
1

Predicate-based Testing
• Predicates are conditions

– Divides the input domain into partitions
– Define the paths of the program

• Program P
– Input X; Predicate C
– If outcome of C is incorrect,

• Either C is incorrect,
• Or statement(s) executed before C

– Most likely, P’s output is incorrect
• Low probability of “coincidental correctness”

• Predicate-based testing
– Require certain types of tests for each

predicate in the program

C

Input (X)

true false

Importance of Predicate-
based Testing

• Thorough testing of C used to
– Detect faults in C,
– Statements executed before C
– Statements executed after C

Terms Defined
• Predicate

– Simple or compound predicate
• Simple predicate

– Boolean variable, or
– Relational expression,
– May have one or more NOT (¬) operators

• Relational expression
– E1 <rop> E2

• E1 and E2 are arithmetic expressions
• <rop> ∈ {<, <=, >, >=, /=, =}

Terms Defined (2)
• Compound predicate

– At least one “binary Boolean operator”
– Two or more operands
– Maybe NOT operators
– Maybe parenthesis

• Binary Boolean operators
– OR (|) and AND (&)

• Simple operand
– Operand without binary Boolean operators

• Compound operand
– Operand with at least one binary Boolean

operator

2

Terms Defined (3)
• Boolean expression

– Predicate with no relational
expressions

• Bi = Boolean expression
• Ei = Arithmetic expression
• <rop> or <ropi> = relational
operator

• <bop> or <bopi> = binary Boolean
operator

Assumptions
• Predicate has no syntactic faults

Types of Faults
• An “incorrect” predicate may have one or

more of the following faults
– Boolean operator fault

• Incorrect AND/OR or missing/extra NOT
– Boolean variable fault

• Incorrect Boolean variable
– Parenthesis fault

• Incorrect location
– Relational operator fault

• Incorrect relational operator
– Arithmetic expression fault

• Various types

Yet More Terms
• Existence of one/more faults is
“detected by a test” T if an
execution of C with T produces an
incorrect outcome of C

• Test set T for C “guarantees the
detection” of certain type of faults
F in C if the existence of F in C
can be detected by at least one
element in T, provided C doesn’t
contain faults of other types

3

Yet More Terms (2)
• Assume that C* has the same set of

variables as C and is not equivalent to C.
Test set T “distinguishes” C from C* if C
and C* produce different outcomes for T

• Assume that C contains faults and C” is
the correct version of C. Test set T is
“insensitive” to the faults in C if this
test cannot distinguish C from C”

Testing Simple Predicates
• Branch testing

– TRUE and FALSE branches be
executed at least once

• Relational Operator Testing
– Given E1 <rop> E2
– Need 3 tests
– E1 > E2; E1 < E2; E1 = E2
– If only <rop> is incorrect and E1 and
E2 are correct, then detection is
guaranteed

Testing Compound
Predicates

• Complete branch testing
– All TRUE and FALSE branches of each
simple/compound operand in compound
predicate C be executed at least once

• Exhaustive branch testing
– All combinations of TRUE and FALSE
branches of simple operands in C be
executed at least once

– C has N Boolean Operators, then N+1
simple operands. Requires 2^(n+1) test
cases

Testing Compound
Predicates (2)

• Complete relational operator testing
– Relational operator testing for each

relational expression in C
– Let C# be (E1 = E2) & (E3 /= E4)
– Assume T1 contains 3 tests

• T11 makes E1 = E2 and E3 = E4
• T12 makes E1 > E2 and E3 > E4
• T13 makes E1 < E2 and E3 < E4

– T1 satisfies relational operator testing for
each simple operand of C#

• If E1, E2, E3, and E4 are correct, what
can we say about the correctness of
operators?

4

Complete Relational
Operator Testing

• Can the test cases T11, T12, and
T13 distinguish between C# and
– (E1 = E2) & (E3 < E4)
– (E1 /= E2) & (E3 = E4)

BR-constraints
• Given a predicate

• (<opd1> <bop1> <opd2> <bop2> … <opdn> <bopn>
• <opdi> is the ith simple operand

• BR-constraint
– (D1, D2, …, Dn)

• Each Di is a symbol specifying a constraint on
the Boolean variable or relational expression
in <opdi>

BR-constraints (2)
• Constraints for a Boolean variable B

– The value of B is TRUE
– The value of B is FALSE
– No constraint

• Symbols
– t
– f
– *

BR-constraints (2)
• Constraints for a relational
expression (E1 <rop> E2)

• Value is TRUE t
• Value is FALSE f
• (E1 – E2) > 0 >
• (E1 – E2) = 0 =
• (E1 – E2) < 0 <
• No constraint *

5

Constraint Satisfaction
• Definition

– Constraint D on predicate C is covered (or
satisfied) by a test if during the execution
of C with this test, the value of each
Boolean variable or relational expression in C
satisfies the corresponding constraint in D

• E.g.,
– (=, <)
– for ((E1 >= E2) | ¬(E3 > E4))

• Coverage requires that (E1 = E2) and
(E3 < E4)

Constraint Satisfaction (2)
• Definition

– Set S of BR-constraints on predicate
C is covered (or satisfied) by a test
set T if each constraint in S is
covered for C by at least one test in
T

Terms Redefined
• In terms of BR-constraints

– Branch testing (E1 <rop> E2)
• {(t), (f)}

– Relational operator testing (E1 <rop> E2)
• {(>), (=), (<)}

– Complete branch testing ((E1 <rop1> E2)
<bop> (E3 <rop2> E4))

• {(t, *), (f, *), (*, t), (*, f)}
– Complete relational operator testing ((E1

<rop1> E2) <bop> (E3 <rop2> E4))
• {(>, *), (=, *), (<, *), (*, >), (*, =), (*, <)}

Terms Defined
• Concatenation

– Let u = (u1, u2, …, um) and v = (v1, v2, …, vn)
be two sequences

– (u,v) = (u1, u2, …, um, v1, v2, …, vn)
• Other terms

– Let A and B be two sets
– A$B denotes the union of A and B
– A*B is the product of A and B
– |A| is the size of A
– A%B is called the onto from A to B

• Minimal set of (u,v) such that u ∈ A and every element
in A appears in u at least once; v ∈ B and every
element in B appears in v at least once

6

Terms Defined
• Observations

– |A%B| = max(|A|, |B|)
– A%B may have several possible values

• If C = {(a), (b)} and D = {(c), (d)}
• Then what is C%D

– ((a,c),(b,d))
– ((a,d),(b,c))

• How about if E = {(a), (b)} and F = {(c), (d),
(e)}

Expected Outcome
• Let X be a constraint that contains “t”,

“f”, “>”, “<“, and “=“ for a predicate C
• Value produced by C on any input

covering X; C(X)
• X covers the TRUE branch of C if

C(X)=TRUE, and
• X covers the FALSE branch of C if

C(X)=FALSE
• Let S be a set of constraints for C
• Partition S into S_t and S_f

– S_t(C) = {X in S | C(X) = t}
– S_f(C) = {X in S | C(X) = f}

Lets Try Them Out
• E1 < E2

– S1 = {(<), (>), (=)}
– S1_t = {(<)}
– S1_f = {(>), (=)}

• E3 >= E4
– S2 = {(>), (=), (<)}
– S2_t = {(>), (=)}
– S2_f = {(<)}

• E5 = E6
– S3 = {(=), (<), (>)}
– S3_t = {(=)}
– S3_f = {(<), (>)}

|&
• More complex predicates

– (E3 >= E4) | (E5 = E6)
• S4_f = {(<, <), (<, >)}

– (E3 >= E4) & (E5 = E6)
• S9_t = {(>, =), (=, =)}

• How about S4_t and S9_f?

7

Surprise Quiz
• How About S9_f?

What Next?
• Once all the constraints have been
obtained, test cases may be
generated

