Combining Static and Dynamic
Reasoning for Bug Detection

Yannis Smaragdakis and Christoph Csallner

Elnatan Reisner — April 17, 2008

Motivation

Both testing and static analysis are useful
But both have drawbacks

Testing

— Focuses on finding bugs

— Without guidance, many tests will be useless
Static analysis

— Focuses on certifying correctness

— Without guidance, many false warnings

How can we combine these two approaches?

Outline

Thoughts on static vs. dynamic
Language- and user-level
ools: ESC/Java and JCrasher

Making static checking ‘sound for
incorrectness’

Improving this to user-level soundness
Experimental case study

Thoughts on static vs. dynamic

« Somewhat arbitrary distinction

* More relevant dichotomy:

— Try to prove program correct:
« ‘Sound’ here means no undetected errors
« ‘If | say there’s no bug, there’s no bug.’
— Try to find bugs
 ‘Sound’ here means no false alarms
« ‘If | say there’s a bug, there’s a bug.’

* Why prove programs incorrect?

Language- vs. user-level

« But what's a bug?

« Language-level: it is possible for the code to
exhibit the behavior

— Here’s a ‘bug’ that is not language-level sound:
public int getO() {return 0;}

public int meth() {
int[] a = new int[1];
return al[get0()];

}

« User-level: a user might actually encounter the
bug

ESC/Java

‘Extended Static Checker’

Modular checking — context-insensitive
Annotations (similar to JML) aid analysis
— Specify preconditions, postconditions, etc.

Uses Simplify theorem prover to ensure

— No null dereference

— Annotations obeyed

Generates warnings (and counterexample
contexts) when it finds potential bugs

— But it is unsound in both senses

JCrasher

» Generates JUnit tests which crash
program
— Random inputs based on type information
— Tests public methods

» Heuristically classifies exceptions as
invalid test or actual bug

« Warnings are language-level sound (for
incorrectness)

— The program actually crashed!

Check ‘n‘ Crash: language-level
soundness

* |dea: Combine ESC/Java and JCrasher

* Procedure
— Run ESC/Java
— Use warnings to find potential crashing inputs

— Use JCrasher to create and run JUnit test
cases

* Result: Focused testing + language-level
soundness

DSD-Crasher: user-level
soundness

» Heuristic for generating ‘normal’ input

— Run Daikon on an existing test suite

* Finds conditions that code exhibits in all observed
executions

— Use generated invariants as preconditions to
filter ESC/Java warnings

 Limiting inputs to ‘normal’ cases eliminates
user-level unsound bug reports

« Dynamic-Static-Dynamic

Experimental case study

« Compared JCrasher, Check ‘n‘ Crash, and
DSD-Crasher on Groovy (a scripting
language)

Runtime ESC/Java Cenerated Reports confirmed

|min:s| warnings test cases by test cases
JCraszher 1:40 nsa 100 GO 1.6
Checlt 'n" Crash 2:17 51 439 7.0
TISTY- Clrasher 10:31 47 434 4.0

* More bugs found with fewer test cases
— But longer total running time

Conclusions

« Combining static and dynamic techniques
can find more bugs with fewer tests

 Questions:

— What is the time tradeoff in general?

— Is user-level soundness the right goal?
« Security exploits use abnormal inputs

