
CMSC 433 – Programming Language
Technologies and Paradigms

Spring 2007

Interactive Development Environments
Feb. 27, 2007

Interactive Development Environments

• A system that covers many development tasks
– Editor – usually with nice syntax coloring, indentation
– Compiler – automatic compilation, errors linked to code
– Debugger – step through source code
– Etc... – Testing, documentation, search, code

transformations, ...

• Examples: Eclipse, DrJava, NetBeans,, Visual Studio,
emacs

Example IDE -- Eclipse

• Editing
– Syntax coloring, auto-indent, brace matching
– Integrated with JavaDoc

• Testing
– Integrates with Junit testing framework

• Uses suite() or auto-generated suite

– Interaction panel allows interactive method invocations
• Debugging

– Integrates with Java debugger
– Interactions panel also useful

Debugging

• My program doesn’t work: why?
• Use the scientific method:

– Study the data
• Some tests work, some don’t

– Hypothesize what could be wrong
– Run experiments to check your hypotheses

• Testing!

– Iterate

Starting to Debug

• What are the symptoms of the misbehavior?
– Input/output
– Stack trace (from thrown exception)

• Where did the program fail?
• What could have led to this failure?
• Test possible causes, narrow down the problem

Checking that Properties Hold

• Print statements
– Check whether values are correct

• E.g., look at value of i to check if i > 0

– Check whether control-flow is correct
• E.g., see if f() is called after g()

• Automatic debugger
– Allows you to step through the program interactively
– Verify expected properties

• Don’t need to put in print statements and recompile

– Use as part of testing

Interactions Panels (e.g., in Dr. Java)

• Can evaluate Java expressions interactively
– Can bind variables, execute expressions/statements

• Benefits
– Make sure that methods work as expected
– Test invariants by constructing expressions not in

program text
– Combines with interactive debugger

Automatic Debuggers

• Set execution breakpoints
• Step through execution

– into, over, and out of method calls
• Examine the stack
• Examine variable contents
• Set watchpoints

– Notified when variable contents change

Using the Debugger

• Set debug mode to on
– Turns on debug panel with state information

• Set break point(s) in Java source
• Run the program

Tips

• Make bug reproducible
– If it’s not reproducible, what does that imply?

• Zero-into smallest program that reproduces bug
– Reveals the core problem

• Explain problem to someone else (i.e., instructor
or TA)
– Explaining may reveal the flaw in your logic

• Keep notes: don’t make the same mistake twice

Defensive Programming

• Assume that other methods/classes are broken
– They will misuse your interface

public Vector(int initialCapacity, int capacityIncrement)
{

super();

if (initialCapacity < 0)

throw new IllegalArgumentException(

"Illegal Capacity: "+ initialCapacity);

... }

• Goal: Identify errors as soon as possible

Avoiding Errors

• Codify your assumptions
– Include checks when entering/exiting functions,

iterating on loops
• Test as you go

– Using Junit
– Using the on-line debugger

• Re-test when you fix a bug
– Be sure you didn’t introduce a new bug

• Do not ignore possible error states
– Deal with exceptions appropriately

