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Some Basic Definitions

Information Survivability: “The ability of a system to
continue to operate in the presence of faults,
anomalous system behaviour, or malicious attack.”

Fault Injection: “The process of perturbing program
behaviour by corrupting a program state during
program execution.”
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Three Primary Threats to Survivability:

e Software Flaws

— We don’t know where the actual errors are
— Simulate random flaws

e Malicious Attacks

— Subject software to well-known attacks

* Anomalous Behaviour of Third Party Software
— Libraries and COTS components may be flawed
— Simulate component failure



Algorithm

P = Program under analysis
S = State of the system

x = Input value

[ = Location in P

PRED = Security violation predicate (assertion)
for Pand S



Algorithm

1 — Execute P on selected input x

2 — Instrument code to determine each /in P that is exercised by
X.

3 — Determine the outcome of an unperturbed run of P

4 — Alter some variable at location / (inject a fault)

5 — If security predicate (assertion) was violated, record location /
6 — Repeat steps 1-5 until coverage goals met

7 — Use recorded locations in code as basis of further analysis
(code inspection, verification, etc)



FIST (Fault Injection Security Tool)

* Implementation of fault injection analysis
algorithm

s €

* Allows developer to:
— Randomly perturb program states
— Append or truncate strings

— Attempt Buffer Overflows
— Perform other fault injection functions
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FIST

e Miscellaneous Reasons FIST is effective:
— Always attempts to overflow buffers

* Most tools only target specific, vulnerable functions
 StackGuard, Fuzz
— Allows users to specify “security violations” for
individual applications under analysis
* Choose from predefined assertions

* Create your own assertions based on any C expression

— Capable of external assertion monitoring



FIST

* FIST Analysis was performed over a variety of
network service daemons

e Several potentially exploitable locations were
identified

e Security violation identified in WU-FTPD was
later independently discovered and reported
by CERT-CC



IPA (Interface Propagation Analysis)

e Simulates component/subsystem failures

e Start from worst case assumptions, observe
system-wide effects

* Unit performance is unimportant unless it
affects the integrity of the entire system



|PA

IPA uses two fault injection algorithms:

* Propagation From

* Propagation Across



|PA

Propagation From

* Corrupts data exiting a component to observe
the types of system failures that ensue.

* Provides information regarding semantic
interactions between components as a
measure of tolerance



|PA

Propagation Across
* Corrupts data entering a component

e Simulates input failure to gauge component’s
robustness

 Mimic human operator errors, hardware
failures, or failures from other subsystems



Conclusions

* Fault Injection Analysis can be used in an
unconventional way to test survivability in several

different scenarios:

— Software flaws in program source code

— Malicious attacks

— Anomalous behaviour from third party software

* By identifying problem components and
functions automatically, drastically reduce areas
that require manual analysis



Questions?



