CMSC433, Spring 2007
Programming Language Technology and
Paradigms

Java Review

Atif Memon
02/06/2007-02/13/2007

Java

« Descended from Simula67, SmallTalk, others
— Superficially similar to C, C++

 Fully specified, compiles to virtual machine
— machine-independent

» Secure
— bytecode verification (“type-safe”)
— security manager

Object Orientation

e Combining data and behavior

— objects, not developers, decide how to carry out
operations

 Sharing via abstraction and inheritance
— similar operations and structures are implemented once
» Emphasis on object-structure rather than
procedure structure
— ... but procedure structure still useful

public class Conplex {
private double r, i;

public Conpl ex(double r, double i) {
this.r =r; this.i =1i;
}
public String toString() {
return “(“ +r +“, "+ 0+)"
}
public Conpl ex plus(Conplex that) {
return new Conplex(r + that.r, i + that.i);
}
}

Using Complex

public static void main(String[] args) {

Conpl ex a = new Conpl ex(5.5,9.2);
Conpl ex b = new Conpl ex(2.3,-5.1);
Conpl ex c;

c = a. plus(b);
Systemout.printin(“a = “ + a);
Systemout.printin(“b = “ + b);
Systemout.printin(“c = “ + c);

einstantiation
eprintln calls the java.io.PrintStream.print(Object) method
swhich calls the String.valueOf method
*The String.valueOf method is very simple:
public static String valueOf(Object obj)
{ return (obj == null) ? "'null* : obj.toString();
} 5

The Class Hierarchy

* Classes by themselves are a powerful tool
— Support abstraction and encapsulation

« Java also provides
— Inheritance allows code reuse

* Note: When you inherit from a class, you also
“implement” the class’s “interface” (will come back
to interface)

Inheritance

» Each Java class extends or inherits code from
exactly one superclass

 Permits reusing classes to define new objects

— Can define the behavior of the new object in terms of
the old one

class Point {

int getX() { ... }
int getY() { ... }

}

cl ass Col or Poi nt extends Point {
int getColor() { ... }

}

» ColorPoint reuses getX() and getY() from Point

 ColorPoint “implements” the Point “interface”
— They can be used anywhere a Point can be

* Everything inherits from Object*
— Even arrays
— Allows sharing, generics, and more

* Well, almost: there are primitive int, long, float, etc.

Interfaces

public interface Mni Servlet extends Runnable {
voi d setArg(String arg);
voi d set Qut put St reanm(Qut put Stream out);

}
class Hellowrld inplenents MniServliet { ... }
class Print inplenents MniServliet { ... }

M ni Servlet s = new Hell oWorld();
if (...) s =newPrint();
s.setArg(...);

—Interfaces allow different classes to be treated the same 4,

Interfaces

» An interface lists supported (public) methods
— No constructors or implementations allowed
— Can have final static variables
A class can implement zero or more interfaces
» Given some interface I, declaring I x = ... means

— x must refer to an instance of a class that implements I,
or else null

Interface Inheritance

« [nterfaces can extend other interfaces
— Sometimes convenient form of reuse

» Given interfaces 11 and 12 where 12 extends 11
— If C implements 12, then C implements 11

 Because a class can implement multiple interfaces,
interface extensions are often not needed

12

No Multiple Inheritance

A class type can implement many interfaces
 But can only extend one superclass

* Not a big deal

— Multiple inheritance rarely, if ever, necessary and often
badly used

— And it’s complicated to implement well

13

Abstract Classes

* Sometimes want a class with some code, but with
some methods unwritten
— It can’t be an interface because it has code

— It can’t be a regular class because it doesn’t have all the
code

* You can’t instantiate such a class

» [nstead, we can mark such a class as abstract
— And mark the unimplemented methods as abstract

Example from JDK

public abstract class QutputStream {
public abstract void wite(int b) ...;
public void wite(byte b[], int off, int len) ... {
owite(b[off +i]);...
}

}

« Subclasses of OutputStream need not override the
second version of write(...)
— But they do need to override the first one as it is abstract

15

I/O streams

» Raw communication takes place using streams

Process

« Java also provides readers and writers
— character streams

» Applies to files, network connections, strings, etc.

16

I/O Classes

OutputStream — byte stream going out
» Writer — character stream going out
InputStream — byte stream coming in
Reader — character stream coming in

17

Applications and 1/0O

 Java “external interface” is a public class
— public static void main(String [] args)
 args[0] is first argument
— unlike C/C++
» System.out and System.err are PrintStreams
— System.out.print(...) prints a string
— System.out.printIn(...) prints a string with a newline

18

Java Networking

* class Socket
— Communication channel
* class ServerSocket
— Server-side “listen” socket
— Awaits and responds to connection requests

19

Example Client/Server

ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept(); Server code
InputStream in = conn.getInputStream();

OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001); Client
InputStream in = conn.getInputStream(); code
OutputStream out = conn.getOutputStream();

20

Example Client/Server

ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();

InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

e

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

Client
code

Example Client/Server

ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();

InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

g =

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

Client
code

Example Client/Server

ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();

InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

port 5001

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

Note: The server can
still accept other
connection requests on

Client
code

Example Client/Server

ServerSocket s = new ServerSocket(5001);
Socket conn = s.accept();

InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Socket conn = new Socket (“www.cs.umd.edu”, 5001);
InputStream in = conn.getInputStream();
OutputStream out = conn.getOutputStream();

Server code

Client
code

Example Client/Server Possible Failures

ServerSocket s = new ServerSocket(5001);)
Socket conn = s.accept(); Server code » Server-side

InputStream in= Conn.getlnputstream(); —_ ServerSocket port already in use
OutputStream out = conn.getOutputStream(); _ Client dies on accept

* Client-side
— Server dead
— No one listening on port
* Inall cases IOException thrown

Socket conn = new Socket (“www.cs.umd.edu”, 5001); Client — Must use appropriate throw/try/catch constructs
InputStream in = conn.getinputStream(); code
OutputStream out = conn.getOutputStream();

26

What is this code doing? Class Objects

import java.lang.reflect.*;
public class ReflectionTest {

public static void main(String args(l) * For each class, there is an object of type Class

throws ClassNotFoundException,

Nogucriet hodgxcept Lon » Describes the class as a whole
TllegalAccessException, — used extensively in Reflection package

InvocationTargetException

-~
L]

Class.forName(“MyClass™)

if(args.length 1= 2 ||
! (args [0] .equals ("toUpperCase") || .
args [0] .equals ("toLowercCase™))) | — returns class object for MyClass
y throw new IllegalArgumentException(); _ W|" Ioad MyCIaSS If needed

String command = args[0];

Class str = Class.forName("java.lang.String"); . ClaSS.fOI’Name("MyClaSS").neWInstance()
Method m = str.getMethod(command, null); R
Object result = m.invoke(args[1], null); — creates a new instance of MyClass
System.out.println(result.toString());

} .

MycClass.class gives the Class object for MyClass
28

Objects and Variables

 Variables of a primitive type contain values Stack Heap tnt 1 =6,
) int j; // uninitialized
- e.g., byte, char, int, ... int [] a={1 3, 5 7, 9;
—inti=6; i 6 (11,3579) int [] b=newint[3];
- . . String s = “abcdef”;
— Uninitialized values contain 0 i 0 String t = null;

— Assignment copies values [0.0,0]

 Variables of other types contain references to the heap
— int[] a = new int[3];
— Objects are allocated with new
— Uninitialized object references are null
— Assignment copies references, not the objects themselves,,

"abcdef"

gl
Ti

30

Example: Assignments Garbage Collection

Stack Heap j

i » What happens to array [0, 0, 0] in previous
. example?

i 6 (1.3579) — Itis no longer accessible
i 6 / — When Java performs garbage collection (GC) it will
— automatically reclaim the memory it uses
» Notice: No free() or delete in Java
1 T

— Makes it much easier to write correct programs
— Most of the time, very efficient

o
o n
[

o W

/

31 32

Mutability

» An object is mutable if its state can change
— Example: Arrays are mutable

» An object is immutable if its state never changes
— Once its been initialized

— Example: Strings in Java are not mutable
* There are no methods to change the state of a string

33

Example: Mutability

Stack Heap a[1] = 0;
/1 al so changes b[1]
i B [1,0,5,7,9]
il e /
. F_J e Moral: Always be
b] careful when you have
s| —| aliasing
t r— — Multiple references to the

IE— same object

34

Method Invocation

e Syntax
o.m(argl, argz, ..., argn);
— Run the m method of object o with arguments
argl..argn

» Two ways to reuse method names:
— Methods can be overridden
— Methods can be overloaded

35

 Define a method also defined by a superclass

class Parent { class Child extends Parent {
int cost; void add(int x) {
void add(int x) { if (x> 0) cost +=x;
cost += X;
} }
}

36

Overriding (cont’d)

» Method with same name and argument types in
child class overrides method in parent class

» Arguments and result types must be identical
— otherwise you are overloading the method

» Must raise the same or fewer exceptions
- Why?

37

Declared vs. Actual Types

» The actual type of an object is its allocated type
— Integer o0 = new Integer(1);

» A declared type is a type at which an object is
being viewed
— Object 0 = new Integer(1);
— void m(Object0) { ... }

» Each object always has one actual type, but can
have many declared types

38

Method Dispatch

 Consider again
o.m(argl, argz, ..., argn);

» Only compiles if 0’s declared type contains an
appropriate m method

» Method corresponding to 0’s actual type is what is
invoked

39

Dynamic Dispatch Example

public class A {
String f() { return “I"'man Al “; }

public class B extends A {
String f() { return “I'ma B! “; }
public static void main(String args[]) {
A a = new B();
B b = new B();
Systemout.printin(a.f() + b.f());
}
}

Prints I’'ma B! I’'m a B!

40

10

Self Reference

* this refers to the object the method is invoked on
— Thus can access fields of this object as this.x or this.y
— But more concise to omit

* super refers to the same object as this
— But used to access methods/variables in superclass

41

Example of super

« Call a superclass method from a subclass

class Parent { class Child extends Parent {
int cost; void add(int x) {
void add(int x) { if (x > 0) super.add(x);
cost += x; }
} }
}

42

Overloading

» Methods with the same name, but different
parameters (count or types) are overloaded
— Invocation determined by name and types of params
— Not return value or exceptions

» Resolved at compile-time, based on declared types

» Be careful: Easy to inadvertently overload instead
of override!

43

Overloading Example

class Parent {
int cost;
void add(int x) {
cost += Xx;

}
voi d add(Ooj ect s) throws Nunber For nat Excepti on {
cost += Integer.parselnt((String)s);

class Child extends Parent {
void add(String s) throws NunberFor nat Excepti on {
if (x >0) cost += Integer.parselnt(s);

} } Child ¢ = new Child(); Prints -1
c.add((Onject)“-1");
System out. println(c.cost);

44

11

Static Fields and Methods

« static — stored “with the class”

— Static fields allocated once, no matter how many
objects created

— Static methods are not specific to any class instance, so
cannot refer to this or super

» Can reference class variables and methods through
either class name or an object ref
— Clearer to reference via the class name

45

Static Field Example

Class definition Objects of class Foo

Public class Foo {

int foo;
static int bar;
}

Class implementation ‘

46

Some Static Fields and Methods

* public static void main(String args[]) { ... }
* public class Math {
public final static Pl = 3.14159...;
}
* public class System {
public static PrintStream out = ...;

}

47

Static Method Dispatch

» Let B be a subclass of A, and suppose we have
Aa=new B(); Declared type A

Actual type B
e Then
— Class (static) methods invoked on a will get the methods for
the declared type A

« Invoking class methods via objects strongly discouraged

« Instead, invoke through class
— A.m() instead of a.m()

48

12

Static Method Dispatch Example

public class A {
static String g() { return “This is A “; }

public class B extends A {
static String g() { return “This is B “; }
public static void main(String args[]) {
A a = new B();
B b = new B();
Systemout.printin(a.g() + b.g());
}
}

Prints This is Al This is B!

49

Better Use of Static Methods

public class A {
static String g() { return “This is A “; }

public class B extends A {

static String g() { return “This is B “; }
public static void main(String args[]) {

Systemout.printin(A g() + B.g());
}
}

Prints This is A! This is B!

50

Other Field Modifiers

« final — can’t be changed
— Must be initialized in declaration or in constructor

« transient, volatile
— Will cover later

* public, private, protected, package (default)

— Respectively, visible everywhere, only within this class,
within same package or subclass, within same package

51

Other Method Modifiers

final — this method cannot be overridden
— Useful for security

— Allows compiler to inline method

abstract — no implementation provided
— Class must be abstract

public — visible outside this package
native, synchronized

— Will cover later

52

13

Poor man’s polymorphism

» Every object is a subtype of Object
» Thus, a data structure Set that implements sets of
Objects
— can also hold Strings
— or images
— or ... anything!
 The trick is getting them back out:
— When given an Object, you have to downcast it

53

Subtyping

» Both inheritance and interfaces allow one class to
be used where another is specified
— This is really the same idea: subtyping

» We say that A is a subtype of B if

— A extends B or a subtype of B, or
— A implements B or a subtype of B

54

¢ (Bar) foo
— Run-time exception if object reference by foo is not a subtype of
Bar

— Compile-time error if Bar is not a subtype of foo (i.e., it always
throws an exception)
— No effect at run-time; just treats the result as if it were of type Bar

¢ o instanceof Foo returns true iff o is a subtype of Foo

void m1(Object object) {
if (object instanceof String) {
/l'it is now safe to cast it
String astr = (String) object; } }

55

class DunbSet {
public void insert(Cbject o) {..}
public bool nenber(Cbject o) {..}
public Ooject any() {..}

class MyProgram {
public static void nain(String[] args) {
DumbSet set = new DunbSet ();
String s1 = “foo0”;
String s2 = “bar”;
set.insert(sl);
set.insert(s2);
Systemout. println(sl+"in set?"+set. menber(sl));
String s = (String)set.any(); // downcast
System out. println(“got “+s);

} 56

14

Java Classes and Objects

 Each object is an instance of a class
— An array is an object

 Each class extends one superclass
— Object if not specified
— Class Object has no superclass

57

Objects Have Methods

« All objects, therefore, inherit them

— Default implementations may not be the ones you want
public boolean equals (Object that) — “conceptual’ equality
public String toString() — returns printable representation

public int hashCode() — key for hash table
public void finalize() — called if object is garbage collected

— And others ...

58

* Object .equals(Object) method
— Structural (“conceptual”) equality

» == operator (= as well)

— True if arguments reference the same object
— 0 == p implies o.equals(p)

59

Overriding Equals

class Foo {
public bool ean equal s(Foo f) { ...} // wong!

}

class Foo {
publ i c bool ean equal s(oj ect 0) { /1 right!
if (!(o instanceof Foo0))
return fal se;

.
}

The first case creates an overloaded method, while the second

overrides the parent (Object) method.
60

15

Overriding hashCode

. helljsthode() is used for objects that may be stored in hash
table

¢ Rule of thumb: If you override equals() or hashCode(),
you should also override the other

— a.equals(b) implies a.hashCode() == b.hashCode()

— The default implementation of equals() in Object class simply
checks if two object references x and y refer to the same object. i.e.
It checks if x =='y. This particular comparison is also known as
"shallow comparison". However, the classes providing their own
implementations of the equals method are supposed to perform a
"deep comparison"; by actually comparing the relevant data
members. Since Object class has no data members that define its
state, it simply performs shallow comparison.

61

 Functions often have requirements on their inputs

/1 Return maximumelenment in Ali..j]
int findvax(int[] A int i, int j) { ... }

A is non-empty

i and j must be non-negative

i and j must be less than A.length

i <j (maybe)

» These are called preconditions or requires clauses

62

Dealing with Errors

» What do you do if a precondition isn’t met?

» What do you do if something unexpected
happens?
— Try to open a file that doesn’t exist
— Try to write to a full disk

63

Signaling Errors

 Style 1: Return invalid value

/'l Returns value key nmaps to, or null if no
/'l such key in map
Cbj ect get (Obj ect key);

— Disadvantages?

64

16

Signaling Errors (cont’d)

e Style 2: Return an invalid value and status
static int |ock_rdev(ndk_rdev_t *rdev) {

if (bdev == NULL)
return - ENOVEM

}
/1 Returns NULL if error and sets gl obal

/1 variable errno
FI LE *fopen(const char *path, const char *node);

65

Problems with These Approaches

» What if all possible return values are valid?

* What if client forgets to check for error?
— No compiler support

* What if client can’t handle error?
— Needs to be dealt with at a higher level

66

Exceptions in Java

» On an error condition, we throw an exception

At some point up the call chain, the exception is
caught and the error is handled

 Separates normal from error-handling code

» A form of non-local control-flow
— Like goto, but structured

67

Throwing an Exception

 Create a new object of the class Exception, and
throw it
if (i >>0&& i < a.length)
return afi];
el se throw new Arrayl ndexQut & Bounds();

68

17

Method throws declarations

» A method declares the exceptions it might throw

— public void openNext() throws UnknownHostException,
EmptyStackException
{...}

» Must declare any exception the method might throw
— Unless it is caught in (masked by) the method
— Includes exceptions thrown by called methods
— Certain kinds of exceptions excluded

69

Exception Handling

 All exceptions eventually get caught

« First catch with supertype of the exception
catches it

« finally is always executed

try { if (i == 0) return; myMethod(a[i]); }
catch (ArraylndexOutOfBounds €) {
System.out.printin(“a[] out of bounds”); }
catch (MyOwnException e) {
System.out.printin(“Caught my error”); }
catch (Exception e) {
System.out.printin(“Caught” + e.toString()); throw e; }
finally { /* stuff to do regardless of whether an exception */
[* was thrown or a return taken */ }

70

Masking Exceptions

» Handle exception and continue
while ((s = ...) !'=null) {
try {
Fil el nputStreamf =
new Fil el nput Strean(s);

}
catch (Fi | eNot FoundException e) {
Systemout.println(s + “ not found”);

}

71

Reflecting Exceptions

« Pass exception up to higher level
— Automatic support for throwing same exception
— Sometimes useful to throw different exception

try {
.a[s5] ...
}
catch (I ndexQut Of BoundsException e) {
throw new Enpt yException(“Arrays.mn”);
}

72

18

Exception Chaining

« Indicate the cause of a thrown exception
— Specify the exception that caused this one
— Shows cause chain in stack trace

try {
.a[o] ...

catch (I ndexQut Of BoundsException e) {
/'l e can be retrieved from get Cause()
throw new Exception(“Arrays.mn”, e);

}

73

Exception Hierarchy

Unchecked Exceptions

 Subclasses of RuntimeException and Error are
unchecked

— Need not be listed in method specifications

 Currently used for things like
— NullPointerException
— IndexOutOfBoundsException
— VirtualMachineError

* Is this a good design?

75

19

