
Software Fault Injection for
Survivability

Jeffrey M. Voas & Anup K. Ghosh

Presented by Alison Teoh

Goals of Software Testing

• Correctness

• Reliability

• Usability

• Robustness

• Performance

Goals of Software Testing

• Correctness

• Reliability

• Usability

• Robustness

• Performance

Goals of Software Testing

• Correctness

• Reliability

• Usability

• Robustness

• Performance

Survivability

Outline

• Basic definitions and Testing Technique Overview

• Algorithm for Fault Injection Analysis

• Fault Injection Security Tool (FIST)

• Interface Propagation Analysis (IPA)

• Conclusions

Some Basic Definitions

Information Survivability: “The ability of a system to
continue to operate in the presence of faults,
anomalous system behaviour, or malicious attack.”

Fault Injection: “The process of perturbing program
behaviour by corrupting a program state during
program execution.”

Three Primary Threats to Survivability:

• Software Flaws

• Malicious Attacks

• Anomalous Behaviour of Third Party Software

Three Primary Threats to Survivability:

• Software Flaws

– We don’t know where the actual errors are

– Simulate random flaws

• Malicious Attacks

– Subject software to well-known attacks

• Anomalous Behaviour of Third Party Software

– Libraries and COTS components may be flawed

– Simulate component failure

Algorithm

P = Program under analysis

S = State of the system

x = Input value

l = Location in P

PRED = Security violation predicate (assertion)
for P and S

Algorithm

1 – Execute P on selected input x

2 – Instrument code to determine each l in P that is exercised by
x.

3 – Determine the outcome of an unperturbed run of P

4 – Alter some variable at location l (inject a fault)

5 – If security predicate (assertion) was violated, record location l

6 – Repeat steps 1-5 until coverage goals met

7 – Use recorded locations in code as basis of further analysis
(code inspection, verification, etc)

FIST (Fault Injection Security Tool)

• Implementation of fault injection analysis
algorithm

• C/C++

• Allows developer to:

– Randomly perturb program states

– Append or truncate strings

– Attempt Buffer Overflows

– Perform other fault injection functions

FIST

FIST

• Miscellaneous Reasons FIST is effective:

– Always attempts to overflow buffers

• Most tools only target specific, vulnerable functions

• StackGuard, Fuzz

– Allows users to specify “security violations” for
individual applications under analysis

• Choose from predefined assertions

• Create your own assertions based on any C expression

– Capable of external assertion monitoring

FIST

• FIST Analysis was performed over a variety of
network service daemons

• Several potentially exploitable locations were
identified

• Security violation identified in WU-FTPD was
later independently discovered and reported
by CERT-CC

IPA (Interface Propagation Analysis)

• Simulates component/subsystem failures

• Start from worst case assumptions, observe
system-wide effects

• Unit performance is unimportant unless it
affects the integrity of the entire system

IPA

IPA uses two fault injection algorithms:

• Propagation From

• Propagation Across

IPA

Propagation From

• Corrupts data exiting a component to observe
the types of system failures that ensue.

• Provides information regarding semantic
interactions between components as a
measure of tolerance

IPA

Propagation Across

• Corrupts data entering a component

• Simulates input failure to gauge component’s
robustness

• Mimic human operator errors, hardware
failures, or failures from other subsystems

Conclusions

• Fault Injection Analysis can be used in an
unconventional way to test survivability in several
different scenarios:
– Software flaws in program source code

– Malicious attacks

– Anomalous behaviour from third party software

• By identifying problem components and
functions automatically, drastically reduce areas
that require manual analysis

Questions?

