Using Execution Feedback in

Test Case Generation

CMSC 737 — Presentation
Bao Nguyen
baonn@cs.umd.edu

4/14/2008

What's next...

» Test case generation based on execution feedback
» Case study: two recent papers in ICSE’07

* What I’m looking at

» Conclusion

Why Static Plans Are Not Enough?

» Software is so complex:

« Empirical products => Difficult to formalize
« Subjective solutions => Difficult to use

¢ Human actuators => Difficult to manage

« Intelligent products => Difficult to predict

« Dynamic environments => Difficult to address

Hard to predict ahead !!!
Hard to exhaustedly test !

~
Two Strategies
« Static plan
« Category Partition
« Data flow analysis (path, branch, def-use, etc)
« Predicate based: BOR - BRO
=> Try to guess ahead!!!
» Dynamic plan
 Execution information as feedback
* Generating test cases on the fly
~
What's next...
« Test case generation based on execution feedback
(]
(]
<

General Framework

Specmcatlons Required
Qualny Q

Program
Execution Observed —q,@;
Quality

f(e)

Feedback

(Adapted from “Software Cybernetics: Progress and Challenges™ - Aditya P. Mathur)

)

General Framework

Spemflcatlons Required
Quallty Q

Program
Execution Observed —q—_Q:
Quality

f(e)

Feedback

(Adapted from ““Software Cybernetics: Progress and Challenges™ - Aditya P. Mathur)

4/14/2008

General Framework

Spemflcatlons Required
Quallty Q

Program
Execution Observed —q,—Q;
Quality

fe)

Feedback

(Adapted from “Software Cybernetics: Progress and Challenges™ - Aditya P. Mathur)

What's next...

» Case study: two recent papers in ICSE’07
* OOP Testing: Pacheco, et al. “Feedback-Directed Random Test
Generation”

e GUI Testing: Yuan and Memon. “Using GUI Run-Time State as
Feedback to Generate Test Cases”

What's next...

 Case study: two recent papers in ICSE’07
« OOP Testing: Pacheco, et al. “Feedback-Directed Random Test
Generation”
e GUI Testing: Yuan and Memon. “Using GUI Run-Time State as
Feedback to Generate Test Cases™

Using GUI Run-Time State as

Feedback to Generate Test Cases

Xun Yuan and Atif Memon
ICSE’07

Motivations of the paper

* Previous work
e 1-way: Crash Test
o 2-way: Smoke Test

 Longer test cases detected
additional faults

» Unable to run multi-way
test coverage
o 2-way run for months

[TSE’05]
=) Try to prune edge

Key idea

» Use GUI states as feedback to identify
“important” edges
 Called Event Semantic Interaction Edges
» Generate new longer test cases covering those edges

4/14/2008

Event Semantic Interaction

» Heuristic: Two events executed together results differently
than executed in isolation => semantic interaction

<e2> <el; e2>
Drag
-5t &

<
Key idea @(
» Use GUI states as feedback to identify
“important” edges
e Called Event Semantic Interaction Edges
» Generate new longer test cases covering those edges
- o o
<]

Six predicates for modeless windows

Predicate 1:
weW;peP;veV, VeV,

st ((v#V)A (W p,v) e{Syne (S
USRS S e

Predicate 2:
weW,peP;veV,V eV, v' eV,
sl ((v#EV)A (V= V) AW, p, V) € {S,

SSA .) S NIG
e leS):

Predicate 3:
JweW;peP;veV;veV,v'eV;

: (V) A (VYY) AW P, V) € {Sp

S
& (ezz)}])(g gg\)ﬂ)’ P. V) € €(Sg)) A (W, p. V")

(More details refer to “A comprehensive framework for testing graphical user interfaces”

Predicate 4:
IweW,peP;veV,VeV,V' eV,veV,
sl (()v #((v)/\ (v);v)?S(\;}fv) AW, p) v)
W, p, V') & €. AW, p, v
DNk o SRS

Predicate 5:
IweW;pePiveV,VeV,v' eV,
s.t (V& V") Al (w** Sg) A (W, p, V)
s,,ejfsu)e (0. V) € ex(S) A (W, p,
V') € eyley (S

Predicate 6:
3w € W; ENABLED € P; TRUE e V;
FALSE V

s.t: (((w, ENABLED, FALSE) € S
EI)\I)ABLED TRUE) & &,(Sy) A OEXEC(e;

Atif M. Memon.Ph.D. dissertation, 2001)

Three contexts for events wrt windows

» Context 1 : events in modeless window
o Context 2 : events in same modal window
 ex(S): the GUI state after executing
<ex; TERM> x=1, 2
 e2(ex(S)): the GUI state after executing sequence
<e1; e2; TERM>
» Context 3 : events in parent and child modal window
« e1(S): the GUI state after executing <ei; TERM>

« e2(e1(S)): the GUI state after executing sequence
<e1; TERM; e2>

Experiments

« Subject applications: three OSS

* CrosswordSage 0.3.5
¢ FreeMind 0.8.0
¢ GanttProject 2.0.1
* JMSN 0.9.9b2
e Test oracle
« Program crashes

4/14/2008

Result - Test case reduction

Loain-way Irteracton test caso spacal

Ty

99.78% 99.97% 99.99%

Table 1: Percentages of test case reduction

Result - Faults detection

9 -
8 -
=}
s7
N
S5 -
o 4
=}
£3
22-
1
0
CrosswordSage FreeMind GanttProject JMSN
O All-edges Covering Test Cases B 3,4,5-way Covering Test Cases

Lessons learned

» Event handlers are implemented in multiple classes
» Alarge input space is needed

» Crash because the permutations of events

=> Need longer test cases???

Conclusion of this paper

« Contributions
* Anew GUI model for test-case generation
* Anew relationships among GUI events (i.e. context)
* Autilization of GUI state as feedback
* Afully automatic end-to-end GUI testing process
* Ademonstration
e Future work
« Simplify 6 predicates and 3 contexts
« |dentify and classify events dominating ESI
* Minimize number of test cases
« Apply feedback technique to objects outside GUI

What's next...

* What I’'m looking at

What I'm looking at

 Push test case generation and test case execution closer
e Generate new test cases during the execution
o Utilize the feedback immediately

A case study

» Adaptive test oracles: the QoS idea

Oracle
Information =

“Using Transient/Persistent Errors to develop Automated Test Oracles for Event-Driven Software™
Alif M. Memon and Qing Xie. - ASE'04

4/14/2008

Conclusion

« Software is dynamic so we need a dynamic approach
« Using feedback in software testing is feasible
» Somewhat related to control theories
(i.e. software cybernetic)
» Drawback: Like hill climbing
=> local optimization
e Can mutants (like in GA) overcome this?
» Systematically vs. Randomly

Questions
» What does “Event Semantic Interaction” in section 4
mean?

» What are the threats to validity and what are the
weaknesses in Xun’s experiments?

