
1

CMSC 433 – Programming Language
Technologies and Paradigms

Spring 2007

Refactoring
April 24, 2007

Lots of material taken from Fowler, Refactoring:
Improving the Design of Existing Code

2

Evolving Software

• Problem
– The requirements of real software often change in ways

that cannot be handled by the current design
– Moreover, trying to anticipate changes in the initial

implementation can be difficult and costly
• Solution

– Redesign as requirements change
– Refactor code to accommodate new design

3

Example

• (p204) Replace Magic Number with Symbolic
Constant
double potentialEnergy(double m, double h) {

return m * 9.81 * h;

}

• becomes...
static final double G = 9.81;

double potentialEnergy(double m, double h) {

return m * G * h;

}

4

Some Motivations for This Refactoring

• Magic numbers have special values
– But why they have those values is not obvious
– So we like to give them a name

• Magic numbers may be used multiple times
– Easy to make errors

• May make a typo when putting in a number
• May need to change a number later (more digits of G)

5

Conventional Wisdom: The Design is Fixed

• Software process looks like this:
– Step 1: Design, design, design
– Step 2: Build your system

• Once you’re on step 2, don’t change the design!
– You might break something in the code
– You need to update your design documents
– You need to communicate your new design with

everyone else

6

What if the Design is Broken?

• You’re kind of stuck
– Design changes are very expensive
– When you’re “cleaning up the code,” you’re not adding

features

• Result: An inappropriate design
– Makes code harder to change
– Makes code harder to understand and maintain
– Very expensive in the long run

7

Refactoring Philosophy

• It’s hard to get the design right the first time
– So let’s not even pretend
– Step 1: Make a reasonable design that should work, but...
– Plan for changes

• As implementers discover better designs
• As your clients change the requirements (!)

• But how can we ensure changes are safe?

8

Refactoring Philosophy (cont’d)

• Make all changes small and methodical
– Follow mechanical patterns (which could be automated

in some cases) called refactorings, which are
semantics-preserving

• Retest the system after each change
– By rerunning all of your unit tests
– If something breaks, you know what caused it
– Notice: we need fully automated tests for this case

9

Two Hats

• Refactoring hat
– You are updating the design of your code, but not

changing what it does. You can thus rerun existing
tests to make sure the change works.

• Bug-fixing/feature-adding hat
– You are modifying the functionality of the code.

• May switch hats frequently
– But know when you are using which hat, to be sure that

you are reaching your end goal.

10

Principles of Refactoring

• In general, each refactoring aims to
– Decompose large objects into smaller ones
– Distribute responsibility

• Like design patterns
– Adds composition and delegation (read: indirection)
– In some sense, refactorings are ways of applying design

patterns to existing code

11

Principles of Refactoring

• Refactoring improves design
– Fights against “code decay” as people make changes

• Refactoring makes code easier to understand
– Simplifies complicated code, eliminates duplication

• Refactoring helps you find bugs
– In order to make refactorings, you need to clarify your

understanding of the code. Makes bugs easier to spot.
• Refactoring helps you program faster

– Good design = rapid development
12

When to Refactor

• The “Rule of Three”
– Three strikes and you refactor
– The third time you duplicate something, refactor

• Refactor before you add a feature
– Make it easier for you to add the feature

• Refactor when you have a bug
– Simplify the code as you’re looking for the bug
– (Could be dangerous...)

• Refactor before you do code reviews
– ...if you’d be embarrassed to show someone the code

13

When to Refactor: An Analogy

• Unfinished refactoring is like going into debt
• Debt is fine as long as you can meet the interest

payments (extra maintenance costs)
• If there is too much debt, you will be

overwhelmed
– [Ward Cunningham]

14

Barriers to Refactoring

• May introduce errors
– Mitigated by testing
– Clean first, then add new functionality

• Cultural issues
– Producing negative lines of code
– “We pay you to add new features, not to improve the

code!”
• If it ain’t broke, don’t fix it

15

Barriers to Refactoring (cont’d)

• Tight coupling with implementations
– E.g., databases that rely on schema details

• Public interfaces
– If others rely on your API, you can’t easily change it
– I.e., you can’t refactor if you don’t control code callers

• Designs that are hard to refactor
– It might be hard to see a path from the current design to

the new design
– You may be better off starting from scratch

16

What Code Needs to be Refactored?

• Bad code exhibits certain characteristics that can
be addressed with refactoring
– These are called “smells”

• Different smells suggest different refactorings

17

Feature Envy

• A method seems more interested in a class other
than the one it is actually in
– E.g., invoking lots of get methods

• Move Method
– Move method from one class to another

• Extract Method
– Pull out code in one method into a separate method

18

Move Method

• Should other methods also be moved?
• What about sub- and superclasses?
• What about access control (public, protected)?

19

Extract Method

• Are you ever going to reuse this new method?
• Local variable scopes?
• Extra cost of method invocation?

void printOwning(double amt) {
printBanner();
System.out.println(“name” + name);
System.out.println(“amount” + amt);

}

void printDetails(double amt) {
System.out.println(“name” + name);
System.out.println(“amount” + amt);

}
void printOwning(double amt) {
printBanner();
printDetails(amt);

}

20

Long Method

• A method is too long. Long methods are harder to
understand than lots of short ones.

• Can decompose with Extract Method
• Replace Temp with Query

– Remove code that assigns a method call to a temporary,
and replace references to that temporary with the call

• Replace Method with Method Object
– Use the command pattern to build a “closure”

21

Replace Temp with Query

• Local variables make it hard to use some
refactorings, e.g., Extract Method

• What about performance?

double basePrice = num * price;
if (basePrice > 1000)
return basePrice * 0.95;

else
return basePrice * 0.98;

double basePrice() {
return num * price;

}
if (basePrice() > 1000)
return basePrice() * 0.95;

else
return basePrice() * 0.98;

22

Switch Statements

• Usually not necessary in delegation-based OO
programming

• Replace Type Code with State/Strategy
– Define a class hierarchy, a subclass for each type code

• Replace Conditional with Polymorphism
– Call method on state object to perform the check;

switching is based on dynamic dispatch

23

Replace Type Code with State/Strategy

24

Replace Conditional with Polymorphism
double getSpeed() {
switch (kind) {
case EUROPEAN: return getBaseSpeed();
case AFRICAN: return getBaseSpeed()-loadFactor()*numberOfCoconuts;
case NORWEGIAN_BLUE: return (isNailed) ? 0 : getBaseSpeed(voltage);

throw new RuntimeException(“Should be unreachable”);
} }

25

Duplicated Code

• The same expression used in different places in
the same class
– Use Extract Method to pull it out into a method

• The same expression in two subclasses sharing the
same superclass
– Extract Method in each, then
– PullUp method into parent

• Duplicated code in two unrelated classes
– Extract Class - Break a class that does too many things

into smaller classes 26

Pull Up Method

• Might do other refactorings if methods don’t quite
match

• What if doesn’t appear in all subclasses?

27

Extract Class

• How do we decide what goes in new class?
• Do fields still need to be accessed in orig class?

28

Long Parameter List

• Lots of parameters occlude understanding

• Replace Parameter with Method
– Remove method parameters and instead use some other

way to get the parameter value (e.g., method call)
• Introduce Parameter Object

– Group parameters that go together into a container
object

29

Replace Parameter with Method

• discountedPrice can call getDiscount() itself

double basePrice = num * price;
double discount = getDiscount();
double finalPrice =
discountedPrice(basePrice, discount);

double basePrice = num * price;
double finalPrice =
discountedPrice(basePrice);

30

Introduce Parameter Object

31

Divergent Change

• One class is commonly changed in different ways
for different reasons
– To add a new database, change these three methods
– To add a new financial currency, change these four

• Suggests maybe this shouldn’t be one object
• Apply Extract Class to group together variations

32

Shotgun Surgery

• Every time I make change X, I have to make lots
of little changes to different classes
– Opposite of Divergent Change

• Move Method
• Move Field

– Switch field from one class to another
• Inline Class

– A class isn’t doing very much, so inline its features into
its users (reverse of Extract Class)

33

Other Bad Smells

• Data Clumps
– Objects seem to be associated, but aren’t grouped together

• Primitive Obsession
– Reluctance to use objects instead of primitives

• Parallel Inheritance Hierarchies
– Similar to Shotgun Surgery; every time we add a subclass

in one place, we need to add a corresponding subclass to
another

34

Other Bad Smells (cont’d)

• Lazy Class
– A class just isn’t useful any more

• Speculative Generality
– “Oh, I think we need the ability to do this kind of thing

someday.”
• Temporary Field

– Instance variable only used in some cases. Confusing
to figure out why it’s not being set everywhere.

35

Other Bad Smells (cont’d)

• Message Chains
– Long sequences of gets or temporaries; means client is

tied to deep relationships among other classes
• Middle Man

– Too much delegation. If a class delegates lots of its
functionality to another class, do you need it?

• Inappropriate Intimacy
– Classes rely on too many details of each other

36

Other Bad Smells (cont’d)

• Alternative Classes with Different Interfaces
– Methods do the same thing but have different interfaces

• Incomplete Library Class
– Library code doesn’t do everything you’d like

• Data Class
– Classes that act as “structs,” with no computation

• Refused Bequest
– Subclass doesn’t use features of superclass

37

Other Bad Smells (cont’d)

• Comments!
– If code is heavily commented, either

• It’s very tricky code (e.g., a hard algorithm), or
• The design is bad, and you’re trying to explain it

– “When you feel the need to write a comment, first try to
refactor the code so that any comment becomes
superfluous.”

38

Refactoring with Tools

• Many refactorings can be performed automatically
• This reduces the possibility of making a silly

mistake

• Eclipse provides support for refactoring in Java
– http://www.eclipse.org

39

More information

• Textbook: Refactoring by M. Fowler
• Catalog of refactorings:

– http://www.refactoring.com/catalog/index.html
• Refactoring to patterns

– http://industriallogic.com/xp/refactoring/

