
Reachability testing for
concurrent programs

Yu Lei and Richard Carver
Presented by Thuan Huynh

Overview

• Introduction
• Some existing tools
• Reachability testing

– Concepts
– Algorithm
– Implementation
– Optimizations
– Results

• Conclusion

Concurrent programs

• Multiple non-independent executions
– Multithreaded programs
– Distributed programs

• Very difficult to test
– Non deterministic interleavings/irreproducible

– Difficult to breakdown because problems
come from interactions

Thread1 Thread2 Thread3
t.send(1) t.send(2) x = t.recv()

y = t.recv()
print x - y

Approaches to testing

• Deterministic testing
– Run all possible interleavings (how?)
– Select a subset of interleavings and force execution

to follow

• Non-deterministic testing
– Run repeatedly for some time
– Easy but inefficient, problems may appear at only

extreme conditions at customers’ computers

• Prefix-based testing
– Run test deterministically at the beginning
– Follow by nondeterminstic runs

Model checking/SPIN

• Use a modeling language PROMELA
• Explore all possible states of a program
• Support full LTL logic
• Suffer state explosion problem

– Partial order reduction to relieve the problem

– Use for very critical portion of software
– Verify network protocols

Java PathFinder

• Formal verification tool developed by NASA
Ames Research center

• A more easier to use SPIN
• Explore ALL possible execution paths of a java

program without recompling
– Also visit all possible states of the program
– Check every state for violations of assertions/

/properties/exceptions/deadlocks/livelock
– Has a lot of heuristics and optimization to work with

big programs.

• VeriSoft for C/C++

Concutest-junit

• A concurrency-aware version of junit
developed at Rice University

• Improvements:
– Catch errors in auxiliary threads
– Have new invariants to check threading

related problems
– Can insert delays at critical places
– Can record and playback specific

interleavings

ConTest

• A tool to test concurrent java programs
developed by IBM Haifa Research Lab

• Works without recompiling/new test
– Instruments existing bytecode
– Inserts heuristic sleep() and yield()

instructions to expose problems

– Run multiple times

Reachability testing
(prefix-based testing)

• Concepts
• Algorithm
• Implementations
• Optimizations
• Results

SYN-sequence

• We only care about the order of operations
whose interleavings has effect on
execution
– Sending/receiving data with another thread
– Semaphore/Monitors

• General execution model: send/receive
• SYN-sequence: sequence of

synchronization events
• Aim: execute all possible SYN-sequences

Happen-before relation

• Gives us the order of events, usually partial.
• We can extract these relations by watching an execution
• The unordered events are subjected to testing
• Why vector clock but

not single global clock?
?

?

a

b

c

d

e

f

x

Partial order reduction

…

…
a

b

b

a

a

b1

b1

a

bn

bna

s2

s1
s3

s4

Algorithm (RichTest)

• Run and collect a SYN-sequence s*
• S � {s*}
• Repeat

– Get a sequence s � S

– Runs each variant of s to collect sequences
s1, s2, … sm

– S � {s1, s2,…, sm}

Until S = empty

Example
Thread 1 Thread 2 Thread 3 Thread 4
P2.send(a) x=p2.recv(); u=p3.recv() p2.send(b)

y=p2.recv(); v=p3.recv() p3.send(d);
p3.send(c);

s1 r1

r2

s3 r3

s2

s4

r4

More concepts

• Race condition: A receive() operation may
match with different send()’s

• Race_set(r): all send events that can
possibly be matched with the receive
operation r

Race table

Contains one column for each receive event r that has a
nonempty race_set(r). The numbers in each row represent
• -1: remove r
• 0: no change
• 1..|race_set(r)|: match r to the ith send in race_set(r)

Example
Thread 1 Thread 2 Thread 3 Thread 4
P2.send(a) x=p2.recv(); u=p3.recv() p2.send(b)

y=p2.recv(); v=p3.recv() p3.send(d);
p3.send(c);

s1 r1

r2

s3 r3

s2

s4

r4 11

01

10

r3r1race_set(r1) = {s1,s2}
race_set(r3) = {s3,s4}

Implementation

• Library of synchronization objects:
semaphores, monitors, send, receive

• Control/record the execution using the
library

• No modification to thread scheduler
– Portable to other operating systems and

languages

Optimization

• Aim: Do not visit a SYN-sequence twice
• Keeping a list of visited SYN-sequence is

expensive
• Trick: only include variants that obeys a

specific set of rules. Proven that
– We can still visit all SYN-sequences
– Can start from any SYN-sequence

– Computationally inexpensive to check

Results

Results

Conclusion

• The new method for reachability testing
– Guarantees the execution of every SYN-

seqence exactly once
– Does not require keeping a list of all visited

SYN-sequences

– Outperforms existing partial order reduction
based techniques

– Is platform independent

