VERTAF: An Application Framework
for Design and Verification of
Embedded Real-Time Software

Pao-Ann Hsiung, Shang-Wei Lin, Chih-Hao Tseng,
Trong-Yen Lee, Jin-Ming Fu and Win-Bin See

Contents

A [ntroduction

@ Design and Verification Flow

- UML Modeling

- Real-time Software Scheduling
- Formal Verification

- Component Mapping
- Code generation

1 VERTAF Components
1 Experimental Results
1 Conclusion

Introduction

@ Available applications

- poor integration of functional & non - functional
requirements

@ New design

- accelerate the real-time embedded software
construction

- component reuse, formal synthesis and formal
verification

Designing an embedded system

@ Model the classes required
@ Generate code based on those models
3 For real-time systems
-temporal constraints
1 Formal verification

-performance
-reliability
-time constraints

Features of this Framework

@ Formal Modeling:
- Well-defined UML semantics
2 Formal Synthesis:

- Guarantees satisfaction of temporal & spatial
constraints

2 Formal Verification:

- checks if system satisfies user-given or system-defined
generic properties

3 Code Generation:

- produce efficient portable code

Design and Verification Flow

| Software synthesis has two phases
- front-end phase (m/c independent)

-- UML modeling phase

-- Scheduling phase
-- Formal verification phase

- back-end phase (m/c dependent)

-- Component mapping phase
-- Code generation phase

UML Model

Class Diagram
with
Deployments

Extended
Sequence

S

Extended Timed
Automata
Generation

Scheduler

Generation

Display counter-
example in UML
model

A S . T —— 1 1

v

Real-Time
Petri-net Generation

v

Schedulable

P —————— e ———

UML Modeling

A Class Diagrams

- introduce the deployment relationship
- two types of classes

- software classes

--- specified from scratch by the designer
--- reuse a component from the libraries

- hardware classes

--- Supported hardware component

-Control

l set() : bool |

+re
-control ri‘iIlit() : bool :
Hwrite() : bool

Timed Statecharts
@ Method Types

- event-triggered
- time-triggered

-- deadlines, period

-- start, stop and restart

[[result==supervisor]]
[result ==No
Record

/ [record complete]
\
/
/

Extended Sequence Diagrams

® Used for scheduling different tasks performed by
objects

21 Show how a user should use the system
@ Added state-markers:

- They relate the sequence diagram to the corresponding
state in the timed state chart

ser
PushButton SendFirstByte(id)
ResetTimer é
PushNextButton 1
g CleRatfptecst byml)\ [not TimeOut and <4 bytes]: SendNextByte(id)
FsTFimeOut B

[TimeOut]: InputTimeOut

‘11 isTimeU;
P [TimeOut]: ClearDisplay

PushButton ResetTimer

[TimeUp]:SendTimeUpMessage

Send_Checker(id{ pw)

Send_DBMS(id)

11
Send_Contro]lII:r(id, result)

a Cheol 3

e tpwr|
4 - L]

I Show_msg I
| |
result=—Yes]|: |_Actuator(open_sig)

P>

~
[result—Yes]: Smld_[Displny(open_msg)
}

Scheduling

@ Generate Petri nets from UML diagrams
@ Algorithms used
- Without RTOS (Quasi Dynamic Scheduling)

-- Single real-time kernel
- With RTOS (Extended Quasi Static Scheduling)
-- Schedule multiple threads

8 VERTAF uses simple RTPN/CCPN models for
scheduling purposes.

Petri Nets

m Standard Petri Net (N) : <P, T,0>
@ RTPN: <N,x, >
T — indicates period for RTPN

X - maps transition to worst-case execution time
and deadline

@ Temporal constraints that appear in sequence
diagrams

- converted into guard constraints on arcs In
generated Petri nets

Model based verification

| Static Analysis

- more suitable (all possible executions)
31 Model checking

- if temporal property is satisfied

- else show the counterexample
® Verification kernel used :

- State Graph Manipulator (SGM)

-- State-graph merger
-- Dead state checker
-- State-reduction techniques

® Properties verified
- Dead states, deadlocks, livelocks

Component Mapping & Code Generation

@ Automatically generate make files, header files
etc.

Main Issue:

- when a software class is not deployed on any specific hardware
component

3 Solution :
- display a list of available compatible device types to the user
@ Code generation (3-tier)

- hardware abstraction layer

- OS with middleware layer
- Scheduler

VERTAF Components

_ _ o _ _
l 1 . l l

Implanter Modeler Scheduler Verifier Generator

0 <

0

Main
Program

UML HW/SW IP Model TETL Scheduling || Scheduler Model
Editor Libraries Generator Generator Algorithms || Generator Checker

A Class
)\ | ," A }\ $ CounterEg Code

| | Presenter

Embedded
Real-Time OC]“.
Object Models | | Constraints

v

-

A3
==

AN

A

——— ActiveObj
Merger, AGR Code

Model | |Abstractions
Checker Reducers

Extended
Timed
Automata

Real-Time
Petri Nets

Scheduler
Code

=

Experimental Results

2 Two Applications:
- Avionics
-- 24 tasks
-- 45 objects were found
-AICC (Autonomous Intelligent Cruise Controller)
-- 12 tasks
-- 21 objects were found
Time taken to develop
- Avionics
-- Without VERTAF : 5 weeks
-- Using VERTAF : 1 week
- AICC
-- Without VERTAF : 20 days
-- Using VERTAF : 5 days

:| Traffic
Light Info
{| (SRC)

Preceding Vehicle
Estimator

(Distance Sensor)

Distance =

Control

AlICC Call Graph

v

Coordination &

Final Control

g

i Speed
| Limit Info
(SRC)

Speed
Sensor
(EBC)

—»

Green
wave
Control

Switches
Speed Limit || i |
Control :

(Main
Instrument
Controller)

Actuator

Main

Control

Instrument
Controller)

Conclusions

@ VERTAF integrates 3 different technologies

- software component reuse
- formal synthesis
- formal verification

3 New specification languages can be easily
integrated into it.

More advanced features like network delay,
network protocols will be considered in future
work

Thank You

	VERTAF: An Application Framework for Design and Verification of Embedded Real-Time Software
	Contents
	Introduction
	Designing an embedded system
	Features of this Framework
	Design and Verification Flow
	Slide Number 7
	UML Modeling
	Timed Statecharts
	Extended Sequence Diagrams
	Slide Number 11
	Scheduling
	Petri Nets
	Model based verification
	Component Mapping & Code Generation
	VERTAF Components
	Experimental Results
	AICC Call Graph
	Conclusions
	Thank You

