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Design with Reuse 

•  Building software from reusable 
components 
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Software reuse 

•  In most engineering disciplines, systems 
are designed by composing existing 
components that have been used in other 
systems 

•  Software engineering has focused on 
original development but it is now 
recognized that to achieve better 
software, more quickly and at lower cost, 
we need to adopt a design process that is 
based on systematic reuse 
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3 Reuse-based software 
engineering 

•  Application system reuse 
–  The whole of an application system may be 

reused either by incorporating it without 
change into other systems. COTS (Commercial 
Off The Shelf) 

•  Component reuse 
–  Components of an application from sub-systems 

to single objects may be reused 
•  Function reuse 

–  Software components that implement a single 
well-defined function may be reused 
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Reuse practice 

•  Application system reuse 
–  Widely practiced as software systems are 

implemented as application families. COTS 
reuse is becoming increasingly common 

•  Component reuse 
–  Now seen as the key to effective and 

widespread reuse through component-based 
software engineering. However, it is still 
relatively immature 

•  Function reuse 
–  Common in some application domains (e.g. 

engineering) where domain-specific libraries of 
reusable functions have been established 
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Benefits of reuse 

•  Increased reliability 
–  Components exercised in working systems 

•  Reduced process risk 
–  Less uncertainty in development costs 

•  Effective use of specialists 
–  Reuse components instead of people 

•  Standards compliance 
–  Embed standards in reusable components 

•  Accelerated development 
–  Avoid original development and hence speed-up 

production 

6 Requirements for design with 
reuse 

•  It must be possible to find 
appropriate reusable components 

•  The reuser of the component must be 
confident that the components will be 
reliable and will behave as specified 

•  The components must be documented 
so that they can be understood and, 
where appropriate, modified 
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Reuse problems 

•  Lack of tool support 
•  Not-invented-here syndrome 
•  Maintaining a component library 
•  Finding and adapting reusable 

components 
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Generator-based reuse 

•  Program generators involve the reuse of  
standard patterns and algorithms 

•  These are embedded in the generator and  
parameterized by user commands. A 
program is then automatically generated 

•  Generator-based reuse is possible when 
domain abstractions and their mapping to 
executable code can be identified 

•  A domain specific language is used to 
compose and control these abstractions 
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Types of program generator 

•  Types of program generator 
–  Application generators for business data processing 
–  Parser and lexical analyser generators for language 

processing 
–  Code generators in CASE tools 

•  Generator-based reuse is very cost-effective but 
its applicability is limited to a relatively small 
number of application domains 

•  It is easier for end-users to develop programs 
using generators compared to other component-
based approaches to reuse 

10 
Reuse through program 

generation 

Program generator Generated programApplication
description

Application domain
knowledge

Database
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Component-based development 

•  Component-based software engineering 
(CBSE) is an approach to software 
development that relies on reuse 

•  It emerged from the failure of object-
oriented development to support effective 
reuse. Single object classes are too 
detailed and specific 

•  Components are more abstract than object 
classes and can be considered to be stand-
alone service providers 
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Components 

•  Components provide a service without 
regard to where the component is 
executing or its programming language 
–  A component is an independent executable 

entity that can be made up of one or more 
executable objects 

–  The component interface is published and all 
interactions are through the published 
interface 

•  Components can range in size from simple 
functions to entire application systems 
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Component interfaces 

Component Provides interfaceRequires interface
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Component interfaces 

•  Provides interface 
–  Defines the services that are provided 

by the component to other components 
•  Requires interface 

–  Specifies what services must be made 
available for the component to execute 
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Printing services component 

Provides interfaceRequires interface

Print

PrintService

GetQueue

Remove

Transfer

Register

Unregister

GetPDfile

PrinterInt
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Component abstractions 

•  Functional abstraction  
–  The component implements a single function such as a 

mathematical function 
•  Casual groupings  

–  The component is a collection of loosely related entities 
that might be data declarations, functions, etc. 

•  Data abstractions  
–  The component represents a data abstraction or class in 

an object-oriented language 
•  Cluster abstractions  

–  The component is a group of related classes that work 
together 

•  System abstraction  
–  The component is an entire self-contained system 
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CBSE processes 

•  Component-based development can be 
integrated into a standard software 
process by incorporating a reuse activity in 
the process 

•  However, in reuse-driven development, the 
system requirements are modified to 
reflect the components that are available 

•  CBSE usually involves a prototyping or an 
incremental development process with 
components being ‘glued together’ using a 
scripting language  
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An opportunistic reuse process 
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Development with reuse 
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CBSE problems 

•  Component incompatibilities may mean that 
cost and schedule savings are less than 
expected 

•  Finding and understanding components 
•  Managing evolution as requirements change 

in situations where it may be impossible to 
change the system components 
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COTS product reuse 

•  COTS - Commercial Off-The-Shelf 
systems 

•  COTS systems are usually complete 
application systems that offer an API 
(Application Programming Interface) 

•  Building large systems by integrating COTS 
systems is now a viable development 
strategy for some types of system such as 
E-commerce systems 
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COTS system integration problems 
•  Lack of control over functionality and 

performance 
–  COTS systems may be less effective than they appear 

•  Problems with COTS system inter-operability 
–  Different COTS systems may make different 

assumptions that means integration is difficult 
•  No control over system evolution 

–  COTS vendors not system users control evolution 
•  Support from COTS vendors 

–  COTS vendors may not offer support  over the lifetime 
of the product 
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Component development for reuse 
•  Components for reuse may be specially 

constructed by generalizing existing components 
•  Component reusability 

–  Should reflect stable domain abstractions 
–  Should hide state representation 
–  Should be as independent as possible 
–  Should publish exceptions through the component 

interface 
•  There is a trade-off between reusability and 

usability. 
–  The more general the interface, the greater the 

reusability but it is then more complex and hence less 
usable 
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Reusable components 

•  The development cost of reusable 
components is higher than the cost of 
specific equivalents. This extra reusability 
enhancement cost should be an 
organization rather than a project cost 

•  Generic components may be less  
space-efficient and may have longer 
execution times than their specific 
equivalents 
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Reusability enhancement 

•  Name generalization 
–  Names in a component may be modified so that they are 

not a direct reflection of a specific application entity 
•  Operation generalization 

–  Operations may be added to provide extra functionality 
and application specific operations may be removed 

•  Exception generalization   
–  Application specific exceptions are removed and 

exception management added to increase the robustness 
of the component 

•  Component certification 
–  Component is certified as reusable 
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Reusability enhancement process 
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Application families 

•  An application family or product line is a 
related set of applications that has a 
common, domain-specific architecture 

•  The common core of the application family 
is reused each time a new application is 
required 

•  Each specific application is specialized in 
some way 
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Application family specialization 

•  Platform specialization 
–  Different versions of the application are 

developed for different platforms 
•  Configuration specialization 

–  Different versions of the application are 
created to handle different peripheral devices 

•  Functional specialization 
–  Different versions of the application are 

created for customers with different 
requirements 
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A resource management system 

Resource database

Resource desc. Screen spec. Report spec.

Add Delete Query Browse Admin Report

User  access Program access
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Inventory management systems 

•  Resource database 
–  Maintains details of the things that are being 

managed 
•  I/O descriptions 

–  Describes the structures in the resource 
database and input and output formats that are 
used 

•  Query level 
–  Provides functions implementing queries over 

the resources 
•  Access interfaces 

–  A user interface and an application 
programming interface 
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Application family architectures 

•  Architectures must be structured in such a 
way to separate different sub-systems and 
to allow them to be modified 

•  The architecture should also separate 
entities and their descriptions and the 
higher levels in the system access entities 
through descriptions rather than directly 
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A library system 

Library holdings database

Resource desc. Screen spec. Report spec.

Add Delete Query Browse Admin Report

Library user  access

Issue Return Users
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Testing Issues 

•  Components 
–  Code may not be available 

•  Unit test the component 
– What does it mean to test a component 

•  Integration testing 
–  In the context 


