Regression Testing

* Developed first version of software
+ Adequately tested the first version

- Modified the software; version 2 now
needs to be tested

+ How to test version 2?
+ Approaches

- Retest entire software from scratch

- Only test the changed parts, ignoring
unchanged parts since they have already
been tested

- Could modifications have adversely affected
unchanged parts of the software?

Regression Testing vs.
Development Testing

* During regression testing, an
established test set may be
available for reuse

* Approaches
- Retest all

- Selective retest (selective regression
testing) < Main focus of research

Selective Retesting

/ T\
Tests to rerun Tests not to rerun

+ Tests to rerun

- Select those tests that will produce
different output when run on P’
+ Modification-revealing test cases
- It is impossible to always find the set of
modification-revealing test cases - (we cannot predict
when P' will halt for a test)
- Select modification-traversing test cases

+ If it executes a new or modified statement in P’ or
misses a statement in P' that it executed in P

@ : Procedure avg

S1. count = 0
g2. fread(fileptr,n)
p3. while (not EOF) do

22 if (n<0)
S85. return({error)
else
S6. numarray[count] = n
s7. count++
Ce) endif
s8. fread(fileptr,n)
endwhile
@ 89. avg = calcavg(numarray,count)

810. return(avg)

Fig. 1. Procedure avg and its CFG.

Table I.

Test Information and Test History for Procedure avg

Test Information

Test Type Output Edges Traversed

t1 Empty File 0 (entry, D), (D, S1), (S1, S2) (S2, P3)
(P3, 89), (S9, S10), (S10, exit)

t2 -1 Error (entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

t3 123 2 (entry, D) (D, S1), (S1, S2), (S2, P3), (P3,
P4),

(P4, S6), (S6, S7), (S7, S8), (S8, P3),
(P3, 89), (89, S10), (S10, exit)

Test History

Edge TestsOnEdge(edge)
(entry, D) 111
(D, S1) 111
(s1, $2) 111
(82, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(S6, S7) 001
(S7, S8) 001
(S8, P3) 001
(89, S10) 101
(S10, exit) 101

Procedure avg2

S1’. count = 0
s2’. fread(fileptr,n)
P3’. while (not EOF) do

P4’ . if (n<0)
i s5a. print("bad input")

85’. return(error)
else

867 . numarray[count] = n
endif

S8’ . fread(fileptr,n)

endwhile

S9’. avg = calcavg(numarray,count)
S$10’ .return(avyg)

Procedure avg2 and its CFG.

Procedure avg

S1. count = 0
g2. fread(fileptr,n)
p3., while (not EOF) do

P4, if (n<0)
S5 return{error)
else
S6. numarray[count] = n
s7. count++
endif
sS8. fread(fileptr,n)
endwhile

S9. avg = calcavg(numarray,count)

810. return(avg)

Procedure avg2

81’. count = 0

82’. fread(fileptr,n)
P3’. while (not EOF) do
P4’ . if (n<0)

857, return(error)
else

S8’ . fread(fileptr,n)

endwhile
89'. avg = calcavg(numarray,count)
810’ .return(avg)

T = {12, 13}

Cost of Regression Testing

Cost = Cx + Retest All Cost = C,

We want C, < C,

Key is the test selection algorithm/technique

We want to maintain the same “quality of testing”

Selective-retest Approaches

+ Safe approaches

- Select every test that may cause the
modified program to produce different output
than the original program

+ E.g., every test that when executed on P, executed at
least one statement that has been deleted from P, at
least one statement that is new in or modified for P’

* Minimization approaches
- Minimal set of tests that must be run to

meet some structural coverage criterion

+ E.g., every program statement added to or modified
for P' be executed (if possible) by at least one test in
T

Selective-retest Approaches

* Data-flow coverage-based approaches

- Select tests that exercise data interactions
that have been affected by modifications

+ E.g., select every test in T, that when executed on P,
executed at least one def-use pair that has been
deleted from P', or at least one def-use pair that has
been modified for P’

+ Coverage-based approaches

- Rerun tests that could produce different
output than the original program. Use some
coverage criterion as a guide

Selective-retest Approaches

* Ad-hoc/random approaches
- Time constraints

- No test selection tool available
+ E.g., randomly select n test cases from T

Factors to consider

* Testing costs

* Fault-detection ability

* Test suite size vs. fault-detection
ability

+ Specific situations where one
technique is superior to another

Open Questions

* How do techniques differ in terms of
their ability to
- reduce regression testing costs?
- detect faults?

+ What tradeoffs exist b/w testsuite size
reduction and fault detection ability?

* When is one technique more cost-
effective than another?

+ How do factors such as program design,
location, and type of modifications, and
test suite design affect the efficiency
and effectiveness of test selection
techniques?

Experiment
* Hypothesis

- Non-random techniques are more effective than
random techniques but are much more expensive

- The composition of the original test suite
greatly affects the cost and benefits of test
selection techniques

- Safe techniques are more effective and more
expensive than minimization techniques

- Data-flow coverage based techniques are as
effective as safe techniques, but can be more
expensive

- Data-flow coverage based techniques are more
effective than minimization techniques but are
more expensive

Measure

- Costs and benefit of several test
selection algorithms

- Developed two models
- Calculating the cost of using the
technique w.r.t. the retest-all
technique
- Calculate the fault detection
effectiveness of the resulting test
case

Modeling Cost

+ Did not have implementations of all
techniques
- Had to simulate them

- Experiment was run on several
machines (185,000 test cases) -
results not comparable

- Simplifying assumptions

- All test cases have uniform costs

- All sub-costs can be expressed in
equivalent units
* Human effort, equipment cost

Modeling Cost

* Cost of regression test selection

- Cost = A + E(T")

- Where A is the cost of analysis

- And E(T') is the cost of executing and
validating tests in T'

- Note that E(T) is the cost of
executing and validating all tests, i.e.,
the retest-all approach

- Relative cost of executing and
validating = |T'|/|T]|

Modeling Fault-detection

* Per-test basis
- Given a program P and
- Its modified version P’

- Identify those tests that are in T and reveal
a fault in P, but that are not in T'

- Normalize above quantity by the number of
fault-revealing tests in T
* Problem
- Multiple tests may reveal a given fault

- Penadlizes selection techniques that discard
these test cases (i.e., those that do not
reduce fault-detection effectiveness)

Modeling Fault-detection

* Per-test-suite basis

- Three options

* The test suite is inadequate
- No test in T is fault revealing, and thus, no test in
T is fault revealing
+ Same fault detection ability
- Some test in both T and T is fault revealing
+ Test selection compromises fault-detection
- Some test in T is fault revealing, but no test in T'
is fault revealing

+ 100 - (Percentage of cases in which
T’ contains no fault-revealing tests)

Experimental Design

+ 6 C programs
* Test suites for the programs
- Several modified versions

Program Functions | Lines | Versions | Avg T Size
replace 21 516 32 398
printtokens2 19 483 10 389
schedule2 16 297 10 234
schedule 18 299 9 225
totinfo T 346 23 199
tcas 9 138 4] 83

Table 1: Experimental Subjects.

Test Suites and Versions

- Given a test pool for each program
- Black-box test cases
* Category-partition method
- Additional white-box test cases

* Created by hand

» Each (executable) statement, edge, and def-
use pair in the base program was exercised
by at least 30 test cases

* Nature of modifications
- Most cases single modification
- Some cases, 2-5 modifications

Versions and Test Suites

+ Two sets of test suites for each
program

- Edge-coverage based

+ 1000 edge-coverage adequate test suites

+ To obtain test suite T, for program P (from its test
pool): for each edge in P's CFG, choose (randomly)
from those tests of pool that exercise the edge (ho

- No

repeats)

n-coverage based
1000 non-coverage-based test suites
+ To obtain the k™ non-coverage based test suite, for
program P: determine n, the size of the kh coverage-
based test suite, and then choose tests mndomlr
from the test pool for P and add them to T, until T
contains n test cases

Another look at the subjects

1000
‘For each program - - ~
1000 edge-coverage based test suites: Ooo0cCc3ao ==
-1000 non-coverage based test suites: [J[Q [1[0 == |]
Program Functions | Lines | Versions | Avg T Size
replace 21 516 32 398
printtokens2 19 483 10 389
schedule2 16 297 10 234
schedule 18 299 9 225
totinfo 7 346 23 199
tcas 9 138 4] 83

Table 1: Experimental Subjects.

Test Selection Tools

* Minimization technique

- Select a minimal set of tests that cover
modified edges

- Safe technique

- DejaVu

- we discussed the details earlier in this lecture

* Data-flow coverage based technique

- Select tests that cover modified def-use
pairs

* Random technique

- Random(n) randomly selects n% of the test
cases

+ Retest-all

Variables

* The subject program
- 6 programs, each with a variety of
modifications
 The test selection technique
- Safe, data-flow, minimization,
random(25), random(50), random(75),
retest-all
+ Test suite composition
- Edge-coverage adequate
- random

Measured Quantities

* Each run
- Program P
- Version P’
- Selection technique M
- Test suite T

+ Measured
- The ratio of tests in the selected test
suite T' to the tests in the original
test suite
- Whether one or more tests in T
reveals the fault in P’

Dependent variables

- Average reduction in test suite size

+ Fault detection effectiveness

+ 100-Percentage of test suites in which T'
does hot reveal a fault in P’

Number of runs

* For each subject program, from the
test suite universe
- Selected 100 edge-coverage adequate
- And 100 random test suites

* For each test suite
- Applied each test selection method

- Evaluated the fault detection
capability of the resulting test suite

Fault-detection Effectiveness

OT —— *

—_—
I

8 A T
1
1
'
i
]

8 1 [-

40

Fauk Detection Effectiveness (%)

20

100-Percentage of test suites in which
T' does not reveal a fault in P’

How to read the graphs
Entire structure rT-i
[represents a :
data distribution I
LUpper quarﬁlej

Box's height i Median
E)

pans the central
Lower quar‘ﬁlej

50% of the data

How to read the graphs

rT"l rT"l
1 1
1 1
1 1

-e-l

| L

Fault-detection Effectiveness

Test Selection Method

sc}\sdull92

replace schedule

[3 [}
L] . .
. L)
. [}
[} [
= T T T
00 02 04 06 o8 10 0.0 02 04 06 o8 10

Reduced Test Suite Size

Figure 2: Test suite reduction by method, conditioned on program.

°
€ ——i 5 °
o
g
8
2
5 L]
3
2 84 H ° T
H | o
= 1
w t
1
.§ = : °
2 o |
3 i
3 1 L
& . i '
8 “ ! !
(S |
° 1
'
I
© 9 ° o [P T
printtokens2 replace schedule schedule2 tcas wtinfo
Program
o 20 40 60 80 100
. L . . s N AR M .
schedule2 tcas

Test Selection Method

Fault Detection Effectiveness

Figure 3: Fault-detection effectiveness by selection method, conditioned on program.

H
B
>

Py
2

0O safe

O min

A retest
+ rand75
X rand50
O rand25
v dflow

Fault Detaction Effectivenoss (%)
8
"

8

— —r — T T
20 40 60 80 100
Reduced Tost Suite Siza (%)

Figure 4: Fault-detection effectiveness and test suite size, irrespective of analysis costs.

Conclusions

* Minimization produces the smallest and

the least effective test suites

* Random selection of slightly larger test

suites yielded equally good test suites as
far as fault-detection is concerned

+ Safe and data-flow nearly equivalent

average behavior and analysis costs

- Data-flow may be useful for other aspects
of regression testing

- Safe methods found all faults (for which

they has fault-revealing tests) while
selecting (average) 74% of the test
cases

Conclusions

- In certain cases, safe method could
not reduce test suite size at all
- On the average, slightly larger random
test suites could be nearly as
effective
- Results were sensitive to
- Selection methods used
- Programs
- Characteristics of the changes
- Composition of the test suites

10

