
1

CMSC433, Spring 2007
Programming Language Technology and

Paradigms

Java Review
Atif Memon

02/06/2007-02/13/2007

2

Java

• Descended from Simula67, SmallTalk, others
– Superficially similar to C, C++

• Fully specified, compiles to virtual machine
– machine-independent

• Secure
– bytecode verification (“type-safe”)
– security manager

3

Object Orientation

• Combining data and behavior
– objects, not developers, decide how to carry out

operations
• Sharing via abstraction and inheritance

– similar operations and structures are implemented once
• Emphasis on object-structure rather than

procedure structure
– … but procedure structure still useful

4

Example
public class Complex {

private double r, i;

public Complex(double r, double i) {

this.r = r; this.i = i;

}

public String toString() {

return “(“ + r + “, “ + i + “)”;

}

public Complex plus(Complex that) {

return new Complex(r + that.r, i + that.i);

}

}

2

5

Using Complex
public static void main(String[] args) {

Complex a = new Complex(5.5,9.2);
Complex b = new Complex(2.3,-5.1);
Complex c;
c = a.plus(b);
System.out.println(“a = “ + a);
System.out.println(“b = “ + b);
System.out.println(“c = “ + c);

}

•instantiation
•println calls the java.io.PrintStream.print(Object) method

•which calls the String.valueOf method
•The String.valueOf method is very simple:

public static String valueOf(Object obj)
{ return (obj == null) ? "null" : obj.toString();
} 6

The Class Hierarchy

• Classes by themselves are a powerful tool
– Support abstraction and encapsulation

• Java also provides
– Inheritance allows code reuse

• Note: When you inherit from a class, you also
“implement” the class’s “interface” (will come back
to interface)

7

Inheritance

• Each Java class extends or inherits code from
exactly one superclass

• Permits reusing classes to define new objects
– Can define the behavior of the new object in terms of

the old one

8

Example

class Point {

int getX() { ... }

int getY() { ... }

}

class ColorPoint extends Point {

int getColor() { ... }

}

• ColorPoint reuses getX() and getY() from Point
• ColorPoint “implements” the Point “interface”

– They can be used anywhere a Point can be

3

9

Java Design
• Everything inherits from Object*

– Even arrays
– Allows sharing, generics, and more

* Well, almost: there are primitive int, long, float, etc.

Object

Thread

Integer

Number

…

10

Interfaces

public interface MiniServlet extends Runnable {
void setArg(String arg);
void setOutputStream(OutputStream out);

}

class HelloWorld implements MiniServlet { ... }
class Print implements MiniServlet { ... }

MiniServlet s = new HelloWorld();
if (...) s = new Print();
s.setArg(...);

–Interfaces allow different classes to be treated the same

11

Interfaces

• An interface lists supported (public) methods
– No constructors or implementations allowed
– Can have final static variables

• A class can implement zero or more interfaces
• Given some interface I, declaring I x = ... means

– x must refer to an instance of a class that implements I,
or else null

12

Interface Inheritance

• Interfaces can extend other interfaces
– Sometimes convenient form of reuse

• Given interfaces I1 and I2 where I2 extends I1
– If C implements I2, then C implements I1

• Because a class can implement multiple interfaces,
interface extensions are often not needed

4

13

No Multiple Inheritance
• A class type can implement many interfaces

• But can only extend one superclass

• Not a big deal
– Multiple inheritance rarely, if ever, necessary and often

badly used
– And it’s complicated to implement well

14

Abstract Classes

• Sometimes want a class with some code, but with
some methods unwritten
– It can’t be an interface because it has code
– It can’t be a regular class because it doesn’t have all the

code
• You can’t instantiate such a class

• Instead, we can mark such a class as abstract
– And mark the unimplemented methods as abstract

15

Example from JDK

public abstract class OutputStream {

public abstract void write(int b) ...;

public void write(byte b[], int off, int len) ... {

... write(b[off + i]);...

}

...

}

• Subclasses of OutputStream need not override the
second version of write(...)
– But they do need to override the first one as it is abstract

16

InStream

OutStream

Process

I/O streams
• Raw communication takes place using streams

• Java also provides readers and writers
– character streams

• Applies to files, network connections, strings, etc.

5

17

I/O Classes

• OutputStream – byte stream going out
• Writer – character stream going out
• InputStream – byte stream coming in
• Reader – character stream coming in

18

Applications and I/O

• Java “external interface” is a public class
– public static void main(String [] args)

• args[0] is first argument
– unlike C/C++

• System.out and System.err are PrintStreams
– System.out.print(…) prints a string
– System.out.println(…) prints a string with a newline

19

Java Networking

• class Socket
– Communication channel

• class ServerSocket
– Server-side “listen” socket
– Awaits and responds to connection requests

20

Example Client/Server
ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

server client

Client
code

6

21

Example Client/Server
ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

server client

Client
code

22

Example Client/Server
ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

server client
?

Client
code

23

Example Client/Server
ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

server client

Note: The server can
still accept other
connection requests on
port 5001

Client
code

24

Example Client/Server
ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

server client
in

out

Client
code

7

25

Example Client/Server
ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

server client
in

out

in

out

Client
code

26

Possible Failures

• Server-side
– ServerSocket port already in use
– Client dies on accept

• Client-side
– Server dead
– No one listening on port

• In all cases IOException thrown
– Must use appropriate throw/try/catch constructs

27

What is this code doing?

28

Class Objects

• For each class, there is an object of type Class
• Describes the class as a whole

– used extensively in Reflection package
• Class.forName(“MyClass”)

– returns class object for MyClass
– will load MyClass if needed

• Class.forName(“MyClass”).newInstance()
– creates a new instance of MyClass

• MyClass.class gives the Class object for MyClass

8

29

Objects and Variables

• Variables of a primitive type contain values
– e.g., byte, char, int, ...
– int i = 6;
– Uninitialized values contain 0
– Assignment copies values

• Variables of other types contain references to the heap
– int[] a = new int[3];
– Objects are allocated with new
– Uninitialized object references are null
– Assignment copies references, not the objects themselves 30

Example

int i = 6;
int j; // uninitialized
int [] a = {1, 3, 5, 7, 9};
int [] b = new int[3];
String s = “abcdef”;
String t = null;

31

Example: Assignments

j = i;
b = a;
t = s;

32

Garbage Collection

• What happens to array [0, 0, 0] in previous
example?
– It is no longer accessible
– When Java performs garbage collection (GC) it will

automatically reclaim the memory it uses

• Notice: No free() or delete in Java
– Makes it much easier to write correct programs
– Most of the time, very efficient

9

33

Mutability

• An object is mutable if its state can change
– Example: Arrays are mutable

• An object is immutable if its state never changes
– Once its been initialized
– Example: Strings in Java are not mutable

• There are no methods to change the state of a string

34

Example: Mutability

a[1] = 0;
// also changes b[1]

• Moral: Always be
careful when you have
aliasing
– Multiple references to the

same object

35

Method Invocation

• Syntax
o.m(arg1, arg2, ..., argn);

– Run the m method of object o with arguments
arg1...argn

• Two ways to reuse method names:
– Methods can be overridden
– Methods can be overloaded

36

Overriding
• Define a method also defined by a superclass

class Parent {
int cost;
void add(int x) {
cost += x;

}
}

class Child extends Parent {
void add(int x) {
if (x > 0) cost += x;

}
}

10

37

Overriding (cont’d)

• Method with same name and argument types in
child class overrides method in parent class

• Arguments and result types must be identical
– otherwise you are overloading the method

• Must raise the same or fewer exceptions
– Why?

38

Declared vs. Actual Types

• The actual type of an object is its allocated type
– Integer o = new Integer(1);

• A declared type is a type at which an object is
being viewed
– Object o = new Integer(1);
– void m(Object o) { ... }

• Each object always has one actual type, but can
have many declared types

39

Method Dispatch

• Consider again
o.m(arg1, arg2, ..., argn);

• Only compiles if o’s declared type contains an
appropriate m method

• Method corresponding to o’s actual type is what is
invoked

40

Dynamic Dispatch Example
public class A {

String f() { return “I’m an A! “; }
}

public class B extends A {
String f() { return “I’m a B! “; }
public static void main(String args[]) {

A a = new B();
B b = new B();
System.out.println(a.f() + b.f());

}
}

Prints I’m a B! I’m a B!

11

41

Self Reference

• this refers to the object the method is invoked on
– Thus can access fields of this object as this.x or this.y
– But more concise to omit

• super refers to the same object as this
– But used to access methods/variables in superclass

42

Example of super
• Call a superclass method from a subclass

class Parent {
int cost;
void add(int x) {
cost += x;

}
}

class Child extends Parent {
void add(int x) {
if (x > 0) super.add(x);

}
}

43

Overloading

• Methods with the same name, but different
parameters (count or types) are overloaded
– Invocation determined by name and types of params
– Not return value or exceptions

• Resolved at compile-time, based on declared types

• Be careful: Easy to inadvertently overload instead
of override!

44

Overloading Example
class Parent {
int cost;
void add(int x) {

cost += x;
}
void add(Object s) throws NumberFormatException {
cost += Integer.parseInt((String)s);

}
}
class Child extends Parent {
void add(String s) throws NumberFormatException {
if (x > 0) cost += Integer.parseInt(s);

}
} Child c = new Child();

c.add((Object)“-1”);
System.out.println(c.cost);

Prints -1

12

45

Static Fields and Methods

• static – stored “with the class”
– Static fields allocated once, no matter how many

objects created
– Static methods are not specific to any class instance, so

cannot refer to this or super
• Can reference class variables and methods through

either class name or an object ref
– Clearer to reference via the class name

46

Static Field Example

int foo

int foo
int foo

Foo

int bar;

Public class Foo {
int foo;
static int bar;

}

Class definition

Class implementation

Objects of class Foo

47

Some Static Fields and Methods

• public static void main(String args[]) { … }
• public class Math {

public final static PI = 3.14159…;
}

• public class System {
public static PrintStream out = …;

}

48

Actual type B
Declared type A

Static Method Dispatch
• Let B be a subclass of A, and suppose we have

A a = new B();

• Then
– Class (static) methods invoked on a will get the methods for

the declared type A
• Invoking class methods via objects strongly discouraged
• Instead, invoke through class

– A.m() instead of a.m()

13

49

Static Method Dispatch Example
public class A {

static String g() { return “This is A! “; }
}
public class B extends A {

static String g() { return “This is B! “; }
public static void main(String args[]) {

A a = new B();
B b = new B();
System.out.println(a.g() + b.g());

}
}

Prints This is A! This is B!

50

Better Use of Static Methods
public class A {

static String g() { return “This is A! “; }
}
public class B extends A {

static String g() { return “This is B! “; }
public static void main(String args[]) {

System.out.println(A.g() + B.g());
}

}

Prints This is A! This is B!

51

Other Field Modifiers

• final – can’t be changed
– Must be initialized in declaration or in constructor

• transient, volatile
– Will cover later

• public, private, protected, package (default)
– Respectively, visible everywhere, only within this class,

within same package or subclass, within same package
52

Other Method Modifiers

• final – this method cannot be overridden
– Useful for security
– Allows compiler to inline method

• abstract – no implementation provided
– Class must be abstract

• public – visible outside this package
• native, synchronized

– Will cover later

14

53

Poor man’s polymorphism

• Every object is a subtype of Object
• Thus, a data structure Set that implements sets of

Objects
– can also hold Strings
– or images
– or … anything!

• The trick is getting them back out:
– When given an Object, you have to downcast it

54

Subtyping

• Both inheritance and interfaces allow one class to
be used where another is specified
– This is really the same idea: subtyping

• We say that A is a subtype of B if
– A extends B or a subtype of B, or
– A implements B or a subtype of B

55

Downcasting

• (Bar) foo
– Run-time exception if object reference by foo is not a subtype of

Bar
– Compile-time error if Bar is not a subtype of foo (i.e., it always

throws an exception)
– No effect at run-time; just treats the result as if it were of type Bar

• o instanceof Foo returns true iff o is a subtype of Foo

void m1(Object object) {

if (object instanceof String) {

// it is now safe to cast it

String astr = (String) object; } }
56

Example
class DumbSet {

public void insert(Object o) {..}
public bool member(Object o) {..}
public Object any() {..}

}

class MyProgram {
public static void main(String[] args) {
DumbSet set = new DumbSet();
String s1 = “foo”;
String s2 = “bar”;
set.insert(s1);
set.insert(s2);
System.out.println(s1+”in set?”+set.member(s1));
String s = (String)set.any(); // downcast
System.out.println(“got “+s);

}
}

15

57

Java Classes and Objects

• Each object is an instance of a class
– An array is an object

• Each class extends one superclass
– Object if not specified
– Class Object has no superclass

58

Objects Have Methods
• All objects, therefore, inherit them

– Default implementations may not be the ones you want

public boolean equals (Object that) – “conceptual” equality
public String toString() – returns printable representation
public int hashCode() – key for hash table
public void finalize() – called if object is garbage collected

– And others …

59

Equality

• Object .equals(Object) method
– Structural (“conceptual”) equality

• == operator (!= as well)
– True if arguments reference the same object
– o == p implies o.equals(p)

60

class Foo {
public boolean equals(Foo f) { … } // wrong!

}

class Foo {
public boolean equals(Object o) { // right!
if (!(o instanceof Foo))
return false;

...
}

}

The first case creates an overloaded method, while the second
overrides the parent (Object) method.

Overriding Equals

16

61

Overriding hashCode

• hashCode() is used for objects that may be stored in hash
table

• Rule of thumb: If you override equals() or hashCode(),
you should also override the other
– a.equals(b) implies a.hashCode() == b.hashCode()
– The default implementation of equals() in Object class simply

checks if two object references x and y refer to the same object. i.e.
It checks if x == y. This particular comparison is also known as
"shallow comparison". However, the classes providing their own
implementations of the equals method are supposed to perform a
"deep comparison"; by actually comparing the relevant data
members. Since Object class has no data members that define its
state, it simply performs shallow comparison.

62

Preconditions

• Functions often have requirements on their inputs

// Return maximum element in A[i..j]

int findMax(int[] A, int i, int j) { ... }

– A is non-empty
– i and j must be non-negative
– i and j must be less than A.length
– i < j (maybe)

• These are called preconditions or requires clauses

63

Dealing with Errors

• What do you do if a precondition isn’t met?

• What do you do if something unexpected
happens?
– Try to open a file that doesn’t exist
– Try to write to a full disk

64

Signaling Errors

• Style 1: Return invalid value

// Returns value key maps to, or null if no

// such key in map

Object get(Object key);

– Disadvantages?

17

65

Signaling Errors (cont’d)

• Style 2: Return an invalid value and status
static int lock_rdev(mdk_rdev_t *rdev) {

...

if (bdev == NULL)

return -ENOMEM;

...

}

// Returns NULL if error and sets global

// variable errno

FILE *fopen(const char *path, const char *mode);

66

Problems with These Approaches

• What if all possible return values are valid?

• What if client forgets to check for error?
– No compiler support

• What if client can’t handle error?
– Needs to be dealt with at a higher level

67

Exceptions in Java

• On an error condition, we throw an exception
• At some point up the call chain, the exception is

caught and the error is handled
• Separates normal from error-handling code
• A form of non-local control-flow

– Like goto, but structured

68

Throwing an Exception

• Create a new object of the class Exception, and
throw it

if (i >= 0 && i < a.length)

return a[i];

else throw new ArrayIndexOutOfBounds();

18

69

Method throws declarations

• A method declares the exceptions it might throw
– public void openNext() throws UnknownHostException,

EmptyStackException
{ … }

• Must declare any exception the method might throw
– Unless it is caught in (masked by) the method
– Includes exceptions thrown by called methods
– Certain kinds of exceptions excluded

70

Exception Handling
• All exceptions eventually get caught
• First catch with supertype of the exception

catches it
• finally is always executed

try { if (i == 0) return; myMethod(a[i]); }
catch (ArrayIndexOutOfBounds e) {

System.out.println(“a[] out of bounds”); }
catch (MyOwnException e) {

System.out.println(“Caught my error”); }
catch (Exception e) {

System.out.println(“Caught” + e.toString()); throw e; }
finally { /* stuff to do regardless of whether an exception */

/* was thrown or a return taken */ }

71

Masking Exceptions

• Handle exception and continue
while ((s = ...) != null) {

try {

FileInputStream f =

new FileInputStream(s);

...

}

catch (FileNotFoundException e) {

System.out.println(s + “ not found”);

}

}

72

Reflecting Exceptions

• Pass exception up to higher level
– Automatic support for throwing same exception
– Sometimes useful to throw different exception

try {

... a[5] ...

}

catch (IndexOutOfBoundsException e) {

throw new EmptyException(“Arrays.min”);

}

19

73

Exception Chaining

• Indicate the cause of a thrown exception
– Specify the exception that caused this one
– Shows cause chain in stack trace

try {
... a[0] ...

}
catch (IndexOutOfBoundsException e) {
// e can be retrieved from getCause()
throw new Exception(“Arrays.min”, e);

}

74

Exception Hierarchy

Throwable

Error Exception

RuntimeException

Checked

Unchecked

75

Unchecked Exceptions

• Subclasses of RuntimeException and Error are
unchecked
– Need not be listed in method specifications

• Currently used for things like
– NullPointerException
– IndexOutOfBoundsException
– VirtualMachineError

• Is this a good design?

