Security Testing

Eileen Donlon
CMSC 737 Spring 2008

Testing for Security

e Functional tests

— Testing that role based security functions correctly

e Vulnerability scanning and penetration tests

— Testing whether there are any flaws in the
application or configuration that leave the system
vulnerable to attack

Role Based Security

Web Server

A —
B —m
C —m
O —®
E —™

Application Server Database Server
—~
sarviceldentity1 F““———"‘
gp satapprake|
*AppRolzi”, 'EIrlJngF‘:r.r.'.l'l.'I'Il'r.ﬂ] SOl Soreer
Serviceldentity1 -
gp setapproke|
"AppRole?®, "StringPassWirdz2”|
I
Callers mapped o a SQL Permissions based
Application Role based on on Application
(Enterprize Services) role Database Roles
membership [ALrhorization]

Web Vulnerability Scanners Compared
Fonseca, Vieira and Madeira; 2007

Table 2a - MyReferences experimental resulis.

sum of the distinet valnerabilities found by

Scanner 1 Scanner 2 Scanner 3
SCANNELS
SQL SQL SQL

Fault Types Faults | X55 | Imject. | X55 | Imject. | X55 [Imject. A55 S0L Inject. # %o
No Fault Injected (] 0 ! 11 1 12 2 14
MIFS 23 1 1 ! ! 1 1 1 1 2 9%
MEC 26 0 0 0 0 i 0 0 0 0 0%
MFC extended 71 8 5) 16 i 36 20 39 50 | 838
MLAC 48 2 0 0 0 (0 0] 0 2 1%
MIA 35 4 1] 1 1 g 3 10 15 | 27%
MLPC a7 0 0 0 0 () I 0 0 0 0%
MVAE 80 0 0 0 0 (0 0 0 0 0 0%
WLLEC 74 7 3 3 0 a 7 12 15 25%
WVAV 13 0 0 0 0 0 0 0 0 0 0%
MV 8 0 0 ! 0 () 0 0 0 0 0%
MVAV 13 0 0 0 0 0 0 0 0 0 0%
WAEP 1 0 0 0 0 0 0 0 0 0 0%
WEPFV 148 0 13 0 0 (0 12] 19 21 14%

Total (injected) 659 25 33 8 | 19 66 49 83 118 | 18%

Bypass Testing of Web
Applications

Offutt, Wu, Du, and Huang
ISSRE, Nov 2004

Bypass Testing

Bypass client side input validation in order to
create tests for web application robustness
and security

e Allows automated test execution

* Provides access to hidden form fields

SQL Injection Attack

* |nsertion of SQL statements into web applications
in order to force a database to modify the
database in an unintended way, or to return
inappropriate data or to produce an error that
reveals database access information.

— Web forms
— Web services

 Two factors required:

— The SQL statement is run in the context of a user with
sufficient privileges to execute the attack.

— Dynamic SQL

Database Security

Stored Procedures and views can be used to enhance
security because permissions to access a view can be
granted, denied, or revoked, regardless of the set of
permissions to access the underlying table(s).

Stored procedures and views can be used to conceal
the underlying data objects.

By using stored procedures and view, you can limit the
data that is available to a user to a restricted set of the
columns and rows instead of querying the entire table.

This does not apply when you use dynamic SQL!
Dynamic SQL involves checking permissions on all
data objects used in the query.

SQL Injection Attack

HI, THIS 15

YOUR SON' SCHOOL
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY- /
R

Il

DID YOU REALLY
NAME YOUR SON
Robert’); DROP
TABLE Studerts; -~ 7

~(OH.YES UTTE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
T0 SANMZE YOUR
DATABASE INPUTS,

Types of Client Side Validation

e Semantic Validation

e Syntactic Validation

Semantic Input Validation

e Data type conversion

— Convert strings to integers

e Data format validation

— Phone numbers, currency, email addresses

* |nter-value constraints

— Credit card number and expiration date

Syntactic Input Validation

Built-in length restriction

Built-in value restriction
— Pick lists

Built-in transfer mode
— HTTP GET or POST

Built-in data access
— Hidden Form Fields
— Cookies

Syntactic Input Validation

e Built-in field selection
— Pre-defined fields, enabled/disabled

e Built-in control flow restriction
— Action attributes in FORM tags, links

Server Input Validation

Numeric limits

Email addresses

— Username and valid domain

URLSs

— Valid form, exist

Character Patterns

— Regular expressions

Character filters

Illegal Character

Svmbol

Empty String

Commas

Directory paths

Strings starting with for-
ward slash

Strings starting with a
period

Ampersands

&

Control character

NIL. newline

Characters with high bat
set

decimal 254 and 255

XML tag characters

Table 1. Characters that sometimes cause
problems for Web applications

Feasibility Study

Can bypass testing be used successfully to test
real web applications?

 Cyber Chair, paper submission and reviewing
open source web application used by ISSRE

e Black box approach

e Valid user id and access code to enter, saved
web pages and modified for bypass testing

Feasibility Study Results

Submission without authentication
— Changed action from relative url to complete url

Unsafe use of hidden field

— Changed hidden user id field

Disclosing information

— Error messages on removing hidden user id field
No validation for parameter constraint

— Mismatch between actual and specified file types

No data type or value validation
— Negative values, non-integers, etc. as page count

How to do Bypass Testing?

e Static or dynamic web pages

e Possibly multiple forms per page

— Amazon’s web page had 20 forms and 169
hyperlinks

 Bottom line:
— Automated input validation needed
— Facilitated by formal model for html inputs

Model of HTML Input

Input Unit IU = (S, D, T)
S = Server

D = set of ordered pairs (n, v), where n is the
name and v is the set of values that can be
assigned to n

T = Transfer mode (HTTP GET or POST)

Model of HTML Input

Types of U

e Form

e S = Action attribute of Form tag
e D =Form fields
e T=Method attribute of Form tag

e Link
— An anchor
e S = Static html or server program
* D = Query string
e T=GET

Composing Input Units

Redundancy on dynamic pages is eliminated
through 3 composition rules:

1. Identical IlU composition:
e TwolUsiu,= (S, D, T,),iu, = (S,,D,, T,),
are identical IFF S;=S,,D,=D,,and T,= T,

e Two identical IlUs are merged to form one IU
iu= (S, D, T,).

Composing Input Units

2. Optional input element composition:

e TwolUsiu, = (S, Dy, Ty), iu, = (S,, D,, T,),
have optional elementsif S;=S,, T,=T,, and
one input has an element name that is not in
the other.

e The two IUs are merged to form one IU
iu= (S,, D', T,), where D’ ={D, U D,}

Composing Input Units

3. Optional input value composition:

e TwolUsiu, = (S, Dy, Ty), iu, = (S,, D,, T,),
have optional elementsif S;=S,, T,=T,, and
there exists (n,, v,) € D;, (n,, v,) € D, such
that n,=n,, butv,# v,

e The two IUs are merged to form one IU
iu= (S, D', T,), where
D’= {Dl' (n1; V1)} U {Dl - (n21 Vz)} U {(nll (V1 U Vz)}

Bypass Testing

 Value Level

— Addresses data type conversion, data value
validation, and built-in value restriction

— For each input, generate invalid values according
to the 14 types of input validation (client + server)

e Examples
— Modify select to return undefined values
— Violate value length restriction

Bypass Testing

e Parameter Level

— Addresses built-in parameter selection, built-in
data access, and inter-value constraints

— Execute test cases that violate restrictive
relationships among parameters
— Parameter relationships are hard to identify
* |nvalid pair
e Required pair

Parameter Level Bypass Testing

Algorithm: Identifv input patterns of web applications
Input: The start page of a web application, S
Output: Identthable mput patterns

Step 1 : Create a stack ST to retamn all input units that
need to be explored. Imitialize 5T to S. Create a set

IUS to retamn all mput umts that have been 1dents-
fied. Imitialize JU7S to empty.

Step 2 : While 5T 15 not empty, pop an inpur unit (de-
fined in Section 3) from ST, generate data for the
mnput unit and send it to the server. When a reply
15 returned, analyze the HTML content. For each
mnput unit fu-

e if iw 15 a link input unit, and {u does not be-
long to a different server, do not push ¢u onto
the stack.

e ifiu = I0U75 (1t has already been found). do

not push 7u onto the stack.

o if there exists an input unit iu € IS such
that 7u and 7u have optional input elements,
update the possible value of iu. Do not push
i1 onto the stack.

¢ Otherwise. a new mnput pattern has been 1den-
tified; add ¢u to JTU75 as an optional input unit,
and then push ¢u onto 5T,

Parameter Level Bypass Testing

Results of applying the algorithm are:

* Collection of IUs where D = {P,, P,, ..., P\}
and P, ={(n,,v,) ,(n,,v,) ,...(n_,v,) .}. Each
P.is a valid input pattern for the IU.

 Generate invalid input patterns using
values from the set of valid values

e Goal is testing relationships among
parameters

Parameter Level Bypass Testing

Three types of invalid input patterns:
* Empty input pattern
— Submits no data
— Violates all required pairs
* Universal input pattern
— Submits values for all known parameters
— Violates all invalid pairs
e Differential input pattern

— Appropriate values for all parameters in an input
pattern + a value for one parameter not in the input
pattern

Bypass Testing

Third level is Control Flow Bypass Testing

e Execute test cases that break the normal
execution sequence

— Backward and forward control flow alteration

e Reverse the order of a transition between 2 Uls

— Arbitrary control flow alteration

Evaluation

 Small Text Information System (STIS)

— Mysqgl database

— 17 Java server pages, 8 of which process
parameterized requests

3 Response Types:
— Invalid inputs recognized and handled

— Invalid inputs not recognized, abnormal server
behavior handled

— Invalid inputs not recognized, abnormal server
behavior exposed to users

Table 2. Failures found for each dynamic component
I: Value Level, No Parameter or Control
IT: Parameter Level, No Control Level
I1I: Control Level, No Parameter Level
I'V: Parameter Level and Control Level
T = number of tests, F = number of failures

Component I 1II I1I Iy Il Total

T F T F|T FE T F T F
login 15 0] 2 2| nfa /3 17 2
browse 7 41 1 0o]1 1 1 1 10 6
record_edit 17 9 5 211 1 5 5 2 17
record_delete 5 0] 2 0o]1 1 2 2 10 3
record insert 13 9] 3 111 1 i3 20 14
categories 2 21 2 o)1 o} 2 0 17 2
category_edit 13 2| 2 o1 o 2 off 18 2
register_save 25 11 6 3|1 0O 6 6 38 19
Total (Ftests & #failures) | 107 37 |23 8| 7 421 17 || 158 &6

Results

 Only 55 of 158 tests could have been executed
without using bypass testing

— 9 failures (of 66 total) from these 55 tests

Contributions

Introduces Bypass testing

Detailed model for choosing inputs to server
side components

Model supports general input validation
testing, and rules are defined for bypass and
input validation

Empirical results from open source conference
management system and home grown web

dpPPpsS

Conclusions

Bypass testing is a novel technique for web
application test case generation

Approach requires no back end source code,
only what’s received by a browser

Complexity of inputs on dynamically
generated web forms was handled by the
algorithm presented

Future work: automated form analysis and
generation of bypass tests

