
Pip: Detecting the
Unexpected in

Distributed Systems
Patrick Reynolds, Charles Killian, Janet Wiener,

Jeffrey Mogul, Mehul Shah

Presented by:
Aaron Schulman

Some slides and images were borrowed from NSDI Talk
1

Introduction

• Distributed systems are complex

• Harder to debug than centralized
systems

• Often, deviations from expected behavior
indicate bugs

• Characterize system behavior

2

Distributed Systems (DS)
are hard to test

• Distributed systems are subject to:

• Independent node failures

• Incorrect synchronization
of parallel tasks

• Network errors

• Security Breaches

3

Goal

Develop tool to aid DS programmers by
identifying bugs.

4

DS testing tools

5

DS testing tools
Approach Scenario

gdb and gprof low level bugs at a single
node / core dumps

black box testing enough consistency to
do statistical analysis

model checking small system with hard
to reproduce bug

printf bugs detected with
local log

Causal Path Analysis distributed system does
not behave as expected

5

DS testing tools
Approach Scenario

gdb and gprof low level bugs at a single
node / core dumps

black box testing enough consistency to
do statistical analysis

model checking small system with hard
to reproduce bug

printf bugs detected with
local log

Causal Path Analysis distributed system does
not behave as expected

5

DS testing tools
Approach Scenario

gdb and gprof low level bugs at a single
node / core dumps

black box testing enough consistency to
do statistical analysis

model checking small system with hard
to reproduce bug

printf bugs detected with
local log

Causal Path Analysis distributed system does
not behave as expected

5

DS testing tools
Approach Scenario

gdb and gprof low level bugs at a single
node / core dumps

black box testing enough consistency to
do statistical analysis

model checking small system with hard
to reproduce bug

printf bugs detected with
local log

Causal Path Analysis distributed system does
not behave as expected

5

DS testing tools
Approach Scenario

gdb and gprof low level bugs at a single
node / core dumps

black box testing enough consistency to
do statistical analysis

model checking small system with hard
to reproduce bug

printf bugs detected with
local log

Causal Path Analysis distributed system does
not behave as expected

5

DS testing tools
Approach Scenario

gdb and gprof low level bugs at a single
node / core dumps

black box testing enough consistency to
do statistical analysis

model checking small system with hard
to reproduce bug

printf bugs detected with
local log

Causal Path Analysis distributed system does
not behave as expected

5

Causal Path Analysis

Web server

App server

Database

Example:
Web service system

6

Causal Path Analysis

• Path is caused by input to
system

• e.g. user request from web
service

Web server

App server

Database

Example:
Web service system

6

Causal Path Analysis

• Path is caused by input to
system

• e.g. user request from web
service

• Components delay

Web server

App server

Database

500ms

Example:
Web service system

6

Causal Path Analysis

• Path is caused by input to
system

• e.g. user request from web
service

• Components delay

• Attribution of resource
consumption

Web server

App server

Database

500ms

2000
page

faults

Example:
Web service system

6

Path Instances
WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

7

Path Instances

• Within paths are tasks, messages, and notices

WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

7

Path Instances

• Within paths are tasks, messages, and notices
–Tasks: processing with start and end points

WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

7

Path Instances

• Within paths are tasks, messages, and notices
–Tasks: processing with start and end points
–Messages: send and receive events for any

communication

WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

7

Path Instances

• Within paths are tasks, messages, and notices
–Tasks: processing with start and end points
–Messages: send and receive events for any

communication
• Includes network, synchronization (lock/
unlock), and timers

WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

7

Path Instances

• Within paths are tasks, messages, and notices
–Tasks: processing with start and end points
–Messages: send and receive events for any

communication
• Includes network, synchronization (lock/
unlock), and timers

–Notices: time-stamped strings; essentially log
entries

WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

7

Pip workflow

Application

8

Pip workflow

Application

8

Pip workflow

1. Captures events from an
instrumented system

Behavior
model

Application

Expectations

Pip checker

8

Pip workflow

1. Captures events from an
instrumented system

2. Generate paths from
events

Behavior
model

Application

Expectations

Pip checker

8

Pip workflow

1. Captures events from an
instrumented system

2. Generate paths from
events

3. Checks behavior against
expectations

Behavior
model

Application

Expectations

Pip checker

8

Pip workflow

1. Captures events from an
instrumented system

2. Generate paths from
events

3. Checks behavior against
expectations

4. Displays unexpected
behavior

Behavior
model

Application

Expectations

Pip checker

Unexpected
structure

Resource
violations

Pip explorer:
visualization GUI

8

Main Contribution:
Expectations

Declarative language to describe a DS’s
expected path.

9

Describing Expected Behavior

Recognizers Aggregates
Description of Behavior

Structural or Performance
Assertions about sets of

path instances

10

Expectation: Recognizers

• Validator, invalidator, building block

• Can match a complete path or fragment

• Invalid paths are often represented as
fragments

11

Expectation: Recognizers

• Validator, invalidator, building block

• Can match a complete path or fragment

• Invalid paths are often represented as
fragments

R1

R2

R3

11

Recognizer Example
validator CGIRequest
 thread WebServer(*, 1)
 task(“Parse HTTP”) limit(CPU_TIME, 100ms);
 notice(m/Request URL: .*/);
 send(AppServer);
 recv(AppServer);

invalidator DatabaseError
 notice(m/Database error: .*/);

WWW

App srv

DB

Parse HTTP

Query

Send response

Run application

time

“Request = /cgi/…” “2096 bytes in response”

“done with request 12”

12

Other Statements
• repeat: matches a ≤ n ≤ b copies of a block

• xor: matches any one of several blocks

• future: lets a block match now or later
– done: forces the named block to match

xor {
 branch: …
 branch: …
}

13

Expectation: Aggregate Paths

• Recognizers categorize paths into
sets
• Aggregates make assertions about
sets of paths
– Instances, unique instances,
resource constraints

–Simple math and set operators

assert(instances(CGIRequest) > 4);
assert(max(CPU_TIME, CGIRequest) < 500ms);
assert(max(REAL_TIME, CGIRequest) <=
 3*avg(REAL_TIME, CGIRequest));

14

Results
• Applied Pip to several distributed systems:
–FAB: distributed block store
–SplitStream: DHT-based multicast protocol
–Others: RanSub, Bullet, SWORD,
Oracle of Bacon

• We have found unexpected
 behavior in each system

• We have fixed bugs in some systems
… and used Pip to verify that
the behavior was fixed

15

Conclusions
• Causal paths are a useful abstraction of
distributed system behavior
• Expectations serve as a high-level
description
–Summary of inter-component behavior
and timing

–Regression test for structure and
performance

• Finding unexpected behavior can help us
find bugs
–Both structure and performance bugs

16

