
Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:31 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Advances in Web Testing

CYNTRICA EATON

Department of Computer Science, Norfolk State
University, 700 Park Avenue, Norfolk, Virginia 23504

ATIF M. MEMON

Department of Computer Science, University of
Maryland, 4115 A. V. Williams Building, College Park,
Maryland 20742

Abstract

Demand for high-quality Web applications continues to escalate as reliance on

Web-based software increases and Web systems become increasingly complex.

Given the importance of quality and its impact on the user experience, a

significant research effort has been invested in developing tools and methodol-

ogies that facilitate effective quality assurance for Web applications. Testing, in

particular, provides a critical inroad toward meeting the quality demand by

enabling developers to discover failures and anomalies in applications before

they are released. In this survey, we discuss advances in Web testing and begin

by exploring the peculiarities of Web applications that makes evaluating their

correctness a challenge and the direct translation of conventional software

engineering principles impractical in some cases. We then provide an overview

of research contributions in three critical aspects of Web testing: deriving

adequate Web application models, defining appropriate Web testing strategies,

and conducting Web portability analysis. In short, models are used to capture

Web application components, their attributes, and interconnections; testing

strategies use the models to generate test cases; and portability analysis enables

Web developers to ensure that their applications remain correct as they are

launched in highly diverse configurations.

ADVANCES IN COMPUTERS, VOL. 75 281 Copyright © 2009 Elsevier Inc.

ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00805-X All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:31 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

1. Introduction . 282

2. Challenges of Web Testing . 284

2.1. Heterogeneity and Distribution of Components 284

2.2. Dynamic Nature of Web Applications . 285

2.3. Unpredictable Control Flow . 285

2.4. Significant Variation in Web Access Tools 286

2.5. Development Factors, Adjusted Quality

Requirements, and Novel Constructs . 286

2.6. Summary . 287

3. Web Application Models . 287

3.1. Markov Models and Statecharts . 288

3.2. Object-Oriented Models . 290

3.3. Regular Expressions . 292

4. Web Test Case Generation . 292

4.1. Markov Models and Statecharts . 293

4.2. Object-Oriented Models . 294

4.3. Regular Expressions . 295

5. Portability Analysis . 295

5.1. Manual and Automated Execution-Based Approach 296

5.2. Lookup-Based Approach . 299

5.3. Source Code Transformation Approach 301

6. Conclusion . 302

1. Introduction

With a significant role in modern communication and commerce, Web applica-

tions have become critical to the global information infrastructure and, subse-

quently, one of the largest and most important sectors of the software industry

[24, 39]. As a natural corollary, ensuring the quality of Web applications prior to

release is highly important. Yet, given extreme time-to-market pressures, increas-

ingly complex Web applications, constant shifts in user requirements, and rapidly

evolving development technologies, achieving this quality is extremely difficult and

presents novel challenges to software development [4, 56]. As a result, implement-

ing high-quality Web applications using a cost-effective development process is

currently one of the most challenging pursuits in software engineering; a significant

282 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:32 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

research effort has been invested in developing systematic, quantifiable approaches

that support Web quality assessment [4, 6, 38, 43].

Given the broad use of the word quality thus far, it is important to note that Web

application quality is a complex, multifaceted attribute that has many dimensions

including usability [9, 14, 35, 54], performance [12, 37, 51, 60], accessibility1 [2, 11,
33, 46, 50, 52, 55], and security [25, 30, 31, 49]. While failure to assess each

dimension prior to release can negatively impact the user experience, this chapter

focuses on contributions to Web testing research. In particular, we explore work that

applies structural and functional testing solutions to the discovery of Web failures.

As a result, research devoted to usability, performance, accessibility, and security do

not fall within the scope of this survey. For further clarity, because we are more

interested in high-level, functional correctness, Web testing tools that verify links,

validate Hypertext Markup Language (HTML) or Extensible Markup Language

(XML) syntax, and perform stress testing fall outside the bounds of this discussion

as well [10, 34].

While isolating faults and ensuring correct functionality is a vital process asso-

ciated with any software development effort, it is widely considered tedious and

time consuming even for more traditional software types with stable, well-defined,

monolithic runtime environments [47, 53]; since Web applications are much more

complex, the testing process can be even more involved. One overarching idea in

Web testing research is to identify well-established software engineering methods

that can address specific problems in Web development, adapt or modify them to

account for peculiarities and complexities of Web applications, and define novel

approaches when necessary [18, 45]. In this chapter, we provide more insight into

how researchers are using this practice to advance the field of Web application

testing by deriving solutions to three issues: the extraction of suitable test models,

development of effective testing strategies, and assessment of configuration-

independent quality through portability analysis. Our focus on these three particular

issues aligns with the idea that effective testing of Web-based applications must

include extracting models capable of representing components of the application

and their interconnections, deriving and executing test cases based on those models,

and ensuring that quality is preserved as Web applications are launched in diverse

configurations.

We structure our discussion ofWeb testing research contributions in the following

way: In Section 2, we take a look at how Web applications have evolved and over-

view characteristics that make testing them unique and challenging. In Section 3,

1 The most widely used goal of accessibility is to ensure that Web applications accommodate the

needs of physically and mentally handicapped users.

ADVANCES IN WEB TESTING 283

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:32 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

we discuss Web application models designed to capture characteristics useful for

testing. In Section 4, we overview Web testing methodologies and processes.

In Section 5, we discuss research in Web portability analysis where the goal is to

ensure that quality does not diminish as Web applications are ported. In Section 6,

we conclude.

2. Challenges of Web Testing

As use of the Web grew at a tremendous rate and the benefits of implementing

high-quality Web-based systems became more apparent, the pursuit for expanded

capabilities of Web applications simultaneously increased their complexity and

drove the rapid evolution of Web technology. Over the years, Web infrastructure

has evolved from primarily being a communication medium to a platform for

elaborate Web applications that are interactive, highly functional software systems

[56]. This evolution has had a notable impact on the pursuit and effective implemen-

tation of quality assurance strategies; with room for more complex interaction and

increased computation, it is widely acknowledged that rigorous verification and

validation approaches are necessary [41]. In the rest of this section, we discuss several

factors inherent to Web development that contribute to the quality problem; in doing

so, we also highlight the challenges and considerations that influence the practicality

and usefulness of conventional software testing methodologies and tools.

2.1 Heterogeneity and Distribution of Components

Given current technology, Web developers are able to create software systems by

integrating diverse components that are written in various programming languages

and distributed across multiple server platforms; because of the ubiquitous presence

of the Web, data can be transferred among completely different types of software

components that reside and execute on different computers quite easily [18, 29, 39].

These factors have contributed to a significant growth in the Web services arena and

sparked a keen research interest in applying semantic nets to help manage heteroge-

neity.2 Since modern Web applications typically have complex, multitiered, hetero-

geneous architectures including Web servers, application servers, database servers,

and clients acting as interpreters, testing approaches must be able to handle highly

2 Please refer to the chapter titled ‘‘Semantic web applied to service oriented computing’’ by Fensel

and Vitvar for further information.

284 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:32 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

complex architectures and account for the flow of data through the various architec-

tural components [24, 39].

2.2 Dynamic Nature of Web Applications

There are several aspects that make Web applications highly dynamic. For one,

unlike earlier Web pages that had static structure and hard-coded components,

modern Web applications can react to user input, generate software components at

runtime, assemble components from varied sources, and create Web pages on the fly

[18, 41]. Moreover, interaction between clients and servers can change dynamically

over a session depending on how users interface with a system. Finally, in Web

development, application requirements routinely change because of advances in

technology or in response to user demand. All combined, dynamically generated

components, dynamic interaction among clients and servers, constant changes in

application requirements, and continually evolving technologies make techniques

that were effectively applied to simple Web applications with traditional client–

server systems inadequate for testing dynamic functionality.

2.3 Unpredictable Control Flow

Variance in control flow was generally not a factor for traditional systems because

flow was exclusively managed by program controllers. Since Web applications can

have several entry points and users can arbitrarily navigate to previously visited

Web pages by interacting with their Web browser interface, control flow in Web

applications is largely unpredictable [1]. In terms of entry points, users can directly

access Web pages when given the appropriate Uniform Resource Locator (URL).

In cases when Web applications consist of several Web pages that are expected to be

accessed in a particular order, users could find themselves at an improper starting

point if they type in the URL to an intermediate page directly or they discover an

intermediate page in a batch of search engine returns. To ensure proper functional-

ity, this factor must be carefully accounted for during development to ensure that

users can, in effect, find their way to the intended start page if they happen to land

somewhere in the middle. Since users interact with Web applications through

browsers, loose coupling of browser controls and the Web application can translate

into unexpected failures and anomalies. For instance, a user can break normal

control flow by refreshing a Web page or navigating to an earlier/later point in

their navigation history with the help of the back and forward buttons. In either case,

the execution context will have changed without notifying the program controller,

possibly triggering unexpected results. To ensure that interaction with the browser

ADVANCES IN WEB TESTING 285

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:32 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

does not have a negative effect, browser controls and their effects must be factored

in during Web application testing [19].

2.4 Significant Variation in Web Access Tools

An important challenge to Web quality assurance stems from increased diversity

of client platforms. Although users traditionally explored the Web with versions of

either Internet Explorer or Netscape on desktop PCs, recent trends including the

emergence of Mozilla, for instance, as a popular browser alternative and shifts

toward Web-enabled appliances such as televisions and personal digital assistants

(PDAs) suggest that the contemporary face of Web browsing environments is

continuing to evolve. While the wide variety of tools used to navigate and interact

with the Web provide users with expanded flexibility in choice of access platform,

it complicates Web quality assurance. In essence, wide variation translates into a

wide space of potential Web client configurations and complicates the testing effort

by requiring that Web developers not only ensure that the systems they have

developed are correct, but that correctness persists as software is ported. Failure to

evaluate Web application portability across the configuration space can result in

instances whenWeb application components render/execute correctly in some client

configurations and incorrectly in others.

2.5 Development Factors, Adjusted Quality
Requirements, and Novel Constructs

The process used to develop Web applications presents a significant challenge to

Web testing. Web software is often developed without a formalized process; devel-

opers generally delve directly into the implementation phase, rarely engage in

requirements acquisition, and go through a very informal design phase [6, 41].

This direct, incremental development is more than likely the result of two factors:

time-to-market pressure and the ability for relatively untrained developers to create

and modify Web sites using tools like KompoZer,3 Amaya,4 and Dreamweaver5

that support What You See Is What You Get (WYSIWYG) implementation.

To accommodate these factors, testing approaches would, ideally, be automatable

and incorporate easily adaptable test suites [24].

3 http://www.kompozer.net/.
4 http://www.w3.org/Amaya/Amaya.html.
5 http://www.adobe.com/products/dreamweaver/.

286 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:32 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Shifts in quality requirements for Web applications, in comparison to more

traditional software, also impact the Web testing process. According to Wu and

Offutt [56], much of the software industry has been able to succeed with relatively

low-quality requirements; a combination of timely releases and marketing strategies

have almost always determined whether traditional software products succeed

competitively. In contrast, Web traffic is heavily influenced by software quality;

since users have point-and-click access to competitors, they can very easily take

their business elsewhere. As a result, the goals of the development process must be

reprioritized since producers only see a return on their investment if their Web sites

meet consumer demand.

Finally, Web applications incorporate a host of novel constructs; integrating

practices for adequate assessment during testing is key. For one, modern Web

applications often have interface components that are completely hidden in that

they do not correspond to any visible input elements on a Web page [26]. As a result,

it is a important to support analysis for Web applications that take hidden elements

into account; incomplete information about interfaces can limit the effectiveness

of testing and preclude testers from exercising parts of an application that are

accessible only through unidentified interfaces [1, 26].

2.6 Summary

In summary, Web applications can be described as heterogeneous, distributed

systems that are highly dynamic with unpredictable control flow. Since Web

applications have high-quality demands, are expected to run on a wide variety of

client configurations, and incorporate novel constructs, it is important that testing

approaches adequately address these factors as they apply. In the sections that

follow, we take a look at how researchers are meeting these challenges in defining

Web application models, Web testing strategies, and Web portability analysis

approaches.

3. Web Application Models

In the field of software engineering, models are often used to aid developers in

analysis. In general, models help to capture software features relevant to testing by

abstracting components, their attributes, and interconnections; models can represent

varying degrees of granularity depending on the features salient to the testing

approach. This section provides an overview of various Web application modeling

techniques and establishes a context for the testing strategies discussed in Section 4.

ADVANCES IN WEB TESTING 287

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:32 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

In particular, we discuss various approaches including Markov models and state-

charts, object-oriented models, and regular expressions. In the next section, we look

at how these models are used to derive test cases and evaluate the functional and

structural correctness of Web applications.

It is important to note that, in their work, Alalfi, Cordy, and Dean [1] surveyed

close to two dozen Web application models used to support Web testing and

provided a comprehensive discussion of the various techniques used to model

navigation, content, or behavior of Web applications. There is only a slight overlap

in the models discussed in Ref. [1] and in this chapter.

3.1 Markov Models and Statecharts

Kallepalli and Tian [32] proposed unified Markov models (UMMs) for testing

Web applications. In essence, UMMs are variants of Markov models that are defined

as a set of hierarchical Markov chains where states are operational units (Web files),

edges between states correspond with hypertext links and indicate a possible transi-

tion (navigation), and usage probabilities indicate the likelihood of a transition. The

UMM shown in Fig. 1 represents a simple Web application that is comprised of a

homepage (the intended start page) with links to frequently asked questions (faq)

and a registration page. From the faq page, the user can either navigate back to the

homepage or leave the Web application altogether; from the registration page, users

can either return to the homepage, go to a confirmation page, or quit the Web

application. The probability of making transitions between Web pages is listed

Homepage

faq

Registration Confirmation

0.38 0.68

0.85

0.57

0.33

0.43

FIG. 1. Unified Markov model (UMM) example for a simple Web application. States represent

individual Web pages, edges correspond to hyperlinks, and the probabilities shown represent the likeli-

hood that a user will select the corresponding hyperlink from a certain page.

288 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:33 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

alongside the edges; as an example, users navigate from the homepage to the faq

38% of the time. The underlying idea is to have the UMM represent execution flow,

information flow, and probabilistic usage information. States, edges, and usage

probabilities are each recovered from Web logs that maintain a record of user

interaction with the system including usage frequency and failure reports; since

Web logs are quite common and routinely maintained on the server side, this

approach incurs low overhead. The models extracted are eventually used to support

statistical testing.

There is quite a bit of similarity between the work of Kallepalli and Tian [32] and

that of Sant et al. [48]; both use Markov models (or some variation thereof) to

represent Web applications, generate the model based on logged user data, and use

the model as a basis for testing. The major difference between the two is that Sant

et al. experiment with using varying degrees of history to estimate whether users

will visit a given Web page during a session. In particular, they look at unigram
models where page visitation is considered independent of previous actions, bigram
models where the previous Web page visited has an impact, and trigram models

where the previous two pages help to define the probability that users will visit a

given page.

Statecharts generally model reactive systems as a series of states, transitions,

events, conditions, and their interrelations. Di Lucca and Penta [19] proposed a Web

application model based on statecharts that can be used to analyze how interaction

with the Web browser interface affects Web application correctness. As mentioned

in Section 2, users can disrupt normal control flow and cause anomalous behavior of

Web-based system by refreshing a Web page or navigating to recently visited Web

pages using either the forward or back buttons. As a result, it is important to detect

problems that may unintentionally arise from user interaction with the Web browser

interface. Di Lucca and Penta [19] presented the following model: the browser is

characterized by the Web page displayed, by the state of its buttons (enabled or

disabled), and the history of Web pages visited using the browser buttons. Each of

these features is captured in a statechart, where each state is defined by the page

displayed and by the state of the buttons while the user actions on page links or

browser buttons determine the state transactions. Consider the statechart shown in

Fig. 2; in this example, the user starts at a search engine, gets a list for search results

from a query, and follows a link of interest. Each of the states is labeled with a brief

description of the page loaded in the browser (i.e., search engine) and the state of the

back and forward buttons. As an example, if the back button is disabled and the

forward button is enabled, the corresponding label would be BDFE where B
corresponds with back, D indicates that the button is disabled, F corresponds with

forward, and E indicates that the button is disabled.

ADVANCES IN WEB TESTING 289

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:33 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

3.2 Object-Oriented Models

Several researchers have explored the use of object-oriented models for Web

applications. This is largely because components and attributes of Web applications

can be easily and accurately represented using object-oriented models and using

such models facilities application of pre-existing object-oriented software testing

techniques [57]. In this section, we explore object-oriented support for Web appli-

cation modeling. In general, with object-oriented approaches, the central entity in a

Web site is the Web page; a Web page contains the information to be displayed to

the user and the navigation links toward other pages. It also includes components

that facilitate organization (i.e., frames) and interaction (i.e., forms). Web pages can

be static or dynamic; while the content of a static page is fixed, the content of a

dynamic page is computed at runtime by a server and may depend on input provided

by the user through input fields. Subclasses of the Web page model are generally

defined to capture differences between the two.

One of the earlier papers defining an object-oriented approach to Web application

modeling was written by Coda et al. [16] and provided an overview of WOOM

(Web object-oriented model). Defined as a modeling framework that could be used

to support Web site implementation, WOOM instances were designed to interface

between the underlying concept for a Web site and its actual implementation.

WOOM uses resources, elements, sites, server, links, and transformers to define

Web sites. Liu et al. [36] introduced an object-oriented model, called the Web

Application Test Model (WATM), that was designed to support data flow testing

for Web applications. Liu et al. use static analysis of source files to create a model

that represents Web applications as a set of interactive software components.

Components include client pages, server pages, or program modules; attributes

Search
engine

BDFD

<<forward>>

Homepage

BEFD

<<back>>

<<link>> <<link>>

Start

Search
results

BEFE

<<back>>

FIG. 2. Statechart example for a simple user session. In this example, the user starts at a search engine,

submits a query, and activates a link to retrieve search results. From there, a link is activated to reach the

homepage of a particular search return. Note, once the user reaches the homepage, they can only return to

the previous page, search results, since there are no links to another page; as a result the forward button is

disabled and the back button is enabled.

290 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:33 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

can be program variables or widgets and operators are defined as functions written in

scripting or programming languages. Xu and Xu [57] defined an object-oriented

model with three levels: the object model, the interactive relation model, and the

architecture model. The object model captures attributes of and possible actions on

objects (Web page components); the interactive model captures relationships

between objects (how Web components influence and connect with each other);

and the architecture model provides an overview of the Web application as a whole.

These three levels were designed to, respectively, support unit, integration, and

system testing.

A significant research effort in the area of object-oriented Web application

models has been invested in extending and applying the Unified Modeling Language

(UML), a family of languages primarily used in modeling and specification of more

traditional object-oriented systems [1]. Very early on, Conallen [17] introduced

extensions to UML, namely a new set of class and association UML stereotypes,

that could support the capture of Web application-specific elements; the idea behind

[17] was to provide a common way for application designers to express the entirety

of their applications design with UML. Note both WOOM and the work by Conallen

were motivated by design-based goals as opposed to testing; they are primarily

mentioned here because of their novelty in this area when they were introduced.

Ricca and Tonella [42–45] developed a UML metamodel for high-level represen-

tation of Web applications which supports evaluation of static site structure and can

be used to semiautomatically generate test cases. The analysis model primarily

captures navigation and interaction capabilities [42] and it is derived from artifacts

used by a Web server such as Common Gateway Interface (CGI) scripts as well as

information manually provided by developers [42]. When performing testing, Ricca

and Tonella reinterpret the UML model into a graph by associating objects with

nodes and associations with edges. This enables traditional analyses that use graphs

as a basis, such as traversal algorithms, to be applied; simple analysis can detect

unreachable pages and support flow analysis to detect data dependences.

Di Lucca et al. also base their Web application model on UML. In Ref. [20], the

authors present a tool that supports construction of UML diagrams for Web applica-

tions that lack design documents; they use UML to depict several aspects of a Web

application including its structure and static/dynamic behavior at different abstrac-

tion levels. The UML diagram is generated by a tool that analyzes the source code of

the application, extracts and abstracts relevant information form it, and populates a

repository with the recovered information.

Bellettini et al. [5] discuss WebUML, a tool that generates UML models using

static analysis to extract the navigational structure and dynamic analysis to recover

behavior-related information about the application. In particular, WebUML con-

structs class and state diagrams through static source code analysis and dynamic

ADVANCES IN WEB TESTING 291

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:33 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Web server interaction. Class diagrams represent components of a Web application

including forms, frames, applets, and input fields; state diagram models are used to

model entities such as active documents, which couple HTML with scripting code,

and capture function call flow and navigation to other entities. It is important to note

that dynamic analysis is performed by generating a set of server-side script mutants

and using them in a navigation simulation; the Web pages that result from the

previous step are then analyzed using static source code techniques [5].

3.3 Regular Expressions

Two lines of research incorporate regular expression notation in modeling Web

applications; the idea in each is to capture structural information (i.e., arrangement

of text, widgets, etc.) and possible arrangement of dynamic content (i.e., two

widgets as opposed to one when the user provides a given input). Wu and Offutt

[56] model individual Web pages as regular expressions to represent the static

arrangement of Java servlet-based software and the dynamic sections that can vary

from instance to instance. In their approach, the overall Web page P is comprised on

various elements pn. Dynamic sections are modeled as the basic elements that can be

generated and standard regular expression notation is used to concisely model

conditions on the appearance of each in the final HTML file. As an example,

consider that P ! p1 � (p2 j p3)* � p4 indicates that p1 and p4 will always be at the

beginning and end of the corresponding HTML file; this captures the static arrange-

ment of Web page elements. Meanwhile, either p2 or p3 can occur 0 or more times in

the resulting page; this of course represents the dynamic nature of the page. This is a

basic example of their overall approach but it captures the spirit of their work quite

nicely.

In the second line of research, Stone and Dhiensa [54] present a generalized

output expression that represents every possible output. While the spirit and basic

motivation behind [54, 56] are the same, the former includes more advanced

notation that allows other interaction factors (i.e., the affect of browser interaction

on the state of dynamic elements) to be represented and the latter uses metatags

instead of standard regular expression notation.

4. Web Test Case Generation

One of the basic goals of Web testing is fault discovery; characterizing the

faults that affect Web applications, developing methodologies for deriving test

cases, and establishing effective testing strategies have been active research areas.

292 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:35 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

For instance, in their work, Ricca and Tonella [44] derived a Web application fault

classification model by analyzing publicly available fault reports for Web applica-

tions. While some faults included in the model occur in conventional software,

others are more specific to Web applications and arise from their peculiarities. The

faults in the model include authentication issues, hyperlink problems, crossbrowser

compatibility (which we call portability; see Section 5), Web page structure errors,

cookie/value setting issues, and incorrect protocols. In this section, we look at how

the Web application models introduced in Section 3 are used to generate test cases

and provide a basis for testing techniques that support fault discovery in Web

applications.

4.1 Markov Models and Statecharts

Kallepalli and Tian [32] use UMMs to model usage patterns in Web applications;

in particular, their model captures the likelihood that users transition from one page

to the next and can be used to determine the probability of a given path from an

arbitrary source state (Web page) to a sink state. To support statistical testing,

Kallepalli and Tian suggest setting a probability threshold and exercising each

navigation path with a higher likelihood; this approach focuses testing efforts on

the most likely usage scenarios. Hao and Mendes [27] replicated this work and show

that UMMs are effective in statistical testing. They extended the work of Kallepalli

and Tian to account for the existence of various entry nodes, or start Web pages, in

the course of a usage session. As noted in Section 2, users can start at various places

in Web applications. To account for this factor Hao and Mendes use various UMMs

to model a Web site, each with a different entry node; for clarity, Kallepalli and Tian

only use one UMM. Similarly, Sant et al. [48] discuss generating test cases from

random walks through Markov models.

Di Lucca and Penta [19] designed a Web application model to help developers

evaluate how interaction with Web browser buttons could adversely affect system

functionality. Recall, the model they developed is a statechart in which each state is

defined by the Web page displayed in the browser and the status of the forward,

backward, and refresh buttons; transitions between states occur when a new Web

page is loaded (through a link) or either of the three buttons is activated. Di Lucca

and Penta expect this approach to be integrated with other testing strategies; once a

set of source-to-sink test case paths have been generated using some other approach,

the idea is to create a statechart that corresponds to that sequence and include the

effect of activating the forward, backward, and refresh buttons as states. The next

step would be to define the coverage criteria that must be satisfied and generate a test

suite that meets the given criteria. In this work, Di Lucca and Penta primarily outline

ADVANCES IN WEB TESTING 293

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:35 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

a model to complement existing techniques; the testing approach ultimately applied

is left open.

4.2 Object-Oriented Models

Liu et al. [36] extend data flow testing techniques to HTML and XML to ensure

that Web application data is stored, computed, and used properly. In data flow

testing, program execution paths are selected based on definition–use6 chains of

variables. Since script variables and document widgets store the variables in Web

applications, they are a primary target for this approach. In particular, script vari-

ables, widgets, and the Web pages that contain them are each considered objects

with attributes; relationships among objects are used to generate test cases that

monitor the flow of data. To accommodate the various data dependencies, Liu

et al. define intraobject testing where test paths are selected for the variables that

have definition–use chains within the object, interobject testing, where test paths are

selected for variables that have def-use chains across objects, and interclient testing,

where tests are derived to evaluate data interactions among clients. To test Web

applications, definition–use chains need to be extended to HTML and XML docu-

ments and to cross HTTP client/server boundaries.

Ricca and Tonella [42–45] essentially use a graph-based version of their UML

model to generate test cases and perform Web application testing. The tool they

developed for testing is called TestWeb and the tool they use for model extraction is

called ReWeb. In their approach, Web application test cases are represented as a

sequence of URLs (to correspond with the Web pages in a navigation path) and

values for form inputs when necessary. To derive test cases, TestWeb uses the Web

application model extracted by ReWeb to generate a set of navigation paths based on

some coverage criteria; testers are then responsible for manually providing values

for form inputs. Once the paths are defined and values have been provided, TestWeb

then automates test case execution; testers must then evaluate the results to distin-

guish passing test cases from failing ones. One limiting factor in this approach is the

need for testers to provide form input values. In response to this issue, Elbaum et al.
[24] apply the same basic technique as Ricca and Tonella but they further automate

this approach by using data captured in actual user sessions to supply form inputs;

the goal of this work is to minimize the need for tester intervention.

Finally, Bellettini et al. [6] introduce a semiautomatic technique for test case

definition that uses a UML model at its base. Much like Kallepalli and Tian [32],

6 Note, definition–use chains correspond to the definition of a variable v in a given program and all

reachable uses of v that occur prior to any redefinition.

294 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:35 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Bellettini et al. use knowledge of previous user interactions to determine the most

exercised navigation paths and focus the testing effort on them. The tool they have

developed to implement this technique, TestUML, is a testing suite that uses gener-

atedmodels to define test cases, coverage testing criteria, and also reliability analysis.

4.3 Regular Expressions

Regular expressions have been used to model Web applications because, using the

notation, a compact representation of structure, variation, and iteration of HTML

files can be expressed in a generalized way. Wu and Offutt [56] use regular expres-

sions to model Web applications and characterize test case execution as a sequence

of interactions between client and servers that begin at a source Web page and uses

composition and transition rules to reach the sink. Variation in transition rules can

lead to different navigation paths and each of those paths can be used as a test case.

Stone and Dhiensa [54] also use regular expressions to model Web applications

and, like Wu and Offutt, are motivated by a need to evaluate dynamic Web pages to

find errors. The goal of this work, in particular, is to minimize the possibility for code

support errors in all possible output from a script. The basic idea of their approach is

to compare the expected structure of script statements with the output actually

produced. The authors suggest that only a slight extension to currently existing

tools is needed to ensure they can accept and validate the more generalized model.

5. Portability Analysis

Though the process of detecting and correcting faults in an implemented software

system is inherently difficult, software quality assurance becomes increasingly

complex when faults only surface in precise configurations [28]. In such cases, the

number, nature, and interconnection of constituent parts that define the configura-

tion7 can significantly impact software quality. To adequately reduce the number of

faults in the delivered product, developers must evaluate the overall correctness of

the implementation in addition to how that correctness is affected by variation in

configurations. We refer to the process of detecting and diagnosing faults that are

only triggered in precise configurations as portability analysis. Without an efficient,

thorough technique for assessing software portability, quality could degrade as

software is ported and configuration faults, or faults that are only activated in

7 http://www.chambers.com.au/glossary/configur.htm.

ADVANCES IN WEB TESTING 295

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:36 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

specific configurations, have the potential to remain latent until they are encountered

by users in the field.

While configuration faults affect portability for awide range of software types, they

are a particular challenge in Web application development. Given that there are

several different browsers,8 each with different versions,9 a number of operating

systems on which to run them,10 and dozens of settings,11 users have expanded

flexibility in Web access options and the client configurations used to explore the

Web are highly varied. Though this expanded variation and flexibility allows formore

customized Web user experiences, subsequent differences across configurations

present a serious challenge for Web developers to ensure universal quality.

Ideally, Web applications would behave and execute uniformly across heteroge-

neous client configurations; in such a situation, quality assurance could effectively

be carried out on one client configuration and the results extrapolated for the entire

set. Yet, in practice, the makeup of the client configuration has a significant impact

on Web application execution (Fig. 3). Since Web applications are expected to

enable crossplatform access to resources for the large, diverse user community, it is

important to evaluate how well a given system meets that demand [32].

In the previous sections, most of the discussion centered on testing Web applica-

tions to ensure functional and structural correctness. In this section, we discuss

various Web application portability analyses which include launching Web applica-

tions in varied configurations, looking for unsupported HTML in source code, and

attempting to transform code into a form that is supported. In particular, we outline

existing approaches along with their limitations and briefly discuss tools that

implement them.

5.1 Manual and Automated Execution-Based
Approach

Execution-based approaches to Web portability analysis primarily involve

launching Web applications in target configurations and qualitatively comparing

expected and observed results to verify correctness. In practical terms, this means

that Web applications must be physically loaded to perform execution-based quality

assurance. In the brute-force application of this approach, Web application

8 For example, Microsoft Internet Explorer (IE), Netscape, AOL Browser, Opera, Mozilla, Safari for

Mac OS X, Konqueror for Linux, Amaya, Lynx, Camino, Java-based browsers, WebTV.
9 For example, IE 4.0, IE 5.0, IE 6.0.
10 For example, Windows, Power Macintosh.
11 For example, browser view, security options, script enabling/disabling.

296 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:36 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

A

B

FIG. 3. When rendered in (A) Internet Explorer 6.0 and (B) Netscape 4.8, both on Windows XP, the

Scrabble Homepage is significantly different.

ADVANCES IN WEB TESTING 297

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:37 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

deployment and analysis are both carried out manually. Though exhaustive coverage

of the configuration space would allow thorough portability analysis, physical access

to each possible browsing environment is extremely difficult and nearly impossible;

as a result, there is a notable conflict between the need to test each potential client

configuration and the constraints imposed by limited development resources. Test-

ing on all necessary combinations of hardware, operating systems, browsers, con-

nection settings, etc., normally requires labor-intensive setups on many dedicated

machines making it extremely difficult for a test team working with limited equip-

ment to replicate certain configuration faults. Even with access to each possible

configuration, the time and effort required to effectively assess Web pages using this

strategy can also impede the depth of the Web application evaluated. Because

this approach can be weakened by client configuration availability and limited

time, this technique is highly ineffective and impractical for Web developers inter-

ested in establishing portability across a vast, richly defined configuration space.

While the brute-force strategy evaluates Web application portability postimple-

mentation, Berghel [7, 8] presented a manual execution-based approach designed for

preimplementation use. The basic idea outlined in Refs. [7, 8] is to launch a suite of

test Web pages, called Web Test Patterns,12 and use the results to gauge the level of

HTML support in varied configurations. This approach allows Web developers to

derive a cognitive model of HTML support criteria across various configurations; they

could then use this model to drive decisions regarding which HTML tags to include in

an implementation during code synthesis. Much like the brute-force strategy, the

effectiveness of this approach is mainly restricted by resource limitations. In addition,

this strain of Berghel’s approach only allows users to develop a mental model of tag

support criteria; effective application of this model can be severely flawed in practice

given the expansive set of HTML tags that can be included in source code and the

intricacy of support criteria. Retaining this information and attempting to use this

strategy effectively is clearly time-, cognition-, and resource-intensive.

To minimize the effort and, ultimately, the cost of analysis using execution-based

approaches, researchers have explored collapsing the space of test configurations

through combinatorial testing approaches. In particular, Xu et al. [58, 59] propose
applying single-factor and pairwise coverage criteria to systematically reduce the

space of distinct configurations evaluated during quality assurance. This process

applies sampling heuristics to define the minimal set of client configurations that

must be assessed to establish confidence in the entire configuration space. While this

approach can make subsequent analysis more cost-effective in terms of resources

12 Each Web test pattern in the suite incorporates several HTML tags and descriptions of the impact

they would have if processed correctly.

298 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:37 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

and effort, it can also create false confidence in analysis results when the set of test

configurations does not accurately represent the entire space.

Commercial tools, like Browser Photo13 and BrowserShots,14 that are designed to

make execution-based approaches more cost effective mainly automate the launch of

Web applications in varied configurations to mitigate the necessity for in-house

access to configurations during quality assurance. Such tools work on the behalf of

Web developers by launching applications in a set of target configurations and

capturing a screenshot of the rendered result; developers assess Web application

correctness by manually examining the returned screenshots and relying on visual

cues (i.e., misrendered pages) to discover errors. Once errors are detected, the

developer must employ additional methods, such as manually examining source

code, to identify fault causes. The main flaws of this approach stem from the fact that

fault detection efficacy is generally constrained by the dimensions of the screen

capture and the extent to which the set of client configurations used during analysis

accurately represent the entire configuration space. In other words, since the result of

this approach only yields visual evidence of an error, faults triggered by user action

or those that fall out of the range of the screenshot will remain undetected since a

single snapshot cannot capture such defects. Also, since there is no indication as to

why the error occurred, it is nondiagnostic; identifying factors that contribute to the

anomaly requires more work and effort. In addition, if the space of configurations is

not adequately inclusive, critical faults could remain undetected.

In general, execution-based approaches are deficient because of limited configu-

ration coverage, lack of diagnostic ability, limited applicability of results or some

combination of these factors. As a result, practical implementation of execution-

based strategies generally involves configuration sampling. Such issues give rise to

an incomplete, resource-intensive analysis of the Web application that does not

provide an adequate basis for establishing confidence inWeb application portability.

5.2 Lookup-Based Approach

Lookup-based approaches, like Doctor HTML15 and Bobby,16 detect configura-

tion faults by maintaining an account of unsupported HTML tags in a predefined

subset of Web configurations and essentially scanning source code for them.

13 http://www.netmechanic.com/browser-index.htm.
14 ttp://browsershots.org/.
15 http://www2.imagiware.com/RxHTML/.
16 http://www.watchfire.com/products/webxm/bobby.aspx.

ADVANCES IN WEB TESTING 299

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:37 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Results of analysis are returned as a list of the unsupported tags found in the given

Web application source code and the configurations with support violations.

One problem of this approach is captured nicely by Fig. 3. In this example, quality

is clearly diminished for Netscape users of the Scrabble Web site, however, Doctor

HTML did not include this particular support violation, namely lack of support for

the HTML tag <div style=background-image:url(. . .)>, in the analysis report. This

factor drives home the point that this type of analysis will only be as thorough as the

knowledge of configuration support criteria utilized. In instances when incomplete

or inaccurate support criteria is used, configuration faults will continue to remain

latent after analysis. Since the tool approach is proprietary, it is unclear whether this

oversight occurred because the given HTML tag was missing from the checklist.

In our own work [21–23], we define an advanced framework that incorporates

aspects of both the lookup-based and execution-based approaches. In particular, we

have defined an automated, model-based framework that uses static analysis to detect

and diagnose Web configuration faults. Our approach overcomes the limitations of

current techniques by enabling efficient portability analysis across the vast array of

client environments. The basic idea behind this approach is that source code fragments

[i.e., HTML tags and Cascading Style Sheet (CSS) rules] embedded in Web applica-

tion source code adversely impact portability of Web applications when they are

unsupported in target client configurations. Without proper support, the source code

is either processed incorrectly or ignored and the aesthetic or functional properties

associated with the code may be lost resulting in configuration faults. Our approach is

to model source code support in various configurations and perform portability

analysis by checking for support violations in source code inclusion. In the effort

to fully exploit this approach, improve practicality, and maximize fault detection

efficiency, manual and automated approaches to client support knowledge acquisition

have been implemented, variations of Web application and support criteria models

have been investigated, and visualization of configuration fault detection results

has been explored. To optimize the automated acquisition of client support know-

ledge, alternate machine learning strategies have been empirically investigated and

provisions for capturing tag/rule interaction have been integrated into the process.

Figure 4 provides a high-level overview of four processes implemented in our

framework. In particular, updateKB() is used to acquire knowledge of code support;

processURL() and query() are key in portability analysis; and generateReport() is

mainly responsible for presenting analysis results. To initiate analysis, Web devel-

opers submit the URL associated with the homepage of a Web application to the

Oracle and processURL() activates a Web crawler that retrieves Web application

source code and forwards it to query(). Next, query() analyzes the source code to

detect support violations. Any violations discovered are presented to the Web

developer by way of generateReport(). It is important to note that the integrity of

the report generated is largely a factor of how comprehensive the knowledge base is;

300 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:39 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

subsequently, updateKB() allows both automated updates using machine learning

methods and manual updates in which Web developers import support rules they,

more than likely, know from experience. The underlying goal of automated, or

machine learning-based, knowledge updates is to compare the source code of Web

application components, namely Web pages, that render/execute properly in a given

configuration with those that do not to discover possible support violations. If, for

instance, a given tag consistently appears in Web pages that do not execute properly

yet never in a correct Web page, it is expected to be unsupported.

In comparison to execution-based techniques, our approach bypasses the need to

launch Web applications and applies a static, model-based analysis. This enables

more efficient fault detection and diagnosis by reducing the need for configuration

access and simultaneously reducing the threat of inaccurate equivalence assump-

tions. In terms of lookup-based approaches, our work uses a more inclusive model of

both HTML and CSS crossconfiguration support during analysis; integrates diverse

knowledge acquisition strategies to build an accurate, thorough model of support

knowledge; and incorporates an extensible knowledge base model that allows

support criteria to continually evolve.

5.3 Source Code Transformation Approach

Though Chen and Shen [13] do not specifically focus on Web configuration fault

detection, correcting Web portability threats is a key aspect of their work and is

highly applicable to the domain of Web portability analysis. In their research, Chen

and Shen base their approach on the assumption that Web source code standards, as

defined by The World Wide Web Consortium (W3C),17 provide the most effective

Oracle

Technique
interface

processURL()
query()
generateReport()

Knowledgebase

Compliance
report

WA
developer

Update mechanism 1
updateKB()

FIG. 4. High-level overview of a framework for detecting configuration-specific faults in Web

applications.

17 http://www.w3.org/.

ADVANCES IN WEB TESTING 301

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:40 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

basis for developing Web applications that are portable. The crux of their technique

is to transform the source code of a Web application into a standardized form in

which all nonstandard code fragments have been eliminated from the source yet the

appearance of the original implementation is preserved. One problem with this

approach stems from the fact that, as noted by Phillips [40], even if browsers fully

comply with published standards, source code may still be processed differently

since standards do not address every detail of implementation; in addition, there are

instances in which browsers claim to be standards-compliant yet some HTML tags

deemed standard by the W3C are unsupported or supported improperly [15].

In some instances, Web developers only get acquainted with the parts of the

standards that work in most browsers through experience [40]; subsequently, devel-

opers may still have to employ a variant of the execution-based approach to assess

source code support in client configurations.

Artail and Raydan [3] address the problem of enabling Web applications designed

and tested on desktops to render properly on small-screen devices such as PDAs.

At the root of the problem, mobile devices have constraints in resources and proces-

sing capabilities that make them unable to launch the vast majority of Web pages

developed for desktop computers properly; Artail and Raydan describe a method for

automatically re-authoring source code so that Web applications can render on a

smaller screen and maintain the overall integrity of the original structure. The crux of

the approach probes HTTP request headers to detect when clients are small-screen

devices, to obtain dimensions of the screen size, and to use that information as a

guide to transform the original source into a more compatible version while preserv-

ing the structural format of the Web page. Artail and Raydan use heuristics to reduce

the size of page elements, resize images, hide text, and transform tables into text.

While screen dimension constraints provide significant motivation for this work, it is

important to note that there are also constraints on computing power and other

resources as well; subsequently, Artail and Raydan retrieve the original source

code all at once and incorporate Javascript code to display/hide parts of the Web

page without having to revisit the server. This ultimately reduces user wait time

considerably, saves battery power, and minimizes wireless network traffic.

6. Conclusion

Web development presents a myriad of unique challenges and requires adapted

or newly developed techniques for various stages of the process. As one of the

most widely used class of software to date with continually evolving design tech-

nologies, increased expectation of correctness from the user community, and short

302 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:40 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

time-to-market pressures, a need for more rigorous testing approaches that can

effectively reveal faults is key. Researchers are currently working to address testing

problems for Web applications and to propose effective solutions.

This chapter explored research contributions that would help to enable cost

efficient, effective testing of Web-based applications. In particular, we looked at

the challenges involved in Web testing and discussed Web application models used,

various Web testing strategies, and Web portability analysis approaches. In terms of

models, we looked at variant uses of Markov models and statecharts, object-oriented

models, and regular expressions. We used the discussion of those models as a basis

for exploring various Web testing approaches. We then provided an overview of

research efforts aimed at developing approaches for effective discovery of Web

configuration faults; the goal of work in this area is to fulfill the challenge of the

Web to provide configuration-independent quality to users.

As with testing research directed toward more conventional software systems, the

quest to achieving quality is rather elusive and continually evolving. We expect future

work in Web application testing to build upon the ideas expressed in this chapter and

to become increasingly important as the Web continues to grow and evolve.

References

[1] Alalfi M. H., Cordy J. R., and Dean T. R., 2007. A survey of analysis models and methods in website

verification and testing. In ICWE, Volume 4607 of Lecture Notes in Computer Science, L. Baresi,

P. Fraternali, and G.-J. Houben, eds. Springer, Berlin. ISBN 978-3-540-73596-0.

[2] Amsler D. A., 2003. Establishing standards for usable and accessible user services web sites. In

SIGUCCS’03: Proceedings of the 31st Annual ACM SIGUCCS Conference on User Services. ACM

Press, New York, NY.

[3] Artail H. A., and Raydan M., 2005. Device-aware desktop web page transformation for rendering on

handhelds. Personal and Ubiquitous Computing, 9: 368–380. ISSN 1617-4909.

[4] Atkinson C., Bunse C., Grosz H.-G., and Kühne T., 2002. Towards a general component model for

web-based applications. Annals of Software Engineering, 13: 35–69. ISSN 1022-7091.

[5] Bellettini C., Marchetto A., and Trentini A., 2004. WebUML: Reverse engineering of web applica-

tions. In SAC’04: Proceedings of the 2004 ACM Symposium on Applied Computing. ACM Press,

New York, NY. ISBN 1-58113-812-1.

[6] Bellettini C., Marchetto A., and Trentini A., 2005. TestUML: User-metrics driven web applications

testing. In SAC’05: Proceedings of the 2005 ACM Symposium on Applied Computing. ACM Press,

New York, NY. ISBN 1-58113-964-0.

[7] Berghel H., 1995. Using the www test pattern to check HTML compliance. Computer, 28: 63–65.
[8] Berghel H., 1996. HTML compliance and the return of the test pattern. Communications of the ACM,

39: 19–22.

[9] Bevan N., Barnum C., Cockton G., Nielsen J., Spool J., and Wixon D., 2003. The ‘‘magic number

5’’: Is it enough for web testing? In CHI’03: CHI’03 Extended Abstracts on Human Factors in
Computing Systems. ACM Press, New York, NY. ISBN 1-58113-637-4.

ADVANCES IN WEB TESTING 303

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:43 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

[10] Braband C., M�ller A., and Schwartzbach M., 2001. Static validation of dynamically generated

HTML. In PASTE’01: Proceedings of the 2001 ACM SIGPLAN–SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering. ACM Press, New York, NY. ISBN 1-58113-413-4.

[11] Brajnik G., 2004. Using automatic tools in accessibility and usability assurance processes. In LNCS

Proceedings of the 8th ERCIM Workshop on User Interfaces for All. Springer, Berlin.
[12] Cai Y., Grundy J., and Hosking J., 2007. Synthesizing client load models for performance engineer-

ing via web crawling. In ASE’07: Proceedings of the Twenty-Second IEEE/ACM International

Conference on Automated Software Engineering. ACM Press, New York, NY. ISBN 978-1-

59593-882-4.

[13] Chen B., and Shen V. Y., 2006. Transforming web pages to become standard-compliant through

reverse engineering. In W4A: Proceedings of the 2006 International Cross-Disciplinary Workshop

on Web Accessibility (W4A). ACM Press, New York, NY. ISBN 1-59593-281-X.

[14] Chi E. H., Rosien A., Supattanasiri G., Williams A., Royer C., Chow C., Robles E., Dalal B., Chen J.,

and Cousins S., 2003. The bloodhound project: Automating discovery of web usability issues using

the Infoscent
TM

simulator. In CHI’03: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. ACM Press, New York, NY. ISBN 1-58113-630-7.

[15] Clark J., 2000. The glorious peoples myth of standards compliance, http://joeclark.org/glorious.html.

[16] Coda F., Ghezzi C., Vigna G., and Garzotto F., 1998. Towards a software engineering approach to

web site development. In IWSSD’98: Proceedings of the 9th International Workshop on Software

Specification and Design. IEEE Computer Society, Washington, DC.

[17] Conallen J., 1999. Modeling web application architectures with UML. Communications of the ACM,

42: 63–70. ISSN 0001-0782.

[18] Di Lucca G. A., and Fasolino A. R., 2006. Testing web-based applications: The state of the art and

future trends. Information and Software Technology, 48: 1172–1186. ISSN 0950-5849.

[19] Di Lucca G. A., and Penta M. D., 2003. Considering browser interaction in web application testing.

In Proceedings of the 5th International Workshop on Web Site Evolution IEEE Computer Society,

Washington, DC. ISBN 0-7695-2016-2.

[20] Di Lucca G. A., Fasolino A. R., Pace F., Tramontana P., and de Carlini U., 2002.Ware: A tool for the

reverse engineering of web applications. In CSMR’02: Proceedings of the 6th European Conference

on Software Maintenance and Reengineering. IEEE Computer Society, Washington, DC.

[21] Eaton C., and Memon A. M., 2004. Evaluating web page reliability across varied browsing

environments. In Proceedings of the 15th IEEE International Symposium on Software Reliability

Engineering (ISSRE’04), Saint-Malo, Bretagne, France.

[22] Eaton C., and Memon A. M., 2004. Improving browsing environment compliance evaluations for

websites. In Proceedings of the International Workshop on Web Quality (WQ 2004).
[23] Eaton C., and Memon A. M., 2007. An empirical approach to testing web applications across diverse

client platform configurations. International Journal of Web Engineering and Technology (IJWET),

Special Issue on Empirical Studies in Web Engineering, 3: 227–253.

[24] Elbaum S., Karre S., and Rothermel G., 2003. Improving web application testing with user session

data. In ICSE’03: Proceedings of the 25th International Conference on Software Engineering. IEEE

Computer Society, Washington, DC. ISBN 0-7695-1877-X.

[25] Gaur N., 2000. Assessing the security of your web applications. Linux Journal, 3. ISSN 1075-3583.

[26] Halfond W. G. J., and Orso A., 2007. Improving test case generation for web applications using

automated interface discovery. In ESEC-FSE’07: Proceedings of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on The foundations

of Software Engineering. ACM Press, New York, NY. ISBN 978-1-59593-811-4.

304 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:44 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

[27] Hao J., and Mendes E., 2006. Usage-based statistical testing of web applications. In ICWE’06:
Proceedings of the 6th International Conference on Web Engineering. ACM Press, New York, NY.

ISBN 1-59593-352-2.

[28] Hao D., Zhang L., Mei H., and Sun J., 2006. Towards interactive fault localization using test

information. In APSEC’06: Proceedings of the XIII Asia Pacific Software Engineering Conference.
IEEE Computer Society, Washington, DC. ISBN 0-7695-2685-3.

[29] Hassan A. E., and Holt R. C., 2002. Architecture recovery of web applications. In ICSE’02:

Proceedings of the 24th International Conference on Software Engineering. ACM Press, New

York, NY.

[30] Huang Y.-W., Huang S.-K., Lin T.-P., and Tsai C.-H., 2003. Web application security assessment by

fault injection and behavior monitoring. In WWW’03: Proceedings of the 12th International

Conference on World Wide Web. ACM Press, New York, NY. ISBN 1-58113-680-3.

[31] Joshi J. B. D., Aref W. G., Ghafoor A., and Spafford E. H., 2001. Security models for web-based

applications. Communications of the ACM, 44: 38–44. ISSN 0001-0782.

[32] Kallepalli C., and Tian J., 2001. Measuring and modeling usage and reliability for statistical web

testing. IEEE Transactions on Software Engineering, 27: 1023–1036. ISSN 0098-5589.

[33] Kasday L. R., 2000. A tool to evaluate universal web accessibility. In CUU’00: Proceedings on the

2000 Conference on Universal Usability. ACM Press, New York, NY.

[34] Kostoulas M. G., Matsa M., Mendelsohn N., Perkins E., Heifets A., and Mercaldi M., 2006. XML

screamer: An integrated approach to high performance XML parsing, validation and deserialization.

In WWW’06: Proceedings of the 15th International Conference on World Wide Web. ACM Press,

New York, NY. ISBN 1-59593-323-9.

[35] Levi M. D., and Conrad F. G., 1997. Usability testing of World Wide Web sites. In CHI’97: CHI’97

Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, NY. ISBN

0-89791-926-2.

[36] Liu C.-H., Kung D. C., Hsia P., and Hsu C.-T., 2000. Structural testing of web applications.

In Proceedings of ISSRE 2000, p. 84. ISSN 1071-9458.

[37] Martin E., Basu S., and Xie T., 2007. WebSob: A tool for robustness testing of web services. In ICSE

COMPANION’07: Companion to the Proceedings of the 29th International Conference on Software

Engineering. IEEE Computer Society, Washington, DC. ISBN 0-7695-2892-9.

[38] Murugesan S., and Deshpande Y., 2002. Meeting the challenges of web application development:

The web engineering approach. In ICSE’02: Proceedings of the 24th International Conference on

Software Engineering. ACM Press, New York, NY. ISBN 1-58113-472-X.

[39] Offutt J., 2002. Quality attributes of web software applications. IEEE Software, 19: 25–32.

[40] Phillips B., 1998. Designers: The browser war casualties. Computer, 31: 14–16ISSN 0018-9162.

[41] Ricca F., 2004. Analysis, testing and re-structuring of web applications. In ICSM’04: Proceedings of

the 20th IEEE International Conference on Software Maintenance. IEEE Computer Society,

Washington, DC. ISBN 0-7695-2213-0.

[42] Ricca F., and Tonella P., 2001. Analysis and testing of web applications. In ICSE’01: Proceedings of
the 23rd International Conference on Software Engineering. IEEE Computer Society, Washington,

DC.

[43] Ricca F., and Tonella P., 2001. Building a tool for the analysis and testing of web applications:

Problems and solutions. In Proceedings of TACAS, pp. 373–388.

[44] Ricca F., and Tonella P., 2005. Web testing: A roadmap for the empirical research. In WSE. IEEE

Computer Society, Washington, DC. ISBN 0-7695-2470-2.

[45] Ricca F., and Tonella P., 2006. Detecting anomaly and failure in web applications. IEEE Multime-
dia, 13: 44–51ISSN 1070-986X.

ADVANCES IN WEB TESTING 305

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Comp. by: VElamathiProof0000885445 Date:12/1/09 Time:07:36:44 Stage:First
Proof File Path://pchns1301/WOMAT/Production/PRODENV/0000000001/
0000012120/0000000016/0000885445.3D Proof by: QC by: ProjectA-
cronym:BS:ADCOM Volume:75005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

[46] Rosmaita B. J., 2006. Accessibility first!: A new approach to web design. In SIGCSE’06: Proceed-
ings of the 37th SIGCSE Technical Symposium on Computer Science Education. ACM Press, New

York, NY. ISBN 1-59593-259-3.

[47] Sanchez A., Vega B., Gonzalez A., and Jackson G., 2006. Automatic support for testing web-based

enterprise applications. In ACM-SE 44: Proceedings of the 44th Annual Southeast Regional Confer-
ence. ACM Press, New York, NY. ISBN 1-59593-315-8.

[48] Sant J., Souter A., and Greenwald L., 2005. An exploration of statistical models for automated test

case generation. ACM SIGSOFT Software Engineering Notes, 30: 1–7ISSN 0163-5948.

[49] Scott D., and Sharp R., 2002. Abstracting application-level web security. InWWW’02: Proceedings
of the 11th International Conference on World Wide Web. ACM Press, New York, NY. ISBN

1-58113-449-5.

[50] Sevilla J., Herrera G., Martı́nez B., and Alcantud F., 2007. Web accessibility for individuals with

cognitive deficits: A comparative study between an existing commercial web and its cognitively

accessible equivalent. ACM Transactions on Computer–Human Interaction, 14: 12ISSN 1073-0516.

[51] Shams M., Krishnamurthy D., and Far B., 2006. A model-based approach for testing the perfor-

mance of web applications. In SOQUA’06: Proceedings of the 3rd International Workshop on
Software Quality Assurance. ACM Press, New York, NY. ISBN 1-59593-584-3.

[52] Sierkowski B., 2002. Achieving web accessibility. In Proceedings of the ACM SIGUCS Conference

on User Services.

[53] Sneed H. M., 2004. Testing a web application. In Proceedings of the 6th International Workshop on
Web Site Evolution. IEEE Computer Society, Washington, DC. ISBN 0-7695-2224-6.

[54] Stone R. G., and Dhiensa J., 2004. Proving the validity and accessibility of dynamic web-pages. In

W4A’04: Proceedings of the 2004 International Cross-Disciplinary Workshop on Web Accessibility

(W4A). ACM Press, New York, NY. ISBN 1-58113-903-9.

[55] Velasco C. A., and Verelst T., 2001. Raising awareness among designers accessibility issues. ACM

SIGCAPH Computers and the Physically Handicapped, 8–13ISSN 0163-5727.

[56] Wu Y., and Offutt J., 2002. In Modeling and testing web-based applications. George Mason

UniversityTechnical Report ISE-TR-02-08.

[57] Xu L., and Xu B., 2004. A framework for web applications testing. In International Conference on

Cyberworlds.

[58] Xu B., Xu L., Nie C., Chu W., and Chang C. H., 2003. Applying combinatorial method to

test browser compatibility. In Proceedings of International Symposium on Multimedia Software

Engineering, pp. 156–162.

[59] Xu L., Xu B., Nie C., Chen H., and Yang H., 2003. A browser compatibility testing method based on

combinatorial testing. In International Conference on Web Engineering. Springer, Heidelberg.
[60] Zhu L., Gorton I., Liu Y., and Bui N. B., 2006. Model driven benchmark generation for web services.

In SOSE’06: Proceedings of the 2006 International Workshop on Service-Oriented Software

Engineering. ACM Press, New York, NY. ISBN 1-59593-398-0.

306 CYNTRICA EATON AND ATIF M. MEMON

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

	. Advances in Web Testing
	Abstract
	1. Introduction
	2. Challenges of Web Testing
	2.1. Heterogeneity and Distribution of Components
	2.2. Dynamic Nature of Web Applications
	2.3. Unpredictable Control Flow
	2.4. Significant Variation in Web Access Tools
	2.5. Development Factors, Adjusted Quality Requirements, and Novel Constructs
	2.6. Summary

	3. Web Application Models
	3.1. Markov Models and Statecharts
	3.2. Object-Oriented Models
	3.3. Regular Expressions

	4. Web Test Case Generation
	4.1. Markov Models and Statecharts
	4.2. Object-Oriented Models
	4.3. Regular Expressions

	5. Portability Analysis
	5.1. Manual and Automated Execution-Based Approach
	5.2. Lookup-Based Approach
	5.3. Source Code Transformation Approach

	6. Conclusion
	References

