
1

Architectural Design

•Establishing the overall
structure of a software
system

Objectives
• To introduce architectural design and to

discuss its importance
• To explain why multiple models are

required to document a software
architecture

• To describe types of architectural
models that may be used

• To discuss how domain-specific reference
models may be used as a basis for
product-lines and to compare software
architectures

Topics covered
• System structuring

• Control models

• Modular decomposition

• Domain-specific architectures

What is software architecture?

• The design process for identifying
the sub-systems making up a
system and the framework for sub-
system control and communication is
called architectural design

• The output of this design process is
a description of the software
architecture

2

Architectural design
• An early stage of the system design
process

• Represents the link between
specification and design processes

• Often carried out in parallel with
some specification activities

• It involves identifying major system
components and their
communications

Advantages of explicit
architecture

• Stakeholder communication
– Architecture may be used as a focus
of discussion by system stakeholders

• System analysis
– Means that analysis of whether the
system can meet its non-functional
requirements is possible

• Large-scale reuse
– The architecture may be reusable
across a range of systems

Architectural design process
• System structuring

– The system is decomposed into several
principal sub-systems and communications
between these sub-systems are identified

• Control modelling
– A model of the control relationships between

the different parts of the system is
established

• Modular decomposition
– The identified sub-systems are decomposed

into modules

Sub-systems and modules
• A sub-system is a system in its own
right whose operation is
independent of the services
provided by other sub-systems

• A module is a system component
that provides services to other
components but would not normally
be considered as a separate system

3

Architectural models
• Different architectural models may
be produced during the design
process

• Each model presents different
perspectives on the architecture

Architectural models

• Static structural model
– shows the major system components

• Dynamic process model
– shows the process structure of the
system

• Interface model
– defines sub-system interfaces

• Relationships model
– E.g., data-flow model

Architectural styles

• The architectural model of a
system may conform to a generic
architectural model or style

• An awareness of these styles can
simplify the problem of defining
system architectures

• However, most large systems are
heterogeneous and do not follow a
single architectural style

Architecture attributes

• Performance
– Localize operations to minimize sub-system

communication

• Security
– Use a layered architecture with critical

assets in inner layers

• Safety
– Isolate safety-critical components

• Availability
– Include redundant components in the

architecture

• Maintainability
– Use fine-grain, self-contained components

4

System structuring
• Concerned with decomposing the
system into interacting sub-systems

• The architectural design is normally
expressed as a block diagram
presenting an overview of the
system structure

• More specific models showing how
sub-systems share data, are
distributed and interface with each
other may also be developed

Packing robot control system
Vision
system

Object
identification

system

Conveyor
controller

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

The repository model
• Sub-systems must exchange data. This

may be done in two ways:
– Shared data is held in a central database or

repository and may be accessed by all sub-
systems

– Each sub-system maintains its own database
and passes data explicitly to other sub-
systems

• When large amounts of data are to be
shared, the repository model of sharing
is most commonly used

CASE toolset architecture

Design
Editor

Code
Generator

Design
Translator

Program
Editor

Design
Analyzer

Report
Generator

Project
Repository

5

Repository model
characteristics

• Advantages
– Efficient way to share large amounts of data

– Sub-systems need not be concerned with how
data is managed

– Centralized management e.g. backup,
security, etc.

• Disadvantages
– Sub-systems must agree on a repository data

model. Inevitably a compromise

– Data evolution is difficult and expensive

– Difficult to distribute efficiently

Client-server architecture
• Distributed system model which shows

how data and processing is distributed
across a range of components

• Set of stand-alone servers which provide
specific services such as printing, data
management, etc.

• Set of clients which call on these
services

• Network which allows clients to access
servers

Film and picture library

Client 1

Catalog
server

Catalog

Client 2

Video
server

Film clip
files

Client 3

Picture
server

Digitized
photographs

Client 4

Hypertext
server

Hypertext
web

Wide-bandwidth Network

Client-server characteristics
• Advantages

– Distribution of data is straightforward
– Makes effective use of networked systems.

May require cheaper hardware
– Easy to add new servers or upgrade existing

servers

• Disadvantages
– No shared data model so sub-systems use

different data organization
– Data interchange may be inefficient
– Redundant management in each server
– No central register of names and services -

it may be difficult to find out what servers
and services are available

6

Abstract machine model
• Used to model the interfacing of sub-

systems
• Organizes the system into a set of

layers (or abstract machines) each of
which provide a set of services

• Supports the incremental development of
sub-systems in different layers. When a
layer interface changes, only the
adjacent layer is affected

• However, often difficult to structure
systems in this way

Version management system

Version management

Object management

Database system

Operating system

Control models
• Are concerned with the control flow

between sub-systems. Distinct from the
system decomposition model

• Centralized control
– One sub-system has overall responsibility for

control and starts and stops other sub-
systems

• Event-based control
– Each sub-system can respond to externally

generated events from other sub-systems or
the system’s environment

Centralized control
• A control sub-system takes responsibility

for managing the execution of other
sub-systems

• Call-return model
– Top-down subroutine model where control

starts at the top of a subroutine hierarchy
and moves downwards. Applicable to
sequential systems

• Manager model
– One system component controls the stopping,

starting and coordination of other system
processes. Can be implemented in sequential
systems as a case statement. Applicable to
concurrent systems.

7

Call-return model
Main

Program

Routine
1.1

Routine
1.2

Routine
2.1

Routine
3.1

Routine
3.2

Routine
1

Routine
2

Routine
3

Motor
processes

Motor
processes

Motor
processes

Motor
processes

Motor
processes

Motor
processes

Motor
processes

Motor
processes

Motor
processes

Real-time system control

System
controller

User
interface

Fault
handler

Computation
processes

Sensor
processes

Motor
processes

Event-driven systems
• Driven by externally generated events

• Two principal event-driven models
– Broadcast models. An event is broadcast to

all sub-systems. Any sub-system that can
handle the event may do so

– Interrupt-driven models. Used in real-time
systems where interrupts are detected by an
interrupt handler and passed to some other
component for processing

• Other event driven models include
spreadsheets and production systems

Broadcast model
• Effective in integrating sub-systems on

different computers in a network
• Sub-systems register an interest in

specific events. When these occur,
control is transferred to the sub-system
that can handle the event

• Control policy is not embedded in the
event and message handler. Sub-systems
decide on events of interest to them

• However, sub-systems don’t know if or
when an event will be handled

8

Selective broadcasting

Sub-system
1

Sub-system
2

Sub-system
3

Sub-system
4

Event and message handler

Interrupt-driven systems
• Used in real-time systems where fast

response to an event is essential

• There are known interrupt types with a
handler defined for each type

• Each type is associated with a memory
location and a hardware switch causes
transfer to its handler

• Allows fast response but complex to
program and difficult to validate

Interrupt-driven control
Interrupts

Handler
1

Process
1

Handler
2

Process
2

Handler
3

Process
3

Handler
4

Process
4

Interrupt
vector

Modular decomposition
• Another structural level where sub-

systems are decomposed into modules
• Two modular decomposition models

– An object model where the system is
decomposed into interacting objects

– A data-flow model where the system is
decomposed into functional modules that
transform inputs to outputs. Also known as
the pipeline model

• If possible, decisions about concurrency
should be delayed until modules are
implemented

9

Object models
• Structure the system into a set of

loosely coupled objects with well-defined
interfaces

• Object-oriented decomposition is
concerned with identifying object
classes, their attributes and operations

• When implemented, objects are created
from these classes and some control
model used to coordinate object
operations

Invoice processing system

Customer

Customer #
Name
Address
Credit period

Payment

Invoice #
Date
Amount
Customer #

Receipt

Invoice #
Date
Amount
Customer #

Invoice

Invoice #
Date
Amount
Customer #

Issue()
sendReminder()
acceptPayment()
sendReciept()

Data-flow models
• Functional transformations process their

inputs to produce outputs
• May be referred to as a pipe and filter

model (as in UNIX shell)
• Variants of this approach are very

common. When transformations are
sequential, this is a batch sequential
model that is extensively used in data
processing systems

• Not really suitable for interactive
systems

Invoice processing system

Receipts

Read issued
invoices

Identify
payments

Issue
receipts

Invoices Payments

Find
payments

due

Issue
payment
reminder

Reminders

10

Domain-specific architectures
• Architectural models that are specific to

some application domain
• Two types of domain-specific models

– Generic models that are abstractions of a
number of real systems and that encapsulate
the principal characteristics of these systems

– Reference models that are more abstract,
idealized models. Provide a means of
information about that class of system and
of comparing different architectures

• Generic models are usually bottom-up
models; Reference models are top-down
models

Generic models
• Compiler model is a well-known example

although other models exist in more
specialized application domains
– Lexical analyser
– Symbol table
– Syntax analyser
– Syntax tree
– Semantic analyser
– Code generator

• Generic compiler model may be organized
according to different architectural
models

Compiler model

Symbol
table

Lexical
analysis

Static
analysis

Semantic
analysis

Code
Generation

Reference architectures
• Reference models are derived from
a study of the application domain
rather than from existing systems

• May be used as a basis for system
implementation or to compare
different systems. It acts as a
standard against which systems can
be evaluated

• OSI model is a layered model for
communication systems

11

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI reference model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Communications medium

7

6

5

4

3

2

1

Object-oriented Design

Designing systems using
self-contained objects
and object classes

Characteristics of OOD
• Objects are abstractions of real-world

entities

• Objects are independent and encapsulate
state and representation information

• System functionality is expressed in
terms of object services

• Shared data areas are eliminated

• Objects communicate by message passing

• Objects may be distributed and may
execute sequentially or in parallel

Interacting objects

Obj1: Class1

State Obj1

Ops1()

Obj3: Class3

State Obj3

Ops3()

Obj4: Class4

State Obj4

Ops4()

Obj2: Class3

State Obj2

Ops3()

Obj6: Class1

State Obj6

Ops1()

Obj5: Class5

State Obj5

Ops5()

12

Advantages of OOD
• Easier maintenance. Objects may
be understood as stand-alone
entities

• Objects are appropriate reusable
components

• For some systems, there may be an
obvious mapping from real world
entities to system objects

Object-oriented development
• Object-oriented analysis, design and

programming are related but distinct

• OOA is concerned with developing an
object model of the application domain

• OOD is concerned with developing an
object-oriented system model to
implement requirements

• OOP is concerned with realizing an OOD
using an OO programming language such
as Java or C++

Objects and object classes
• Objects are entities in a software
system that represent instances of
real-world and system entities

• Object classes are templates for
objects. They may be used to
create objects

• Object classes may inherit
attributes and services from other
object classes

Objects
An object is an entity that has a state and a defined set of

operations which operate on that state. The state is

represented as a set of object attributes. The operations

associated with the object provide services to other

objects (clients) which request these services when some

computation is required.

Objects are created according to some object class

definition. An object class definition serves as a template

for objects. It includes declarations of all the attributes

and services which should be associated with an object of

that class.

13

The Unified Modelling Language

• Several different notations for
describing object-oriented designs were
proposed in the 1980s and 1990s

• The Unified Modelling Language is an
integration of these notations

• It describes notations for a number of
different models that may be produced
during OO analysis and design

• It is now a de facto standard for OO
modelling

Employee object class (UML)
Employee

Name: string
Address: string
dateOfBirth: Date
employeeNo: integer
socialSecuriyNo: string
Department: Dept
Manager: Employee
Salary: integer
Status: {current,left, retired}
taxCode: integer

Join()
Leave()
retire()
changeDetails()

Object communication
• Conceptually, objects communicate using

messages
• Messages

– The name of the service requested by the
calling object

– Copies of the information required to execute
the service and the name of a holder for the
result of the service

• In practice, messages are often
implemented by procedure calls
– Name = procedure name.
– Information = parameter list.

Message examples

//Call a method associated with a buffer
//object that returns the next value
//in the buffer

v = circularBuffer.Get() ;

//Call the method associated with a
//thermostat object that sets the
//temperature to be maintained

thermostat.setTemp (20) ;

14

Generalization and inheritance
• Objects are members of classes that

define attribute types and operations
• Classes may be arranged in a class

hierarchy where one class (a super-class)
is a generalization of one or more other
classes (sub-classes)

• A sub-class inherits the attributes and
operations from its super class and may
add new methods or attributes of its
own

• Generalization in the UML is implemented
as inheritance in OO programming
languages

A generalization hierarchy

Manager

budgetsControlled
dateAppointed

Programmer

project
progLanguage

Project
Manager

projects

Department
Manager

department

Strategic
Manager

responsibilities

Employee

Advantages of inheritance
• It is an abstraction mechanism that
may be used to classify entities

• It is a reuse mechanism at both
the design and the programming
level

• The inheritance graph is a source
of organizational knowledge about
domains and systems

Problems with inheritance
• Object classes are not self-
contained. they cannot be
understood without reference to
their super-classes

• Designers have a tendency to reuse
the inheritance graph created
during analysis. Can lead to
significant inefficiency

15

Inheritance and OOD
• There are differing views as to whether

inheritance is fundamental to OOD.
– View 1. Identifying the inheritance hierarchy

or network is a fundamental part of object-
oriented design. Obviously this can only be
implemented using an OOPL.

– View 2. Inheritance is a useful
implementation concept which allows reuse of
attribute and operation definitions.
Identifying an inheritance hierarchy at the
design stage places unnecessary restrictions
on the implementation

• Inheritance introduces complexity that is
undesirable, especially in critical systems

UML associations

• Objects and object classes participate in
relationships with other objects and
object classes

• In the UML, a generalized relationship is
indicated by an association

• Associations may be annotated with
information that describes the
association

• Associations are general but may indicate
that an attribute of an object is an
associated object or that a method
relies on an associated object

An association model

Employee Department

Manager

is-member-of

is-managed-by

manages

Concurrent objects
• The nature of objects as self-
contained entities make them
suitable for concurrent
implementation

• The message-passing model of
object communication can be
implemented directly if objects are
executing on separate processors in
a distributed system

16

Servers and active objects

• Servers
– The object is implemented as a parallel

process (server) with entry points
corresponding to object operations. If no
calls are made to it, the object suspends
itself and waits for further requests for
service

• Active objects
– Objects are implemented as parallel

processes and the internal object state may
be changed by
• the object itself, and
• external calls

Active objects
• Active objects may have their attributes

modified by operations but may also
update them autonomously using internal
operations

• Example
– Transponder object broadcasts an aircraft’s

position. The position may be updated using a
satellite positioning system. The object
periodically update the position by
triangulation from satellites

An active transponder object
class Transponder extends Thread {

Position currentPosition ;

Coords c1, c2 ;

Satellite sat1, sat2 ;

Navigator theNavigator ;

public Position givePosition ()

{

return currentPosition ;

}

public void run ()

{

while (true)

{

c1 = sat1.position () ;

c2 = sat2.position () ;

currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

Java threads

• Threads in Java are a simple
construct for implementing
concurrent objects

• Threads must include a method
called run() and this is started up
by the Java run-time system

• Active objects typically include an
infinite loop so that they are
always carrying out the computation

17

An object-oriented design process

• Define the context and modes of
use of the system

• Design the system architecture

• Identify the principal system
objects

• Develop design models

• Specify object interfaces

EXAMPLE
Weather system description

A weather data collection system is required to generate

weather maps on a regular basis using data collected from

remote, unattended weather stations and other data sources

such as weather observers, balloons and satellites. Weather

stations transmit their data to the area computer in

response to a request from that machine.

The area computer validates the collected data and

integrates it with the data from different sources. The

integrated data is archived and, using data from this

archive and a digitized map database a set of local weather

maps is created. Maps may be printed for distribution on a

special-purpose map printer or may be displayed in a

number of different formats.

Weather station description

A weather station is a package of software controlled

instruments which collects data, performs some data

processing and transmits this data for further processing. The

instruments include air and ground thermometers, an

anemometer, a wind vane, a barometer and a rain gauge. Data

is collected every five minutes.

When a command is issued to transmit the weather data, the

weather station processes and summarizes the collected data.

The summarized data is transmitted to the mapping computer

when a request is received.

Layered architecture

<<subsystem>>
Data display

<<subsystem>>
Data archiving

<<subsystem>>
Data processing

<<subsystem>>
Data collection

Data display layer where objects are
concerned with preparing and presenting the
data in human-readable form

Data archiving layer where objects are
concerned with storing the data for future
processing

Data processing layer where objects are
concerned with checking and integrating the
collected data

Data collection layer where objects are
concerned with acquiring data from remote
sources

18

System context and models of use

• Develop an understanding of the
relationships between the software being
designed and its external environment

• System context
– A static model that describes other systems

in the environment. Use a subsystem model
to show other systems. Following slide shows
the systems around the weather station
system.

• Model of system use
– A dynamic model that describes how the

system interacts with its environment. Use
use-cases to show interactions

<<subsystem>>
Data collection

Subsystems in the weather mapping system

observer

Weather
station

Comms.

Satellite

Balloon

<<subsystem>>
Data display

Map

User
interface

Map
display

Map
printer

<<subsystem>>
Data processing

Data
checking

Data
integration

<<subsystem>>
Data archiving

Map store

Data
storage

Data
store

Use-cases for the weather station

Startup

Shutdown

Report

Calibrate

Test

Use-case description
•System

– Weather station

•Use-case

– Report

•Actors

– Weather data collection system, Weather station

•Data

– The weather station sends a summary of the weather data that has been collected from
the instruments in the collection period to the weather data collection system. The data
sent are the maximum minimum and average ground and air temperatures, the
maximum, minimum and average air pressures, the maximum, minimum and average
wind speeds, the total rainfall and the wind direction as sampled at 5 minute intervals.

•Stimulus

– The weather data collection system establishes a modem link with the weather station
and requests transmission of the data.

•Response

– The summarized data is sent to the weather data collection system

•Comments

– Weather stations are usually asked to report once per hour but this frequency may
differ from one station to the other and may be modified in future.

19

Architectural design

• Once interactions between the system
and its environment have been
understood, we use this information for
designing the system architecture

• Layered architecture is appropriate for
the weather station
– Interface layer for handling communications
– Data collection layer for managing

instruments
– Instruments layer for collecting data

• There should be no more than 7 entities
in an architectural model

Weather station architecture

Weather station

<<subsystem>>
Interface

<<subsystem>>
Data collection

<<subsystem>>
Instruments

Manages all
external communications

Collects and summarizes
weather data

Package of instruments
for raw data collections

Object identification
• Identifying objects (or object
classes) is the most difficult part
of object oriented design

• There is no 'magic formula' for
object identification. It relies on
the skill, experience and domain
knowledge of system designers

• Object identification is an iterative
process. Unlikely to get it right
first time

Approaches to identification
• Base the identification on tangible
things in the application domain

• Use a behavioural approach and
identify objects based on what
participates in what behaviour

• Use a scenario-based analysis. The
objects, attributes and methods in
each scenario are identified

20

Weather station object classes

• Ground thermometer, Barometer
– Application domain objects that are

‘hardware’ objects related to the instruments
in the system

• Weather station
– The basic interface of the weather station

to its environment. It reflects the
interactions identified in the use-case model

• Weather data
– Encapsulates the summarized data from the

instruments

Weather station object classes

WeatherStation
identifier

reportWeather()
calibrate(instruments)
test()
startup(instruments)
shutdown(instruments)

WeatherData
airTemperatures
groundTemperatures
windSpeeds
windDirections
pressure
rainfall

collect()
summarize(instruments)

Ground
Thermometer
temperature

test()
calibrate()

Barometer
pressure
height

test()
calibrate()

Anemometer
windSpeed
windDirection

test()

Further objects and object refinement
• Use domain knowledge to identify more

objects and operations
– Weather stations should have a unique

identifier
– Weather stations are remotely situated so

instrument failures have to be reported
automatically. Therefore attributes and
operations for self-checking are required

• Active or passive objects
– In this case, objects are passive and collect

data on request rather than autonomously.
This introduces flexibility at the expense of
controller processing time

Design models

• Design models show the objects and
object classes and relationships
between these entities

• Static models describe the static
structure of the system in terms of
object classes and relationships

• Dynamic models describe the
dynamic interactions between
objects

21

Examples of design models
• Sub-system models that show logical

groupings of objects into coherent
subsystems

• Sequence models that show the sequence
of object interactions

• State machine models that show how
individual objects change their state in
response to events

• Other models include use-case models,
aggregation models, generalization
models,etc.

Subsystem models

• Shows how the design is organized
into logically related groups of
objects

• In the UML, these are shown using
packages - an encapsulation
construct. This is a logical model.
The actual organization of objects
in the system may be different.

Weather station subsystems
<<subsystem>>

Interface

CommsController

WeatherStation

<<subsystem>>
Data collection

WeatherData

InstrumentStatus

<<subsystem>>
Data collection

AirThermometer

GroundThermometer

RainGauge

Barometer

Anemometer

WindVane

Sequence models

• Sequence models show the sequence of
object interactions that take place
– Objects are arranged horizontally across the

top
– Time is represented vertically so models are

read top to bottom
– Interactions are represented by labelled

arrows, Different styles of arrow represent
different types of interaction

– A thin rectangle in an object lifeline
represents the time when the object is the
controlling object in the system

22

Data collection sequence
WeatherStation WeatherDataCommsController

request(report)

acknowledge()

reply(report)

acknowledge()

report()

send(report)

summarize()

Statecharts

• Show how objects respond to different
service requests and the state
transitions triggered by these requests
– If object state is Shutdown then it responds

to a Startup() message
– In the waiting state the object is waiting for

further messages
– If reportWeather() then system moves to

summarizing state
– If calibrate() the system moves to a

calibrating state
– A collecting state is entered when a clock

signal is received

Operation

Weather station state diagram

Calibrating

Testing

Transmitting

Waiting

SummarizingCollecting

Shutdown
startup()

shutdown()

calibrate()

test()

transmission
done

reportWeather()

clock

collection
done

Weather summary
complete

test
complete

Calibration
OK

Object interface specification

• Object interfaces have to be specified
so that the objects and other
components can be designed in parallel

• Designers should avoid designing the
interface representation but should hide
this in the object itself

• Objects may have several interfaces
which are viewpoints on the methods
provided

• The UML uses class diagrams for
interface specification but Java may also
be used

23

Weather station interface
interface WeatherStation {

public void WeatherStation () ;

public void startup () ;

public void startup (Instrument i) ;

public void shutdown () ;

public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;

public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

Design evolution
• Hiding information inside objects means

that changes made to an object do not
affect other objects in an unpredictable
way

• Assume pollution monitoring facilities are
to be added to weather stations. These
sample the air and compute the amount
of different pollutants in the atmosphere

• Pollution readings are transmitted with
weather data

Changes required
• Add an object class called ‘Air
quality’ as part of WeatherStation

• Add an operation reportAirQuality
to WeatherStation. Modify the
control software to collect pollution
readings

• Add objects representing pollution
monitoring instruments

Pollution monitoring
WeatherStation

identifier

reportWeather()
reportAirQuality()
calibrate(instruments)
test()
startup(instruments)
shutdown(instruments)

Air Quality
NO Data
smokeData
benzeneData

collect()
summarize()

Pollution Monitoring Instruments

BenzeneMeterNO meter SmokeMeter

