Korat: Automated Testing Based on
Java Predicates

Korat

e Korat is a specification-based automated
testing tool ideal for testing data structures

e Korat generates synthetic test data based on
the method preconditions and assertions
embedded into the data structure

e Korat then runs the test cases and compares
the results against the postconditions

Korat

* Korat uses optimizations to speed up the
generation of test data
— Isomorphic data structures are not generated

— Data structures smaller than a given size are not
generated

— Data structures which are invalid or which violate the
preconditions are predicted and skipped

* Korat can take advantage of existing JML
annotations

» Korat uses Java predicates to define correctness

JML

e Specification language to annotate Java programs
 Method specifications

— Preconditions

— Postconditions

— Member variables modified

— Assertions
e (Class specifications

— Class invariants

— Inheritance of specifications

JML Example

public class BankingExample {

public static final int MAX BALANCE = 1000;
private int balance;

private boolean isLocked = false;
//@ invariant balance >= 0 && balance <= MAX BALANCE;

//@ assignable balance;
//Q@ ensures balance == 0;

public BankingExample() { ... }

//@ requires amount > 0;
//@ ensures balance = \old(balance) + amount;
//@ assignable balance;

public void credit (int amount) { ... }

Source:Wikipedia

Generating synthetic test data

Valid test data is searched by using a state
space search with backtracking.

Search space of data structures may be very
large, but many structures may not be valid.

A finitization is used to limit the size of the
data structures.

The predicate is instrumented to predict
invalid test inputs.

Isomorphic test cases are pruned.

Finitization

* The size of inputs must be limited to make the
state space finite.

* A finitization supplies the legal values for each
attribute in a data structure.

* A finitization will specify the set of objects
that can appear in a data structure, along with
their attributes.

Data structure example

class BinaryTree {

private Node root; // root node

private int size; // number of nodes in the tree
static class Node {

private Node left; // left child

private Node right; // right child

}

public static Finitization finBinaryTree(int NUM_Node) {
Finitization f = new Finitization(BinaryTree.class);
ObjSet nodes = f.createObjects("Node", NUM_Node);
// #Node = NUM_Node

nodes.add(null);

f.set("root", nodes); // root in null + Node

f.set("size", NUM_Node); // size = NUM_Node
f.set("Node.left", nodes); // Node.left in null + Node
f.set("Node.right", nodes); // Node.right in null+ Node
return f;

}

Data structure example

public class HeapArray {
private int size; // number of elements in the heap
private Comparable[] array; // heap elements

public static Finitization finHeapArray(int MAX__size,
int MAX_length,

int MAX_elem) {

Finitization f = new Finitization(HeapArray.class);
// size in [0..MAX_size]

f.set("size", new IntSet(0, MAX_size));
f.set("array",

// array.length in [0..MAX_length]

new IntSet(0, MAX_length),

// array[] in null + Integer([0..MAX_elem])

new IntegerSet(0, MAX_elem).add(null));

return f;

}

State space

* Class domain — a set of objects from one class
(represented by the finitization)

* Field domain — the legal values for a field
(represented by the union of class domains)

* Candidate vector — a vector of field domain
indices for the root object of a data structure
and every object in every class domain

State space example

BinaryTree N0 N1 N2 h 0
root sizZe left right left right left right left-.right
NO|| 3 N1 || N2 null | | mull mull | [oull ' \;1 1}:2'

Figure 11: Candidate input that is a valid BinaryTree.

BinaryTree N0 N1 N2 -~
root size left nght left right left right left 7

& Sright
NOl 3 N1|| N1 mull || mull mull || null N1t ‘N2

Figure 12: Candidate input that is not a valid BinaryTree.

Searching for valid inputs

* Checking every possibility would take too long

e The order of field accesses is monitored to
prune the state space

Searching for valid inputs

public boolean repOk() {

// checks that empty tree has size zero // checks that tree has no cycle
I:>if (root == null) return size == 0; |:>if (!visited.add(current.left))
Set visited = new HashSet(); return false;
visited.add(root); I::>workList.add(current.Ieft);
LinkedList workList = new LinkedList(); }
workList.add(root); I:>if (current.right != null) {
while (!workList.isEmpty()) { // checks that tree has no cycle
Node current = (Node)workList.removeFirst(); if (lvisited.add(current.right))
if (current.left != null) { return false;
BinaryTree NO N1 N2 No
root size left nght left night left nght left
& Sright
WOl 3 N1|| N1 null (| null mull (| null N1 ‘W2
1 2 3 |

Figure 12: Candidate input that is not a valid BinaryTree,

Searching for valid inputs

* Process is similar to depth-first-search

* Optimization depends on order that repOK()
accesses fields

e Efficient repOK() functions will be analyzed
more efficiently.

Nonisomorphism

* Testing multiple isomorphic data structures is
not beneficial

* Two data structures are isomorphic if a
permutation exists between the two that
preserves structure

* |f multiple isomorphic data structures are
possible, the data with the lexicographically
smallest candidate vector is accepted.

Nonisomorphism

e Algorithm: Only allow an index into a given class
domain to exceed previous indices into that
domain by 1.

¢ 123
¢« 182
« 213
¢« 31
« 12
¢« 21

Nonisomorphism

111
112
118
121
122
123
1%1
1% 2
183

Instrumentation

Java code is instrumented so field accesses
can be checked when verifying preconditions.

Instrumentation is added to each object that
will become part of the synthetic test data.

Source code is modified before compilation.
Fields are converted to properties.

Testing methods

 Methods being tested contain an implicit this
parameter to represent the object being
invoked.

* Method parameters are combined into one
helper class, to allow for interdependency
between parameters

 Methods may have multiple behaviors with
their own preconditions.

Testing methods

Korat generates test cases such that the class
invariant and one of the preconditions’
behaviors is satisfied.

Method postconditions are checked after
running the test case

The class invariant on the implicit this
parameter is also checked

Korat uses the JML toolkit to translate JML
constructs to Java predicates.

Structures verified

benchmark s178 time structures | candhdates state
(zec) generated | comsidersd | space

g 153 1430 54418 o=

g 397 4562 210444 252

BinaryTres | 10 1441 16796 815100 2™
11 36.21 58784 3162013 252

12 23359 208012 | 12284830 2oz

[121 13139 64333 ="

HeapArray 7 52 117362 519968 | 2"
8 4261 1003075 5231385 229

8 132 4140 3433 2=

a 358 1147 26635 | 208

LinkedLiast | 10 16.73 115975 142646 | 2120
11 101.75 678570 821235 | 2t8®

12 60000 | 4213597 5034894 | 2!°°

7 8.81 35 256763 2=

Tre=Map 8 00.93 64 2479308 | 211t
9 2148.50 122 | 50209400 | 2t3°

7 31 2384 193200 [2t

g 16.68 9335 908568 | 2'42

HashSet 9 36.71 26687 3004397 | 240
10 208.86 79451 10029045 | 2te°

11 926.71 277387 | 39075006 | 291t

AVTres 5 62.05 598358 1330628 2"

Table 3: Korat’s performance on several benchmarks. All fini-
tization parameters are set to the size value. Time is the elapsed
real time in seconds for the entire generation. State size is
rounded to the nearest smaller exponent of two.

Test performance

benchmark method max. | testcases Tel. test
size | generated | fume tume

EinaryTres remocve 3 13 ues [U3
HeapArray | extractMax b 131549 0.8/ 159
LinkedList reverse 2 & U6/ 0.6
TreeMap put 5 19912 [15619 210
HashSet add] 13106 3.90 1.72
AVTrees lockup - 27754 433 | 1463

The small-scope hypothesis

 “The ‘small scope hypothesis’ argues that a high
proportion of bugs can be found by testing the
program for all test inputs within some smal
scope. In object-oriented programs, a test input is
constructed from objects of different classes; a
test input is within a scope of s if at most s
objects of any given class appear in it. If the
hypothesis holds, it follows that it is more
effective to do systematic testing within a small
scope than to generate fewer test inputs of a
larger scope.”

Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the
small scope hypothesis. submitted for publication.
http://citeseer.ist.psu.edu/623993.html

http://citeseer.ist.psu.edu/623993.html

The small-scope hypothesis

* Experiments have shown that “exhaustive
testing” in a small scope can achieve near-
complete statement and branch coverage.

Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the
small scope hypothesis. submitted for publication.
http://citeseer.ist.psu.edu/623993.html

http://citeseer.ist.psu.edu/623993.html

Related work

* Previous tools have performed automated testing
based on Z specifications, but they did not
construct complex data structures.

* Alloy Analyzer (also from MIT) was similar to
Korat, but it was slow and required the use of a

special modeling language.

* JML+Junit is another automated testing tool that
reads JML annotations. It requires the developer
to supply possible values for each parameter.

The Z specification language

_Array| X]|
array :seq X
max_size : N
bot, top : N
size . N

bot € 1 .. max_size
top € 1.. max_size
size € (.. max_size
#array = max_size
size mod max_size = (top — bot + 1) mod max_size

_Arraying[X]
UpdateArray[X]
x?: X

size < max_size
size’ = size + 1
bhot" = bot
top' = (top mod max_size) + 1
array' = array & [top’ — x?|

ESC/Java?

» Static checker for JML specification violations and
common programming errors

* JML specifications can improve the detection of
common programming errors

Bag.java:21: Warning: Possible negative array index

(IndexNegative)

a[mindex] = al[n];
12: //Q@ requires n >= 1;
13: int extractMin () {

Source: http://kind.ucd.ie/products/opensource/ESClava2/ESCTools/docs/ESCJAVA-UsersManual.html

http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html

Java Pathfinder

Unique combination of testing and static
analysis

Runs methods with generated inputs and tries
to violate assertions

Tries various thread schedules to uncover
deadlocks

Developed and used by NASA

KeY

A static analysis tool using JML

Any JML specification becomes a “proof
obligation”

KeY attempts to prove the correctness of
proof obligations and supplies proofs if
successful

Will not work in many situations

