

• In our example program, SwimInfo, we just read 
these data from a file.
– Use database for large amounts of data

10

Step 1

• create a class called Swimmer that holds one 
name, age, club name, sex and time

11

Step 2

• a class called SwimData maintains a vector of the 
Swimmers we read in …

12

Misc Steps…

• also provide a getSwimmer method in SwimData and 
getName, getAge and getTime methods in the Swimmer 
class. 

• Once we’ve read the data into SwimInfo, we can display it 
in a list box.

swList.removeAll(); //clear list
for (int i = 0; i < sdata.size(); i++)
{

sw = sdata.getSwimmer(i);
swList.addItem(sw.getName()+" "+sw.getTime());

}



13

The User Interface

• In the original class, the names are sorted by sex and then by time, while in the cloned 
class, they are sorted only by time. 

• We see the simple user interface that allows us to display the original data on the left 
and the sorted data in the cloned class on the right

• The left-hand list box is loaded 
when the program starts.
• The right-hand list box is loaded 
from the clone when you click on 
the Clone button.
• The Refresh button reloads the 
left-hand list box from the original 
data object sdata.

14

The Cloning

• when the user clicks on the Clone button, we’ll 
clone sdata and sort the data differently in the 
new class (sxdata).

15

Are we there yet?

Are we done yet?

16

Wait a Minute?

• let’s click on the Refresh button to reload the left-
hand list box from the original data.

The names in the left-
hand list box also been 
re-sorted.



17

Shallow Copy

• This occurs in Java because the clone method is a 
“shallow copy” of the original class. 

• In other words, the references to the data objects 
are copies, but they refer to the same underlying 
data. 

• Thus, any operation we perform on the copied 
data will also occur on the original data in the 
Prototype class.

• Also, what about Mutable fields?

18

A “Deep Copying” Clone

19

Serializable

• This is possible because of the serializable interface.
– A class is said to be serializable if you can write it out as a stream 

of bytes and read those bytes back in to reconstruct the class. This 
is how Java remote method invocation (RMI) is implemented. 

• We can declare both the Swimmer and SwimData classes 
as Serializable,
– public class SwimData implements Cloneable, Serializable
– class Swimmer implements Serializable

• So we can write the bytes to an output stream and reread 
them to create a complete data copy of that instance of a 
class

20

More on Cloning



21

A Simple Example (pg. 1)

22

A Simple Example (pg. 2)

23

A Simple Example (pg. 3)

24

A Simple Example (pg. 4)



25 26

public interface Cloneable

• A class implements the Cloneable interface to indicate to 
the Object.clone() method that it is legal for that method 
to make a field-for-field copy of instances of that class. 
– Invoking Object's clone method on an instance that does not 

implement the Cloneable interface results in the exception 
CloneNotSupportedException being thrown. 

– By convention, classes that implement this interface should 
override Object.clone (which is protected) with a public method. 
Note that this interface does not contain the clone method. 
Therefore, it is not possible to clone an object merely by virtue of 
the fact that it implements this interface. Even if the clone method 
is invoked reflectively, there is no guarantee that it will succeed. 

27

What is cloning?

protected Object clone()
throws CloneNotSupportedException

• Creates and returns a copy of this object. The precise meaning of 
"copy" may depend on the class of the object. The general intent is 
that, for any object x, the expression: 

– x.clone() != x will be true, 
• and that the expression: 

– x.clone().getClass() == x.getClass() will be true, 
– but these are not absolute requirements. 

• While it is typically the case that: 
– x.clone().equals(x) will be true, this is not an absolute requirement. 

• By convention, the returned object should be obtained by calling
super.clone. If a class and all of its superclasses (except Object) obey 
this convention, it will be the case that 

– x.clone().getClass() == x.getClass(). 

28

Some Rules of Cloning

• The method clone for class Object performs a specific cloning 
operation. 

– If the class of this object does not implement the interface Cloneable, then 
a CloneNotSupportedException is thrown. 

• Note that all arrays are considered to implement the interface Cloneable. 

– Otherwise, this method creates a new instance of the class of this object 
and initializes all its fields with exactly the contents of the corresponding 
fields of this object, as if by assignment; 

– the contents of the fields are not themselves cloned. Thus, this method 
performs a "shallow copy" of this object, not a "deep copy" operation. 

• The class Object does not itself implement the interface Cloneable, so 
calling the clone method on an object whose class is Object will result 
in throwing an exception at run time. 


