
1

1

Design with Reuse

•  Building software from reusable
components

2

Software reuse

•  In most engineering disciplines, systems
are designed by composing existing
components that have been used in other
systems

•  Software engineering has focused on
original development but it is now
recognized that to achieve better
software, more quickly and at lower cost,
we need to adopt a design process that is
based on systematic reuse

2

3 Reuse-based software
engineering

•  Application system reuse
–  The whole of an application system may be

reused either by incorporating it without
change into other systems. COTS (Commercial
Off The Shelf)

•  Component reuse
–  Components of an application from sub-systems

to single objects may be reused
•  Function reuse

–  Software components that implement a single
well-defined function may be reused

4

Reuse practice

•  Application system reuse
–  Widely practiced as software systems are

implemented as application families. COTS
reuse is becoming increasingly common

•  Component reuse
–  Now seen as the key to effective and

widespread reuse through component-based
software engineering. However, it is still
relatively immature

•  Function reuse
–  Common in some application domains (e.g.

engineering) where domain-specific libraries of
reusable functions have been established

3

5

Benefits of reuse

•  Increased reliability
–  Components exercised in working systems

•  Reduced process risk
–  Less uncertainty in development costs

•  Effective use of specialists
–  Reuse components instead of people

•  Standards compliance
–  Embed standards in reusable components

•  Accelerated development
–  Avoid original development and hence speed-up

production

6 Requirements for design with
reuse

•  It must be possible to find
appropriate reusable components

•  The reuser of the component must be
confident that the components will be
reliable and will behave as specified

•  The components must be documented
so that they can be understood and,
where appropriate, modified

4

7

Reuse problems

•  Lack of tool support
•  Not-invented-here syndrome
•  Maintaining a component library
•  Finding and adapting reusable

components

8

Generator-based reuse

•  Program generators involve the reuse of
standard patterns and algorithms

•  These are embedded in the generator and
parameterized by user commands. A
program is then automatically generated

•  Generator-based reuse is possible when
domain abstractions and their mapping to
executable code can be identified

•  A domain specific language is used to
compose and control these abstractions

5

9

Types of program generator

•  Types of program generator
–  Application generators for business data processing
–  Parser and lexical analyser generators for language

processing
–  Code generators in CASE tools

•  Generator-based reuse is very cost-effective but
its applicability is limited to a relatively small
number of application domains

•  It is easier for end-users to develop programs
using generators compared to other component-
based approaches to reuse

10
Reuse through program

generation

Program generator Generated programApplication
description

Application domain
knowledge

Database

6

11

Component-based development

•  Component-based software engineering
(CBSE) is an approach to software
development that relies on reuse

•  It emerged from the failure of object-
oriented development to support effective
reuse. Single object classes are too
detailed and specific

•  Components are more abstract than object
classes and can be considered to be stand-
alone service providers

12

Components

•  Components provide a service without
regard to where the component is
executing or its programming language
–  A component is an independent executable

entity that can be made up of one or more
executable objects

–  The component interface is published and all
interactions are through the published
interface

•  Components can range in size from simple
functions to entire application systems

7

13

Component interfaces

Component Provides interfaceRequires interface

14

Component interfaces

•  Provides interface
–  Defines the services that are provided

by the component to other components
•  Requires interface

–  Specifies what services must be made
available for the component to execute

8

15

Printing services component

Provides interfaceRequires interface

Print

PrintService

GetQueue

Remove

Transfer

Register

Unregister

GetPDfile

PrinterInt

16

Component abstractions

•  Functional abstraction
–  The component implements a single function such as a

mathematical function
•  Casual groupings

–  The component is a collection of loosely related entities
that might be data declarations, functions, etc.

•  Data abstractions
–  The component represents a data abstraction or class in

an object-oriented language
•  Cluster abstractions

–  The component is a group of related classes that work
together

•  System abstraction
–  The component is an entire self-contained system

9

17

CBSE processes

•  Component-based development can be
integrated into a standard software
process by incorporating a reuse activity in
the process

•  However, in reuse-driven development, the
system requirements are modified to
reflect the components that are available

•  CBSE usually involves a prototyping or an
incremental development process with
components being ‘glued together’ using a
scripting language

18

An opportunistic reuse process

The image part with
relationship ID rId3
was not found in the
file.

The image part with
relationship ID rId4
was not found in the
file.

The image part
with relationship
ID rId5 was not
found in the file.

The image part
with
relationship ID
rId6 was not
found in the
file.

The image
part with
relationship ID
rId7 was not
found in the
file.

The image
part with
relationship
ID rId8 was
not found
in the file.

The
image
part with
relationsh
ip ID rId9
was not
found in

The
image
part
with
relation
ship ID
rId10

The
imag
e
part
with
relati

Th
e
im
ag
e

T
h
e

The image part with
relationship ID rId18
was not found in the
file.

The image part with
relationship ID rId19
was not found in the
file.

The image part
with relationship
ID rId20 was not
found in the file.

The image part
with relationship
ID rId21 was not
found in the file.

The image
part with
relationship ID
rId22 was not
found in the
file.

The image
part with
relationship
ID rId23
was not
found in the
file.

The
image
part with
relationsh
ip ID
rId24 was
not found

The
image
part
with
relation
ship ID
rId25

The
imag
e
part
with
relati

Th
e
im
ag
e

T
h
e

The image part with
relationship ID rId33
was not found in the
file.

The image part with
relationship ID rId34
was not found in the
file.

The image part
with relationship
ID rId35 was not
found in the file.

The image part
with relationship
ID rId36 was not
found in the file.

The image
part with
relationship ID
rId37 was not
found in the
file.

The image
part with
relationship
ID rId38
was not
found in the
file.

The
image
part with
relationsh
ip ID
rId39 was
not found

The
image
part
with
relation
ship ID
rId40

The
imag
e
part
with
relati

Th
e
im
ag
e

T
h
e

The image part with
relationship ID rId48
was not found in the
file.

The image part with
relationship ID rId49
was not found in the
file.

The image part
with relationship
ID rId50 was not
found in the file.

The image part
with relationship
ID rId51 was not
found in the file.

The image
part with
relationship ID
rId52 was not
found in the
file.

The image
part with
relationship
ID rId53
was not
found in the
file.

The
image
part with
relationsh
ip ID
rId54 was
not found

The
image
part
with
relation
ship ID
rId55

The
imag
e
part
with
relati

Th
e
im
ag
e

T
h
e

D e s i g n
s y s t e m

a r c h i t e c t u r e
S p e c i f y

c o m p o n e n t s
S e a r c h f o r
r e u s a b l e

c o m p o n e n t s

I n c o r p o r a t e
d i s c o v e r e d
c o m p o n e n t s

10

19

Development with reuse

Search for
reusable

components

Outline
system

requirements

Modify requirements
according to
discovered

components

Search for
reusable

components

Architectural
design

Specify system
components

based on reusable
components

20

CBSE problems

•  Component incompatibilities may mean that
cost and schedule savings are less than
expected

•  Finding and understanding components
•  Managing evolution as requirements change

in situations where it may be impossible to
change the system components

11

21

COTS product reuse

•  COTS - Commercial Off-The-Shelf
systems

•  COTS systems are usually complete
application systems that offer an API
(Application Programming Interface)

•  Building large systems by integrating COTS
systems is now a viable development
strategy for some types of system such as
E-commerce systems

22

COTS system integration problems
•  Lack of control over functionality and

performance
–  COTS systems may be less effective than they appear

•  Problems with COTS system inter-operability
–  Different COTS systems may make different

assumptions that means integration is difficult
•  No control over system evolution

–  COTS vendors not system users control evolution
•  Support from COTS vendors

–  COTS vendors may not offer support over the lifetime
of the product

12

23

Component development for reuse
•  Components for reuse may be specially

constructed by generalizing existing components
•  Component reusability

–  Should reflect stable domain abstractions
–  Should hide state representation
–  Should be as independent as possible
–  Should publish exceptions through the component

interface
•  There is a trade-off between reusability and

usability.
–  The more general the interface, the greater the

reusability but it is then more complex and hence less
usable

24

Reusable components

•  The development cost of reusable
components is higher than the cost of
specific equivalents. This extra reusability
enhancement cost should be an
organization rather than a project cost

•  Generic components may be less
space-efficient and may have longer
execution times than their specific
equivalents

13

25

Reusability enhancement

•  Name generalization
–  Names in a component may be modified so that they are

not a direct reflection of a specific application entity
•  Operation generalization

–  Operations may be added to provide extra functionality
and application specific operations may be removed

•  Exception generalization
–  Application specific exceptions are removed and

exception management added to increase the robustness
of the component

•  Component certification
–  Component is certified as reusable

26

Reusability enhancement process

Name
generalization

Operation
generalization

Exception
generalization

Component
certification

Reusable
component

Initial
component

14

27

Application families

•  An application family or product line is a
related set of applications that has a
common, domain-specific architecture

•  The common core of the application family
is reused each time a new application is
required

•  Each specific application is specialized in
some way

28

Application family specialization

•  Platform specialization
–  Different versions of the application are

developed for different platforms
•  Configuration specialization

–  Different versions of the application are
created to handle different peripheral devices

•  Functional specialization
–  Different versions of the application are

created for customers with different
requirements

15

29

A resource management system

Resource database

Resource desc. Screen spec. Report spec.

Add Delete Query Browse Admin Report

User access Program access

30

Inventory management systems

•  Resource database
–  Maintains details of the things that are being

managed
•  I/O descriptions

–  Describes the structures in the resource
database and input and output formats that are
used

•  Query level
–  Provides functions implementing queries over

the resources
•  Access interfaces

–  A user interface and an application
programming interface

16

31

Application family architectures

•  Architectures must be structured in such a
way to separate different sub-systems and
to allow them to be modified

•  The architecture should also separate
entities and their descriptions and the
higher levels in the system access entities
through descriptions rather than directly

32

A library system

Library holdings database

Resource desc. Screen spec. Report spec.

Add Delete Query Browse Admin Report

Library user access

Issue Return Users

17

33

Testing Issues

•  Components
–  Code may not be available

•  Unit test the component
– What does it mean to test a component

•  Integration testing
–  In the context

