CMSC 433 — Programming Language

Technologies and Paradigms
Spring 2007

Prototype Pattern
Mar. 27, 2007

What is it?

» When creating an instance of a class is very time-
consuming or complex in some way.

— Rather than creating more instances, you make copies
of the original instance, modifying them as appropriate.

An Example

» Consider a database of a large number of swimmers in a league or
statewide organization.

— Each swimmer swims several strokes and distances throughout a season.

» The “best times” for swimmers are tabulated by age group,

— many swimmers will have birthdays and fall into new age groups within a
single season. Thus the query to determine which swimmers did the best
in their age group that season is dependent on the date of each meet and
on each swimmer’s birthday.

- gh‘i computational cost of assembling this table of times is therefore fairly

igh.

* Once we have a class containing this table, sorted by sex, we could
imagine wanting to examine this information sorted just by time, or by
actual age rather than by age group.

— It would not be sensible to recompute these data, and we don’t want to
gesgrol})flthe original data order, so some sort of copy of the data object is

esirable.

Cloning in Java

* You can make a copy of any Java object using the clone()
method.
— Jobj j1 = (Jobj) jO.clone();
* The clone method returns an object of type Object.
— cast it to the actual type of the object you are cloning.
* Notes:

— It is a protected method and can only be called from within the
same class or the module that contains that class.

— You can only clone objects which are declared to implement the
Cloneable interface.

— Objects that cannot be cloned throw the CloneNotSupported
Exception.

A Typical Implementation

 package the actual clone method inside the class
where it can access the real clone method:

public class SwimData implements Cloneable
{
public Object clone()
{
try{
return super.clone();
}
catch (Exception &)
{System.out.println(s.getMessages());
return null;

}

Points to Note

» Advantage: encapsulates the try-catch block inside
the public clone method.

* Note that if you declare this public method to have
the same name “clone,” it must be of type Object,
since the internal protected method has that
signature.

A Better Implementation

* You could, however, change the name and do the
typecasting within the method instead of forcing it
onto the user:

public SwimData clonsMe ()
{
try{
return (SwimData)super.clone();
}
catch (Exception e)
{System.out.println(s.getMessags());
return null;

}

“make” vs. clone

* You can also make “special cloning procedures”
that change the data or processing methods in the
cloned class, based on arguments you pass to the
clone method.

* In this case, method names such as “make” are
probably more descriptive and suitable.

Implementing the Prototype

» Let’s write a simple program that reads data from
a database and then clones the resulting object.
* In our example program, SwimlInfo, we just read
these data from a file.
— Use database for large amounts of data

« create a class called Swimmer that holds one
name, age, club name, sex and time

clazss Swimmer

{ &tring name;
int ages;
String club;
float time;
boolean female;

¢ aclass called SwimData maintains a vector of the
Swimmers we read in ...

public class SwimData implements Cloneable
{
Vector swimmers;
public SwimData (String filename)
{
String = = "";
swimmers = new Vector();
//open data file
InputFile £ = new InputFile (filename);
== f.readlLine(); //read in and parse =sach line
while (s != null)
{
swimmers.addElement (new Swimmer (s));
s= f.readLine();
}
f.closel(); 11

* also provide a getSwimmer method in SwimData and
getName, getAge and getTime methods in the Swimmer
class.

* Once we’ve read the data into SwimlInfo, we can display it
in a list box.
swList.removeAll(); //clear list
for (int i = 0; i < sdata.size(); i++)
{
sw = sdata.getSwimmer(i);
swList.addItem(sw.getName()+" "+sw.getTime());

The User Interface

« In the original class, the names are sorted by sex and then by time, while in the cloned
class, they are sorted only by time.

* We see the simple user interface that allows us to display the original data on the left
and the sorted data in the cloned class on the right

kristen Frost 26 31

: : Kimberly Walcke 27.37 2 i Kristen Frost 26.31
* The left-hand list box is loaded achyn Carey 27.53 bty Watcke 27,37
Wegan Crapster 27 68 Liaclyn Carey 27.53
when the program starts. [aitlyn Ament 28.2 Megan Crapster 27.68
: H H Lackie Rogers 26.68 Stephen Cosme 27.69
* The nght-hand list box is loaded Erin McLaughlin 28.8 Kaitlyn Ament 28.2
1 Emily Fenier 26.65 < -Refr: Wefirey Sudhury 28.24
from the clone when you click on Aurora Lee 26.86 M Etnest Verrico 26.46
Kate Isselee 28.81 lJackie Rogers 28 68
the Clone button' Luke Mester 24,88 David Liehoviz 26.78
* The Refresh button reloads the Stephen Cosme 27.69 Erin McLaughlin 26 8
LJeffrey Sudbury 20.24 yan Rynazewski 20.00

Emily Ferrier 28 85

left-hand list box from the original Emest Verrico 26.46
JAurora Lee 28.88

David Liehovitz 28.78

data object sdata. Ryan Rynazswsk 26.83 icate Isseles 26.91
Watihew Donch 28 95 Watihew Donch 28 85
Christopher Prug 29.02 Christopher Prus 29.02
Charles Bakar 28.06 Charles Baker 28.06
Watinew Sweitzer 2.1 Watihew Sweitzer 20.1

The Cloning

» when the user clicks on the Clone button, we’ll
clone sdata and sort the data differently in the
new class (sxdata).

sxdata = (SwimData) sdata.clone();
sxdata.sortByTime () ; //re-sort
clonelist.removeRll(); //clear list

//now display sorted values from clone

for (int i=0; i< sxdata.size(); i++)
{
sw = zxdata.getSwimmer(i);
clonelist.addItem(sw.getNams () +" "+sw.getTime ());

14

Are we there yet?

Are we done yet?

Wait a Minute?

 let’s click on the Refresh button to reload the left-
hand list box from the original data.

ototypc caamplc

Luke Mester 24,83 i Luke Mester 24.88

risten Frost 26.31 M risten Frost 26,31

Kimberly Watcke 27.37 Kimberly Watcke 27.37

ackn Carey 27.53 Jaclyn Carey 27.53 .

Megan Crapster 27.68 Megan Crapster 27 68 The names in the left-
Stephen Cosme 27.89 Stephen Cosme 27.89 .

\caitlyn Ament 28.2 \caithyn Ament 28.2 hand list box also been

leffrey Sudbury 28.24 Jeffrey Sudbury 28.24 .
ErnestVerrico 2846 ErnestVerrico 28.46 e sorted.
llackis Rogers 22 63 Jackia Rogers 28.62

David Liehowiz 28.78 David Liehovitz 28.78

Erin McLaughlin 28.8 Erin McLaughlin 28.8

Ryan Rynazewski 28.83 Ryan Rynazewski 28.83

Emily Ferrier 28.85 Emily Ferrier 28.85

\Aurora Lee 2888 Q Aurora Lee 28.88

Kate Isseles 28.91 E = Kate Isselee 28.91

Matthew Donch 28.85 Matthews Donch 28 85

Christopher Frus 24.02 Christopher Prus 29.02

Charles Baker 29.06 Charles Baker 29.06 16

Matthew Sweitzer 28.1 Matthew Sweitzer 29.1

Shallow Copy

¢ This occurs in Java because the clone method is a
“shallow copy” of the original class.

* In other words, the references to the data objects
are copies, but they refer to the same underlying
data.

* Thus, any operation we perform on the copied
data will also occur on the original data in the
Prototype class.

« Also, what about Mutable fields?

A “Deep Copying” Clone

public Object deepClone()
{
try{

ByteArrayQutputStream b = new ByteArrayOutputStream();

ObjectoOutputStream out = new ObjectOoutputStream(b);

out.writeObject (this);
ByteArrayInputStream bIn = new
ByteArrayInputStream(b.toBytehArray ()),
ObjectInputStream ol = new ChjsctInputStreamibIn);
return (oi.readObject());
}
catch (Exception =)
{ System.out.println("exception:"+e.getMessage());
return null;
}
}

Serializable

» This is possible because of the serializable interface.

— A class is said to be serializable if you can write it out as a stream
of bytes and read those bytes back in to reconstruct the class. This
is how Java remote method invocation (RMI) is implemented.

* We can declare both the Swimmer and SwimData classes
as Serializable,

— public class SwimData implements Cloneable, Serializable

— class Swimmer implements Serializable

* So we can write the bytes to an output stream and reread
them to create a complete data copy of that instance of a
class

More on Cloning

20

A Simple Example (pg. 1)

import java.util.Date;
public abstract class Fruit implements Cloneable {

public Fruit(String aColour, Date aBeatBeforeDate) {
super () 5
fColour = aColour;
//defensive copy needed for this mutable object
fBestBeforeDate = new Date(aBestBeforeDate.getTime());

public abstract void ripen();

public String getColour() {

return fColour;

public Date getBestBeforeDate() {
/freturn defensive copy of this mutable object
return new Date (fBestBeforeDate.getTime () }:

21

A Simple Example (pg. 2)

T
* Implement clone as follows

*

* the class declaration "implements Cloneable" (not needed if already

* declared in superclass)

* declare clone method as public

% <1i%if the class is final, clone does not need to throw CloneNotSupportedException
* «call super.clone and cast to this class

* <liras in defensive copying, ensure each mutable field has an independent copy

* constructed, to avoid sharing internal state between objects

®

</ful>

1

public Object clone() throws CloneNotSupportedException {

ffget initial bit-by-bit copy, which handles all immutable fields
Fruit result = (Fruit)super.clone();

//mutable fields need to be made independent of this object, for reasons
//similar to those for defensive copies - to prevent unwanted access to
f/this object's internal state

result.fBestBeforeDate = new Date(this.fBestBeforeDate.getTime ());

return result:

22

A Simple Example (pg. 3)

f// PRIVAIE ////

Pt
* S5trings are always immutable.
*

private String fColour:

S

* Date is a mutable object. In this class, this cobject field is to be treated

* as belonging entirely to this class, and no user of this class is
* to be able to directly acces=s and change this field's state.

*

private Date fBestBeforeDate:

23

A Simple Example (pg. 4)

import java.util.Date;
public final class Apple extends Fruic {

public Apple(String aColour, Date aBestBeforeDate) {
super | aColour, aBestBeforeDate }):

public void ripen() {
//fempty implementation of abstract method

/\l’\l’

* The Apple subclass does not support clone.

=7

public final Cbkbject clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException():

24

(= Object (Java Platform SE 6) - Windews Internet Explorer

@9' | hutpava.sun comijavase/sdocsiapi v *2|| X [3va5n |
Ol Edt wen Favortes ook Hep
W & Imob]e(l(JavaP\alfurmSEE) l } - @ he Qﬁﬂge v L e @'

(e

Java™ Platform
Standard Ed. 6

All Classes Java.lang.Object

javalang ~

Class Object

Packages
java applet
<3)]

4“3'5 E{‘CS"?‘ €r Al| Class object is the root of the class hierarchy. Every class has opject as a superclass. All objects,
P AP aramelerspes | Bclding arrays, implement the methods of this class.
OBJ_ADAPTER
Object Since:
Object IDK1.0
OBJECT_NOT_EXIS” | See Also:
ObjectAlreadyActive P
ObjectAlreadyActivet -
ObjectChangelistem
ObjectFacto!
ObjectFactoryBuildet
ObjectHelper q
Obk i T Constructor Ty
ObjectldHelper opiect ()
ObjectidHelper
Objectimpl
D]

¥/| public class object

|

Objectinput
Method S

ODjeCtinpUISITEAMG | | rorccees
ObjectinputValidatior ; oiees | clone () .

ST - Creates and returns a copy of this object.

@ i] | o

ry

@ et oo -

public interface Cloneable

* A class implements the Cloneable interface to indicate to
the Object.clone() method that it is legal for that method
to make a field-for-field copy of instances of that class.

— Invoking Object's clone method on an instance that does not
implement the Cloneable interface results in the exception
CloneNotSupportedException being thrown.

— By convention, classes that implement this interface should
override Object.clone (which is protected) with a public method.
Note that this interface does not contain the clone method.
Therefore, it is not possible to clone an object merely by virtue of
the fact that it implements this interface. Even if the clone method
is invoked reflectively, there is no guarantee that it will succeed.

26

What is cloning?

protected Object clone()
throws CloneNotSupportedException

+ Creates and returns a copy of this object. The precise meaning of
"copy" may depend on the class of the object. The general intent is
that, for any object x, the expression:

— x.clone() != x will be true,

+ and that the expression:
— x.clone().getClass() == x.getClass() will be true,
— but these are not absolute requirements.

» While it is typically the case that:

— x.clone().equals(x) will be true, this is not an absolute requirement.

* By convention, the returned object should be obtained by calling
super.clone. If a class and all of its superclasses (except Object) obey
this convention, it will be the case that

— x.clone().getClass() == x.getClass().

27

Some Rules of Cloning

* The method clone for class Object performs a specific cloning
operation.

— Ifthe class of this object does not implement the interface Cloneable, then
a CloneNotSupportedException is thrown.

+ Note that all arrays are considered to implement the interface Cloneable.

— Otherwise, this method creates a new instance of the class of this object
and initializes all its fields with exactly the contents of the corresponding
fields of this object, as if by assignment;

— the contents of the fields are not themselves cloned. Thus, this method
performs a "shallow copy" of this object, not a "deep copy" operation.

* The class Object does not itself implement the interface Cloneable, so
calling the clone method on an object whose class is Object will result
in throwing an exception at run time.

28

