
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

State Pattern
Apr. 19, 2007

2

An Example

• Let’s create a drawing program that 
will have toolbar buttons for Pick, 
Rectangle, Fill, Circle and Clear.

• Each one of the tool buttons does 
something rather different when it 
is selected and you click or drag 
your mouse across the screen. For 
example,

– If the Pick button is selected, 
clicking inside a drawing element 
should cause it to be highlighted or 
appear with “handles.”

– If the mouse is dragged and a 
drawing element is already 
selected, the element should move 
on the screen.

– If the Rect button is selected, 
clicking on the screen should cause 
a new rectangle drawing element 
to be created.

3

An Example

– If the Fill button is selected and a 
drawing element is already 
selected, that element should be 
filled with the current color. 

– If no drawing is selected, then 
clicking inside a drawing should 
fill it with the current color.

– If the Circle button is selected, 
clicking on the screen should cause 
a new circle drawing element to be 
created.

– If the Clear button is selected, all 
the drawing elements are removed.

• Thus, the state of the graphical 
editor affects the behavior the 
program should exhibit. 

4

A Possible Solution

• We might design our program with a Mediator 
managing the actions of 5 command buttons.



5

However…

• This initial design puts the entire burden of maintaining the 
state of the program on the Mediator, and we know that the 
main purpose of a Mediator is to coordinate activities 
between various controls, such as the buttons. 

• Keeping the state of the buttons and the desired mouse 
activity inside the Mediator can make it unduly 
complicated as well as leading to a set of if or switch tests 
which make the program difficult to read and maintain.

• Further, this set of conditional statements might have to be 
repeated for each action the Mediator interprets, such as 
mouseUp, mouseDrag, rightClick and so forth. 

• This makes the program very hard to read and maintain.

6

New Design Strategy

• There are some common threads among several of 
the actions we should explore. 
– Four of them use the mouse click event to cause 

actions. 
– One uses the mouse drag event to cause an action. 

• Thus, we really want to create a system that can 
help us redirect these events based on which 
button is currently selected.

7

The State Pattern

• The State pattern is used when you want to have 
an enclosing class switch between a number of 
related contained classes, and pass method calls on 
to the current contained class.

8

Lets Use a State Object

• We’ll need a State object that handles mouse activities.

• Since none of the cases we’ve described need all of these events, we’ll 
give our base class empty methods rather than creating an abstract base 
class. 

• Then we’ll create 4 derived State classes for Pick, Rect, Circle and Fill 
and put instances of all of them inside a StateManager class which sets 
the current state and executes methods on that state object.



9

The StateManager

• The StateManager class is referred to as a Context.

10

RectState

• A typical State object simply overrides those event 
methods that it must handle specially. 

• For example, this is the complete Rectangle state object.

11

Circle

• The RectState object simply tells the Mediator to add a rectangle 
drawing to the drawing list. 

• Similarly, the Circle state object tells the Mediator to add a circle to the 
drawing list.

12

The Fill Button

• The only tricky button is the Fill button, because we have 
defined two actions for it.
– If an object is already selected, fill it.
– If the mouse is clicked inside an object, fill that one.

• In order to carry out these tasks, we need to add the select 
method to our base State class. 

• This method is called when each tool button is selected.



13

• The Drawing 
argument is either 
the currently 
selected Drawing or 
null if none is 
selected, and the 
color is the current 
fill color. 

• In this simple 
program, we have 
arbitrarily set the fill 
color to red. 

14

Switching Between States

• Now that we have defined how each state behaves 
when mouse events are sent to it, we need to 
discuss how the StateManager switches between 
states; we simply set the currentState variable to 
the state is indicated by the button that is selected.

15 16

Note…

• This version of the StateManager, we create an 
instance of each state during the constructor and 
copy the correct one into the state variable when 
the set methods are called. 

• It would also be possible to use a Factory to create 
these states on demand. 

• This might be advisable if there are a large 
number of states which each consume a fair 
number of resources.



17

The Rest of the Code…

• The remainder of the state manager code simply calls the methods of 
whichever state object is current. 

• This is the critical piece -- there is no conditional testing. 
• Instead, the correct state is already in place and its methods are ready 

to be called.

18

Mediator and State Manager Interaction

• It is clearer to separate the state management from 
the Mediator’s button and mouse event 
management. 

• The Mediator is the critical class, however, since it 
tells the StateManager when the current program 
state changes. 

• The beginning part of the Mediator illustrates how 
this state change takes place.

19

Coding the Interaction
These startXxx methods are invoked 
from the Execute methods of each 
button as a Command object.

20

Concluding Remarks

• The State pattern localizes state-specific behavior in an individual class for 
each state, and puts all the behavior for that state in a single object.

• It eliminates the necessity for a set of long, look-alike conditional statements 
scattered through the program’s code.

• It makes transition explicit. Rather than having a constant that specifies which 
state the program is in, and that may not always be checked correctly, this 
makes the change explicit by copying one of the states to the state variable.

• State objects can be shared if they have no instance variables. Here only the 
Fill object has instance variables, and that color could easily be made an 
argument instead.

• This approach generates a number of small class objects, but in the process, 
simplifies and clarifies the program.

• In Java, all of the States must inherit from a common base class, and they must 
all have common methods, although some of those methods can be empty. In 
other languages, the states can be implemented by function pointers with much 
less type checking, and, of course, greater chance of error.



21

Good Question to Consider!

• Rewrite the StateManager to use a Factory pattern 
to produce the states on demand.


