
4/14/2008

1

CMSC 737 Presentation

Using Execution Feedback in
Test Case Generation

CMSC 737 – Presentation
Bao Nguyen

baonn@cs.umd.edu

Two Strategies
Static plan

Category Partition 
Data flow analysis (path, branch, def-use, etc)
Predicate based: BOR – BRO

=> Try to guess ahead!!!> Try to guess ahead!!!
Dynamic plan

Execution information as feedback
Generating test cases on the fly

What’s next…
Test case generation based on execution feedback
Case study: two recent papers in ICSE’07
What I’m looking at
Conclusion

What’s next…
Test case generation based on execution feedback
Case study: two recent papers in ICSE’07
What I’m looking at
Conclusion

Why Static Plans Are Not Enough?
Software is so complex:

Empirical products => Difficult to formalize
Subjective solutions => Difficult to use
Human actuators => Difficult to manage
Intelligent products      => Difficult to predict
Dynamic environments => Difficult to address

Hard to predict ahead !!!
Hard to exhaustedly test !!!

General Framework
Specifications

Program
Execution -

Required
Quality rQ

Observed
Quality

oQ

oQrQe −=
Test case 
Engine

f(e)
Feedback

(Adapted from “Software Cybernetics: Progress and Challenges” - Aditya P. Mathur )



4/14/2008

2

General Framework
Specifications

Program
Execution -

Required
Quality rQ

Observed
Quality

oQ

oQrQe −=
Test case 
Engine

f(e)
Feedback

(Adapted from “Software Cybernetics: Progress and Challenges” - Aditya P. Mathur )

General Framework
Specifications

Program
Execution -

Required
Quality rQ

Observed
Quality

oQ

oQrQe −=
Test case 
Engine

f(e)
Feedback

(Adapted from “Software Cybernetics: Progress and Challenges” - Aditya P. Mathur )

What’s next…
Execution feedback based test case generation
Case study: two recent papers in ICSE’07

OOP Testing: Pacheco, et al. “Feedback-Directed Random Test 
Generation”
GUI Testing: Yuan and Memon. “Using GUI Run-Time State as 
Feedback to Generate Test Cases”

What I’m looking at
Conclusion

What’s next…
Execution feedback based test case generation
Case study: two recent papers in ICSE’07

OOP Testing: Pacheco, et al. “Feedback-Directed Random Test 
Generation”
GUI Testing: Yuan and Memon. “Using GUI Run-Time State as 
Feedback to Generate Test Cases”

What I’m looking at
Conclusion

Xun Yuan and Atif Memon

Using GUI Run-Time State as 
Feedback to Generate Test Cases

Xun Yuan and Atif Memon
ICSE’07

Motivations of the paper
Previous work

1-way: Crash Test
2-way: Smoke Test

Longer test cases detected 
additional faultsadditional faults
Unable to run multi-way 
test coverage 

2-way run for months 
[TSE’05]

Try to prune edge



4/14/2008

3

Key idea
Use GUI states as feedback to identify     
“important” edges 

Called Event Semantic Interaction Edges
Generate new longer test cases covering those edges

Key idea
Use GUI states as feedback to identify     
“important” edges 

Called Event Semantic Interaction Edges
Generate new longer test cases covering those edges

ESI

ESI

ESI

ESI

ESI

Event Semantic Interaction
Heuristic: Two events executed together results differently 
than executed in isolation => semantic interaction

<e1>
Select Eclipse

<e2>
Drag

<e1; e2>

Six predicates for modeless windows
Predicate 1: 

∃w ∈ W; p ∈ P; v ∈ V; v’ ∈V; 
s.t: ((v ≠ v’) ∧ ((w, p, v) ∈ {S0 ∩ e1(S0) ∩
e2(S0)}) ∧ ((w, p, v’) ∈ e2(e1(S0)))); 

Predicate 2: 
∃w ∈ W; p ∈ P; v ∈ V; v’ ∈V; v’’ ∈V;
s t: ((v ≠ v’) ∧ (v’ ≠ v’’) ∧((w p v) ∈ {S ∩

Predicate 4: 
∃w ∈ W; p ∈ P; v ∈ V; v’ ∈V; v’’ ∈V; v ∈V;
s.t: ((v ≠ v’) ∧ (v ≠ v’’)∧ (v’’ ≠ v ) ∧((w, p, v) 
∈ S0) ∧((w, p, v’) ∈ e1(S0)}) ∧ ((w, p, v’’) ∈
e2(S0)}) ∧((w, p, v) ∈ e2(e1(S0))));

Predicate 5: 
∃w ∈ W; p ∈ P; v ∈ V; v’ ∈V; v’’ ∈V;s.t: ((v ≠ v ) ∧ (v  ≠ v ) ∧((w, p, v) ∈ {S0 ∩

e2(S0)}) ∧ ((w, p, v’) ∈ e1(S0)) ∧ ((w, p, v’’) 
∈ e2(e1(S0)))); 

Predicate 3: 
∃w ∈ W; p ∈ P; v ∈ V; v’ ∈V; v’’ ∈V; 
s.t: ((v ≠ v’) ∧ (v’ ≠ v’’) ∧((w, p, v) ∈ {S0 ∩
e1(S0)}) ∧ ((w, p, v’) ∈ e2(S0)) ∧ ((w, p, v’’) 
∈ e2(e1(S0))));

∃w ∈ W; p ∈ P; v ∈ V; v  ∈V; v  ∈V;
s.t: ((v’ ≠ v’’) ∧(((w, *, *) ∉ S0) ∧ (((w, p, v) 
∈ e1(S0)) ∨ ((w, p, v’) ∈ e2(S0))) ∧ ((w, p, 
v’’) ∈ e2(e1(S0)))); 

Predicate 6:
∃w ∈ W; ENABLED ∈ P; TRUE ∈ V; 
FALSE ∈V; 
s.t: (((w, ENABLED, FALSE) ∈ S0 ) ∧ ((w, 
ENABLED, TRUE) ∈ e1(S0)) ∧ EXEC(e2, 
w));

(More details refer to “A comprehensive framework for testing graphical user interfaces”
Atif M. Memon.Ph.D. dissertation, 2001)

Three contexts for events wrt windows
Context 1 : events in modeless window
Context 2 : events in same modal window

ex(S): the GUI state after executing
<ex; TERM>, x= 1, 2
e2(e1(S)): the GUI state after executing sequence
<e1; e2; TERM>

Context 3 : events in parent and child modal window
e1(S): the GUI state after executing <e1; TERM>
e2(e1(S)): the GUI state after executing sequence  
<e1; TERM; e2>

Experiments
Subject applications: three OSS

CrosswordSage 0.3.5
FreeMind 0.8.0
GanttProject 2.0.1
JMSN 0.9.9b2

T t lTest oracle
Program crashes



4/14/2008

4

Result - Test case reduction

2-way 3-way 4-way 5-way
99.78% 99.97% 99.99%

Table 1: Percentages of test case reduction

Result - Faults detection

6
7
8
9

au
lts

0
1
2
3
4
5
6

CrosswordSage FreeMind GanttProject JMSN

N
um

be
r 

of
 F

All-edges Covering Test Cases 3,4,5-way Covering Test Cases

Lessons learned
Event handlers are implemented in multiple classes
A large input space is needed
Crash because the permutations of events

=> Need longer test cases???

Conclusion of this paper
Contributions

A new GUI model for test-case generation
A new relationships among GUI events (i.e. context)
A utilization of GUI state as feedback
A fully automatic end-to-end GUI testing process
A demonstration 

Future work
Simplify 6 predicates and 3 contexts
Identify and classify events  dominating ESI
Minimize number of test cases
Apply feedback technique to objects outside GUI

What’s next…
Test case generation based on execution feedback
Case study: two recent papers in ICSE’07
What I’m looking at
Conclusion

What I’m looking at
Push test case generation and test case execution closer

Generate new test cases during the execution 
Utilize the feedback immediately



4/14/2008

5

A case study
Adaptive test oracles: the QoS idea

e1 e2 … FIND_NEXT en-1 enTest Case  = 

S0 S1 S2 … Si-1 Si …

…

Sn-1 Sn
Oracle 

Information  = 

“Using Transient/Persistent Errors to develop Automated Test Oracles for Event-Driven Software”
Atif M. Memon and Qing Xie. – ASE’04

Conclusion
Software is dynamic so we need a dynamic approach
Using feedback in software testing is feasible
Somewhat related to control theories
(i.e. software cybernetic)
Drawback: Like hill climbing 
=> local optimization

Can mutants (like in GA) overcome this?
Systematically vs. Randomly

Questions
What does “Event Semantic Interaction” in section 4 
mean?
What are the threats to validity and what are the 
weaknesses in Xun’s experiments?


