
VERTAF: An Application Framework VERTAF: An Application Framework 
for Design and Verification of for Design and Verification of 

Embedded RealEmbedded Real--Time Software Time Software 

PaoPao--Ann Ann HsiungHsiung, , ShangShang--WeiWei
 

Lin, Lin, ChihChih--HaoHao
 

Tseng, Tseng, 
TrongTrong--Yen Lee, Yen Lee, JihJih--Ming Fu and WinMing Fu and Win--Bin SeeBin See



ContentsContents
IntroductionIntroduction
Design and Verification FlowDesign and Verification Flow
--

 
UML ModelingUML Modeling

--
 

RealReal--time Software Schedulingtime Software Scheduling
--

 
Formal VerificationFormal Verification

--
 

Component MappingComponent Mapping
--

 
Code generationCode generation

VERTAF ComponentsVERTAF Components
Experimental ResultsExperimental Results
ConclusionConclusion



IntroductionIntroduction

Available applicationsAvailable applications
--

 
poor integration of functional & non poor integration of functional & non --

 
functional   functional   

requirementsrequirements

New designNew design
--

 
accelerate the realaccelerate the real--time embedded software time embedded software 
constructionconstruction

--
 

component reuse, formal synthesis and formal component reuse, formal synthesis and formal 
verificationverification



Designing an embedded systemDesigning an embedded system

Model the classes requiredModel the classes required
Generate code based on those modelsGenerate code based on those models
For realFor real--time systemstime systems
--temporal constraintstemporal constraints

Formal verificationFormal verification
--performanceperformance
--reliabilityreliability
--time constraintstime constraints



Features of this FrameworkFeatures of this Framework

Formal Modeling:Formal Modeling:
--

 
WellWell--defined UML semanticsdefined UML semantics

Formal Synthesis:Formal Synthesis:
--

 
Guarantees satisfaction of temporal & spatial Guarantees satisfaction of temporal & spatial 

constraintsconstraints

Formal Verification:Formal Verification:
--

 
checks if system satisfies userchecks if system satisfies user--given or systemgiven or system--defined defined 

generic propertiesgeneric properties

Code Generation:Code Generation:
--

 
produce efficient portable codeproduce efficient portable code



Design and Verification FlowDesign and Verification Flow

Software synthesis has two phasesSoftware synthesis has two phases
--

 
frontfront--end phase (end phase (m/cm/c

 
independent)independent)

----

 

UML modeling phaseUML modeling phase
----

 

Scheduling phaseScheduling phase
----

 

Formal verification phaseFormal verification phase

--
 

backback--end phase (end phase (m/cm/c
 

dependent)dependent)

----

 

Component mapping phaseComponent mapping phase
----

 

Code generation phaseCode generation phase





UML ModelingUML Modeling

Class DiagramsClass Diagrams
--

 
introduce the deployment relationshipintroduce the deployment relationship

--
 

two types of classestwo types of classes

software classessoftware classes

------

 

specified from scratch by the designerspecified from scratch by the designer
------

 

reuse a component from the librariesreuse a component from the libraries

hardware classeshardware classes

------

 

Supported hardware componentSupported hardware component



Timed Timed StatechartsStatecharts
Method TypesMethod Types

--
 

eventevent--triggered           triggered           
--

 
timetime--triggeredtriggered

----

 

deadlines, perioddeadlines, period

----

 

start, stop and restartstart, stop and restart



Extended Sequence DiagramsExtended Sequence Diagrams
Used for scheduling different tasks performed by Used for scheduling different tasks performed by 
objectsobjects
Show how a user should use the systemShow how a user should use the system
Added stateAdded state--markers:markers:
--

 
They relate the sequence diagram to the corresponding They relate the sequence diagram to the corresponding 

state in the timed state chartstate in the timed state chart





SchedulingScheduling

Generate Petri nets from UML diagramsGenerate Petri nets from UML diagrams
Algorithms usedAlgorithms used

--
 

Without RTOSWithout RTOS
 

( Quasi Dynamic Scheduling) ( Quasi Dynamic Scheduling) 
----

 
Single realSingle real--time kernel time kernel 

--
 

With RTOS (Extended Quasi Static Scheduling)With RTOS (Extended Quasi Static Scheduling)
----

 
Schedule multiple threadsSchedule multiple threads

VERTAF uses simple RTPN/CCPN models for VERTAF uses simple RTPN/CCPN models for 
scheduling purposes.scheduling purposes.



Petri NetsPetri Nets
Standard Petri Net (N) : <P,T,Standard Petri Net (N) : <P,T,ØØ>>
RTPN: <N,RTPN: <N,χχ,,ππ>>
ππ

 
––

 
indicates period for RTPNindicates period for RTPN

χχ
 

--
 

maps transition to worstmaps transition to worst--case execution time case execution time 
and deadlineand deadline
Temporal constraints that appear in sequence Temporal constraints that appear in sequence 
diagramsdiagrams
--

 
converted into guard constraints on arcs in converted into guard constraints on arcs in 

generated Petri netsgenerated Petri nets



Model based verificationModel based verification
Static Analysis Static Analysis 
--

 
more suitable ( all possible executions)more suitable ( all possible executions)

Model checkingModel checking
--

 
if temporal property is satisfiedif temporal property is satisfied

--
 

else show the counterexampleelse show the counterexample
Verification kernel used :Verification kernel used :

--
 

State Graph Manipulator (SGM)State Graph Manipulator (SGM)
----

 

StateState--graph mergergraph merger
----

 

Dead state checkerDead state checker
----

 

StateState--reduction techniquesreduction techniques

Properties verifiedProperties verified
--

 
Dead states, deadlocks, Dead states, deadlocks, livelockslivelocks



Component Mapping & Code GenerationComponent Mapping & Code Generation

Automatically generate make files, header files Automatically generate make files, header files 
etc.etc.
Main Issue:Main Issue:
--

 

when a software class is not deployed on any specific hardware when a software class is not deployed on any specific hardware 
componentcomponent

Solution :Solution :
--

 

display a list of available compatible device types to the userdisplay a list of available compatible device types to the user

Code generation ( 3Code generation ( 3--tier)tier)
--

 

hardware abstraction layerhardware abstraction layer
--

 

OS with middleware layerOS with middleware layer
--

 

SchedulerScheduler



VERTAF ComponentsVERTAF Components



Experimental ResultsExperimental Results
Two Applications:Two Applications:

--
 

AvionicsAvionics
----

 
24 tasks 24 tasks 

----
 

45 objects were found45 objects were found
--AICC (Autonomous Intelligent Cruise Controller)AICC (Autonomous Intelligent Cruise Controller)

----
 

12 tasks12 tasks
----

 
21 objects were found21 objects were found

Time taken to developTime taken to develop
--

 
Avionics Avionics 

----
 

Without VERTAF : 5 weeksWithout VERTAF : 5 weeks
----

 
Using VERTAF : 1 weekUsing VERTAF : 1 week

--
 

AICCAICC
----

 
Without VERTAF : 20 daysWithout VERTAF : 20 days

----
 

Using VERTAF : 5 daysUsing VERTAF : 5 days



AICC Call GraphAICC Call Graph



ConclusionsConclusions

VERTAF integrates 3 different technologiesVERTAF integrates 3 different technologies
--

 
software component reusesoftware component reuse

--
 

formal synthesisformal synthesis
--

 
formal verificationformal verification

New specification languages can be easily New specification languages can be easily 
integrated into it.integrated into it.
More advanced features like network delay, More advanced features like network delay, 
network protocols will be considered in future network protocols will be considered in future 
workwork



Thank YouThank You


	VERTAF: An Application Framework for Design and Verification of Embedded Real-Time Software 
	Contents
	Introduction
	Designing an embedded system
	Features of this Framework
	Design and Verification Flow
	Slide Number 7
	UML Modeling
	Timed Statecharts
	Extended Sequence Diagrams
	Slide Number 11
	Scheduling
	Petri Nets
	Model based verification
	Component Mapping & Code Generation
	VERTAF Components
	Experimental Results
	AICC Call Graph
	Conclusions
	Thank You

