Software Fault Injection for
Survivability

Jeffrey M. Voas & Anup K. Ghosh

Presented by Alison Teoh

Goals of Software Testing

Correctness
Reliability
Usability
Robustness
Performance

Goals of Software Testing

Correctness
Reliability
Usability
Robustness
Performance

Goals of Software Testing

Correctness
Reliability

Usability / Survivability
Robustness

Performance

Outline

Basic definitions and Testing Technique Overview
Algorithm for Fault Injection Analysis

Fault Injection Security Tool (FIST)

Interface Propagation Analysis (IPA)

Conclusions

Some Basic Definitions

Information Survivability: “The ability of a system to
continue to operate in the presence of faults,
anomalous system behaviour, or malicious attack.”

Fault Injection: “The process of perturbing program
behaviour by corrupting a program state during
program execution.”

Three Primary Threats to Survivability:

e Software Flaws

e Malicious Attacks

* Anomalous Behaviour of Third Party Software

Three Primary Threats to Survivability:

e Software Flaws

— We don’t know where the actual errors are
— Simulate random flaws

e Malicious Attacks

— Subject software to well-known attacks

* Anomalous Behaviour of Third Party Software
— Libraries and COTS components may be flawed
— Simulate component failure

Algorithm

P = Program under analysis
S = State of the system

x = Input value

[= Location in P

PRED = Security violation predicate (assertion)
for Pand S

Algorithm

1 — Execute P on selected input x

2 — Instrument code to determine each /in P that is exercised by
X.

3 — Determine the outcome of an unperturbed run of P

4 — Alter some variable at location / (inject a fault)

5 — If security predicate (assertion) was violated, record location /
6 — Repeat steps 1-5 until coverage goals met

7 — Use recorded locations in code as basis of further analysis
(code inspection, verification, etc)

FIST (Fault Injection Security Tool)

* Implementation of fault injection analysis
algorithm

s €

* Allows developer to:
— Randomly perturb program states
— Append or truncate strings

— Attempt Buffer Overflows
— Perform other fault injection functions

FIST

Fault Injection

Engine — &

* buffer overflow —r
* data corruption

Instmumented

*# string mantpulation
* fault composition

P

System State

Program Inputs

* strings and other vaniables
* gerver commands

* configuration files

* network traftfic

Security Policy
Assertion

Stafistical Collection

Relative Security Metrics

Vulnerability Knowledge

FIST

e Miscellaneous Reasons FIST is effective:
— Always attempts to overflow buffers

* Most tools only target specific, vulnerable functions
 StackGuard, Fuzz
— Allows users to specify “security violations” for
individual applications under analysis
* Choose from predefined assertions

* Create your own assertions based on any C expression

— Capable of external assertion monitoring

FIST

* FIST Analysis was performed over a variety of
network service daemons

e Several potentially exploitable locations were
identified

e Security violation identified in WU-FTPD was
later independently discovered and reported
by CERT-CC

IPA (Interface Propagation Analysis)

e Simulates component/subsystem failures

e Start from worst case assumptions, observe
system-wide effects

* Unit performance is unimportant unless it
affects the integrity of the entire system

|PA

IPA uses two fault injection algorithms:

* Propagation From

* Propagation Across

|PA

Propagation From

* Corrupts data exiting a component to observe
the types of system failures that ensue.

* Provides information regarding semantic
interactions between components as a
measure of tolerance

|PA

Propagation Across
* Corrupts data entering a component

e Simulates input failure to gauge component’s
robustness

 Mimic human operator errors, hardware
failures, or failures from other subsystems

Conclusions

* Fault Injection Analysis can be used in an
unconventional way to test survivability in several

different scenarios:

— Software flaws in program source code

— Malicious attacks

— Anomalous behaviour from third party software

* By identifying problem components and
functions automatically, drastically reduce areas
that require manual analysis

Questions?

