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Abstract—Two key design characteristics of machine learning
(ML) systems—their ever-improving nature, and learning-based
emergent functional behavior—create a moving target, posing
new challenges for authoring/maintaining functional regression
tests. We identify four specific challenges and address them by
developing a new general methodology to automatically author
and maintain tests. In particular, we use the volume of production
data to periodically refresh our large corpus of test inputs and
expected outputs; we use perturbation of the data to obtain
coverage-adequate tests; and we use clustering to help identify
patterns of failures that are indicative of software bugs. We
demonstrate our methodology on an ML-based context-aware
Speller. Our coverage-adequate, approx. 1 million regression test
cases, automatically authored and maintained for Speller (1) are
virtually maintenance free, (2) detect a higher number of Speller
failures than previous manually-curated tests, (3) have better
coverage of previously unknown functional boundaries of the
ML component, and (4) lend themselves to automatic failure
triaging by clustering and prioritizing subcategories of tests with
over-represented failures. We identify several systematic failure
patterns which were due to previously undetected bugs in the
Speller, e.g., (1) when the user misses the first letter in a short
word, and (2) when the user mistakenly inserts a character in
the last token of an address; these have since been fixed.

Keywords-ML testing, ML-based testing, spelling correction

I. INTRODUCTION

End-to-end regression testing of Machine Learning (ML)
software has disrupted the way we think about functional
testing [1], [2]. Traditional functional tests are of the form
(input, expected_output, assertion()), where input is supplied
to the software under test (SUT), and the test oracle (ex-
pected_output and assertion()) verifies whether the SUT func-
tioned as expected [3]. Testers strive to develop a test suite
that provides adequate coverage of software features [4].

Regression testing of ML systems casts aside the 3 tra-
ditional tenets of functional testing: input, expected_output,
and coverage in multiple ways. First, the input spaces of
ML-based systems are extremely large [5] (think about all
the situations to which an autonomous vehicle must react),
which is why these systems are, by design, optimized for
their most common inputs. Indeed, they may not always return
correct outputs for all uncommon inputs. Developers may not
even know all the uncommon/corner cases [6] at design time,
neither would the testers during in-house test development [7].
The software’s eventual functional behavior is not pre-defined;
rather it emerges as it learns and evolves.

Second, imperfect understanding of the input space upsets

the traditional role of functional testing, which is to use
functional boundaries/partitions and corner cases to ensure that
the system behaves as intended within—and at the boundaries
of—each partition. Consequently, test authors are unable to
determine whether they have an adequate test suite that covers
all functional boundaries. All their hard-coded inputs in a test
suite may be distributed over an initial guesstimated set of
partitions but may, over time, end up in quite another set,
causing the inputs to become less important or even irrelavent.
Moreover, because much of the ML decision logic is typically
encoded mathematically, e.g., in a deep neural network or a
logistic regression model, there is no control-flow-graph, and
hence traditional coverage also does not directly apply [8].

Third, ML systems, by their very nature, are designed
to better serve the most prominent inputs and constantly
improve their outputs over time by learning from new training
data [7]. A traditional test oracle will quickly become obsolete
as its hard-coded expected_output/assertion() turns stale with
respect to the software’s new improved output.

Finally, another distinction in regression testing of ML vs.
conventional systems is that individual test failures for ML
systems may not be indicative of a bug. Recall that ML
systems are optimized for certain classes of common inputs —
they may not work for uncommon inputs; hence failures on
such inputs may be perfectly acceptable. Instead, of interest to
the ML-system developer are systematic test failures as well
as patterns of failures that assist in software/model debugging.
This shift creates new challenges for test authors, who must
now create a large number of tests to reveal such patterns.
Moreover, test failure triage is not always useful when looking
at individual isolated failures; rather, groups of failing tests
need to be examined to provide a more holistic picture of
what went wrong with the ML software.

Other researchers have also recognized emerging challenges
posed by ML systems [1], [2], [9] and proposed new solutions.
In particular, metamorphic testing [10] and perturbation have
been used to generate test suites [11]. White-box testing
approaches [12], [13] have aimed to define test coverage based
on the state of the neural networks. However, there is no one-
size-fits-all methodology that will work for every ML system.
On the other hand, Log Replay [14] is a practical general-
purpose solution that is widely used for large-scale testing;
however, it does not cover all corner cases, including ones
that might not occur frequently but are critical for functional
testing.



In this paper, we develop a new methodology aimed at
functional regression testing for ML software, and apply it to a
context-aware ML-based spelling checker/corrector (Speller).
Our results show that the methodology can scale up the test
suite to cover a large typo space, and, at the same time,
reveal failure cases that can often be masked by other common
misspelled inputs. Furthermore, the methodology can cover
a multidimensional space with test cases automatically built
upon constantly-changing production data. We show that these
adaptive test suites can isolate the performance of the ML
component from the end-to-end speller system, and keep
up with both model and data changes. Instead of reporting
individual test failures, we rely on featurizing misspell patterns
and spectral clustering to automatically report subcategories of
tests that contain higher proportions of defects. In particular,
we make the following contributions:

e We keep up with the ML software’s evolving input space
by automatically revising our test suite using production data
to obtain new test cases and delete obsolete ones.

e We learn a coverage-driven perturbation model to generalize
existing cases in production data to enrich edge cases that are
underrepresented in real training and test data.

e We resolve the obsolete oracle problem by using the re-
lationship between the original data from production and its
perturbed counterparts; we determine the expected output of a
number of test cases where the consequent feedback is positive
and indicates that the users received correct outputs.

e We automatically identify important failure classes by min-
ing patterns of test cases using unsupervised learning and
cluster the test cases to identify subgroups with high number
of failure cases.

The next section describes our ML-based Speller service
that we use as our study subject. We then present our
new methodology using our study subject as an example
in Section III. Section IV presents our evaluation results.
In Section V, we summarize related work, and finally, in
Section VI, we conclude with a discussion of ongoing and
future work.

II. THE ML-BASED SPELLER

We now describe how the aforementioned challenges apply
to testing a context-aware ML-based Speller. We highlight
how its ML sub-component influences end-to-end behavior
leading to stochastic and anecdotal failures (which we refer
to as ad hoc test failures) that are inherently difficult to triage.

1) Context-Aware Speller: Our Speller takes two parame-
ters as input: (1) a query string, such as an input to a search bar,
and (2) contextual information, such as geographic location,
device settings, locale, user preferences, etc. It outputs a
ranked list of strings that each corresponds to a different
suggested correction. Similar to typical spelling correction sys-
tems [15], the Speller relies on edit-distance-based algorithms
to generate multiple correction candidates from the corpus.
The Speller utilizes several filters and ranking algorithms to
output a ranked list of spelling corrections, e.g., “car ash” may
yield “car wash”, “car dash”.

The Speller we consider not only relies on commonly-
used information, such as word frequencies, as is used in
traditional language models [15], but also takes the contextual
information to improve upon a generic spelling correction
system. For instance, if a user is suggested multiple businesses
that are spelled similarly, the location—a contextual variable—
can prioritize the businesses that are in a town where the
user is located. For instance, suppose there is a town where
a new popular business called “car dash” appears. The top
suggestion for the misspelled query “car ash” can flip from
“car wash” to “car dash” because more users are visiting the
town specifically to go to the popular business. An additional
user preference (also a contextual variable) indicating that the
user does not prefer lower ranked businesses might lead to a
completely different, more relevant, result.

Our Speller has a large input space, spanning multiple
dimensions. First, the space of query strings spans not only
all possible valid English words, but numerous misspelled
variants of each word. For instance, misspells of the string
“car wash”, e.g., “car ash”, “carwash”, “car dash”, and etc.,
can grow exponentially with the alphabet size if we consider
any possible misspell. Second, contextual variables such as
location coordinates, locale settings, etc., themselves present
a multi-dimensional space of inputs. The product of these
two dimensions create innumerable possibilities, which make
methods such as exhaustive testing impractical.

2) Functional Boundaries of Speller: A traditional imple-
mentation of the Speller would have separate logic branches
that return different suggestions (e.g., business names) based
on the contextual features (e.g., location coordinates), so it
would suffice to just cover each branch during testing. How-
ever, with such an enormous input space, developers cannot
hard-code all the possibilities, which is why we instead rely on
ML models to automatically score and rank each suggestion.
ML systems are frequently used for ranking context-based
query suggestions because they can mine informative patterns
from multivariate data sources. When multiple query strings
are equally valid spelling corrections, the Speller relies on the
ML system to leverage contextual features and order them.

The way the ML model scores each suggestion is fundamen-
tally different from how traditional software is written. ML
models rely on mathematical expressions that vary based on
trained numerical parameters, so traditional test coverage that
rely on logic branches are no longer applicable. Furthermore,
because ML decision boundaries are not represented in the
software code, we cannot easily determine when the expected
values in the output changes due to the parameter updates.
In this scenario, a fixed expected output of “car wash” will
report a failure when “car dash” is returned, even though
this is acceptable after the ML is updated based on new
data points. This boundary behavior of the ML system can
hardly be assessed by traditional testing systems because one
can only observe changes in the model parameters instead of
modifications in the code.

3) Systematic Defects in Spell Correction: From a bird’s-
eye view of millions of data points, failures that share similar



misspells are intrinsically more valuable than an individual
failure. Take the former example of “car ash” and suppose that
this data point causes a failure because its spelling correction
does not match our expectations. If this is a stochastic behavior
that changes the next time a model is updated, then it might
not require any actionable fixes because each ML system is
expected to always perform well on some data points and
worse on others in a non-deterministic way, especially if the
data points are close to the decision boundary [16]. Thus,
this failure alone constitutes an ad hoc failure with a transient
result that does not pinpoint defects in the ML model of the
software.

On the other hand, we might simultaneously observe a
set of failures with similar misspells, e.g., “ballon” (ex-
pected correction: “balloon™), “seafod” (expected correction:
“seafood”), “notebok” (expected correction: “notebook”), and
“typhon” (expected correction: “typhoon”). These data points
collectively indicate something more informative: the Speller
fails more frequently on words with double-letter misspells.
This could be a real software issue where deletions in letters
are not corrected, or a model training bias where there is
insufficient training data with double-letter deletions. Yet, with
only a single failure, we cannot easily come up with such
hypotheses or prioritize what to investigate; we instead need
a large number of related failures.

III. METHODOLOGY TO TEST ML-BASED SYSTEMS

We have developed a new methodology to address the chal-
lenges brought about by ML systems. The key intuition behind
our methodology is to leverage the scale of production data
to automatically author large numbers of coverage-adequate
test cases whose Pass/Fail outcomes reveal systematic patterns
that may be indicative of failures in the ML system. More
specifically, as shown in Figure 1, we start by mining (A) large
volumes of production data, which we then perturb using (B)
a coverage-driven model-based test input curator that yields
a large number of coverage-adequate test cases, with test
inputs and expected outputs. These tests are then executed
on the ML SUT, the actual output is obtained, and (C) an
automated test oracle determines if the SUT passed or failed
the test. Together with features of the inputs, test outcomes,
and expected outputs, we use (D) clustering to determine
which failures are related, in that all failures in a given cluster
stem from a single bug. The results from clustering can also be
used to improve the curator to generate more refined test suites
along with oracles. We now break down our methodology
workflow tailored to the Speller.

1) Production Data: Our methodology is centered around
leveraging a massive amount of available production data
(Figure 1A) to obtain a large number of test cases that can
reveal patterns of failures in the ML software as opposed to
a handful of failures that may not easily map to bugs in the
ML system or its model. Hand crafting such a large number
of tests is cost prohibitive.

For the Speller, production data takes the form of a query
input string with contextual information and, among the user’s
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Fig. 1. Our testing methodology applied to the Speller. It (A) selects user

queries (with and without misspells) from production data, (B) uses a model-
based test curator to automatically generate test cases, executes them, (C)
evaluates the outputs with test oracles, (D) and automatically triages failures
to find defect classes that represent specific misspell patterns.

search result, an indicator of whether spelling correction was
required, as well as 20 ranked spelling suggestions. Crucially,
we only select queries where the user successfully interacted
with some suggestion in the application. The suggested results
each user selected have no misspells because the list of
suggestions are generated from the corpus of valid words.

The selected queries are divided into two groups based on
whether spelling corrections are required. For the queries that
do not require spelling suggestions (determined by the pre-
vious Speller software instance), we assume that the original
query was correctly spelled. Although it could be possible that
a small number of inputs had misspells and were not corrected,
yet some users still selected the uncorrected suggestions, we
ensure such scenarios are filtered out based on our criteria
that the user interacted with the suggestion extensively. For
the queries that required spelling correction, we assume that
the associated user inputs had some form of typo, since the
users selected suggested spellings that were different from
their original inputs.

A. Model-Based Test Input Curator

The raw production data is not useful in itself because it
lacks the expected output needed for a test oracle; it also lacks
a measure of test adequacy as all functional partitions may not
be represented. This is why we perturb/mutate the correctly
spelled queries and generate new misspelled test cases by
developing a coverage-driven model-based test input curator
(Figure 1B). The design of such a curator is non-trivial and
we custom design it for every domain. We next discuss the
steps needed to design the curator for the Speller.

1) Learning the Perturbations for Spelling Domain: We
leverage the group of selected misspelled queries that require
spelling correction to develop our perturbations, i.e., fypo
models for the Speller. Given the user input string with
typos and the spelling-corrected string in the result that user
selected, we model the difference between the two strings
based on three base edits: insertion (ins), substitution (sub),
and deletion (del). The edit distance is the minimum number
of edits required to mutate the spelling-corrected query string
into the one with misspells.



Among the misspelled queries in the production data set,
we identified nearly 80% of the queries with edit distance 1
and nearly 20% of the queries with edit distance 2. As one can
sequentially edit mutated strings to increment the edit distance,
it is sufficient to model the 3 individual base edits using the
abundant edit-1 queries. For e € {sub,del,ins}, we model
the (binned) position of the mutation based on the frequencies
in the data according to
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where Cf is the number of misspells in production data with
event e in position bin ¢. The positions are normalized between
0 and 1 and discretized into B bins. For e = sub or e = del,
we use the position of the character swapped or deleted from
the correctly spelled string; for e = ins, we use the position
of the character that precedes the inserted character.

For del, the event position is sufficient to generate the
misspell word, and we do not need additional modeling; but
for ins and sub, we need to specify more model parameters
to generate the character to insert or swap to. For sub, we
define a Markov matrix P*“®, whose k, £-th element represents
the transition from the k-th character to the ¢-th character in
the indexed alphabet set A (which includes the white space
character and other necessary punctuation symbols). Thus, we
have
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where C;b, is the number of substitutions observed in the
production data from the k-th character to the ¢-th character.
For ins, we consider the conditional probability of inserting
a specific character k at a position bin :
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where C™%, is the number of single insertions of the character
k at bin 7 in the production data.

2) Generating New Test Cases & Expected Outputs: Given
the probabilistic models developed from the first group of
queries with misspells, we mutate queries from the second
group of queries without misspells to generate new test cases
to assess the Speller (Figure 1c). Algorithm 1 illustrates an
example of how we mutate misspelled queries to be edit
distance 1 from the original query. The data input is the group
of queries that were selected only when a user had successful
interaction with the suggestion that matches the original query
input (and so no spelling correction was required). For each
query (Line 2), the algorithm randomly selects (Lines 3, 4)
one of the three mutation events: ins, sub, or del, and a
random position in the word (Line 5). Given the mutation type
and the position, it mutates the original query based on the
learned probabilistic models. For example, if the event is sub
(Lines 6-10), the algorithm takes the character at the selected
position and looks up the transition probabilities in Eq. (2) to
sample the character to substitute. The algorithm also handles
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Algorithm 1: Generate Edit-1 Test Cases with Oracle

Data: Production data with successful user interaction and no misspell queries.
Result: Test cases with (misspelled) query, context, and expected correction.
1 testCases « 0:
2 foreach originalQuery, originalContext in data do
event « Sample(sub,ins,del);
Sample t based on Eq.(l) with e = event;
position 4 Round(i * len(originalQuery));
if event == sub then
k + GetCharacterIndex(originalQuery[position]);
£ « Sample based on row k in matrix in Eq.(2);
mutatedQuery < SubstituteChar (originalQuery,
position=position, from=k, to=£);

N L )

10 end

1 if event == del then

mutatedQuery <— DeleteChar (originalQuery,
position=position);

13 end

14 if event == ins then

k + Sample based on Eq.(3) with i =1;

mutatedQuery < InsertChar (originalQuery,
position=position, character=k);

17 end

18 testCases.append({
query:mutatedQuery,
context:originalContext,
expectedCorrection:originalQuery});

19 end
20 return testCases;

del (Lines 11, 12) and ins (Lines 14-16) appropriately. Then,
the newly mutated query and the original context parameters
become the new test input, while the original query becomes
the correction that we expect in the suggested list of spelling
corrections (Line 18). This gives us our fully-automatically
obtained expected output, which is used by the test oracle.

In order to generate queries with more typos, one can
trivially re-run Algorithm 1 on the mutated query until the
edit distance increments to the desired value. For coverage
analysis, we also keep track of the mutation types for each
test cases: for example, we associate a test case with sub-
del if we first generated a substitution and then generated a
deletion so that the resulting query is edit distance 2 from the
original query. Moreover, note that a correctly spelled word
could occasionally be mutated to a valid English word, e.g.,
“near” mutated as “neat”. On the one hand, we can re-mutate
the word until it is absent in the English dictionary. On the
other hand, we also allow such mutated valid English words
to occur in our tests because the Speller suggests multiple
candidates regardless of whether or not a word has an exact
match in the corpus. For instance, even if both “near” and
“neat” are included in the suggested candidates, we would
expect the ML ranker to rank the correction “near” higher if
the context is related to looking for a business near a location.

As noted earlier, within Algorithm 1, the expected output
is automatically defined without requiring additional manual
inspection. Manual selection from the production data could
be prohibitive, and even strategies such as crowd sourcing
incur higher cost and longer turnaround time compared to our
strategy. Our expected output clearly leverages the scale of
production data as well because we do not expect every single
query to lead to successful user interaction in practice.



3) Defining the Coverage Space for the Speller: Our test
case generation algorithm not only produces test cases at an
increasing scale, but also ensures that the test cases accurately
cover a multidimensional input space to reveal the boundaries
of an ML system. For the Speller, we chose to cover two
major dimensions: query size and typo categories, because
both directly drive the difficulty of spelling correction and
the accuracy of the ML ranker. Query size accounts for both
the number of tokens and the length of the tokens in a
production query that is presumed to be correctly spelled. We
refer to an input with one token as a word, and a phrase
otherwise. We group the queries into 4 categories: short/long
words/phrases. A short word has fewer than 7 chars; and a
short phrase has an average length of tokens less than 5 chars.
These thresholds were chosen empirically to differentiate the
Speller’s capability to suggest spelling correction candidates.
Typo categories builds upon the aforementioned base edits:
ins, sub, and del. The 3 base edits alone can combinatorially
cover all typo patterns — the space of typos is exponential in
the alphabet size. However, it has been shown that around 95%
typos in English spelling occur to be of minimum edit distance
2 or less [17] and most spelling correction algorithms do not
focus on correcting for errors beyond edit distance 2. As we
also observed similar phenomena in our data, we argue that it
is sufficient to cover all edit-1 and edit-2 combinations. There
are 3 scenarios (sub, ins, del) for edit-1 patterns, and 6 typo
patterns (ins-ins, sub-ins, sub-sub, del-ins, sub-del, del-
del) for edit-2 patterns, and thus, the typo dimension consists
of these 9 broad categories.

B. Test Oracle

Once we run all the test cases (preserving original context
information) through the Speller, we collect the ranked outputs
from each input and compare each output with the test oracle
(Figure 1C). For each test case, we define a boolean measure:
k-hit to be TRUE if and only if the expected correction is
ranked in the top-k spelling suggestions.

When considering any collection of tests (either aggregated
over an entire test run or over a specific test coverage di-
mension), we are interested in the fraction of k-hits. For a
fixed number of tests cases, the fraction of 1-hits measures
how often the top suggestion matches the expected output;
the fraction of 3-hits is a more lenient measure as it only
requires the expectation to be among the top 3 suggestions;
the fraction of 20-hits is our most lenient measure because the
Speller only generates 20 spelling candidates. Consequently,
the fraction of 20-hits will always be greater than or equal to
the fraction of 3-hits or 1-hits.

C. Automated Test Triage

With millions of test cases, it can be prohibitive to evaluate
individual failures. We designed an effective triage process
that relies on finer featurization and automated clustering
(Figure 1D) to subcategorize groups of test cases that are pre-
categorized (e.g., insertions in long phrases) in the original
coverage space. Note that the featurization and clustering steps

TABLE 1
STRING COMPARISON FEATURES USED FOR CLUSTERING

Feature Description

Levenshtein Distance, minimum number of ins, del,
and sub to mutate one word to another

leve_dist

Damerau-Levenshtein Distance, similar to Levenshtein
Distance but counts transpositions as a single edit [18]

dale_dist

hamm_dist Hamming Distance, position-by-position measure of

mismatches between two strings

Jaro Distance, measure that factors in the number of
matching characters, transpositions, and string length

jaro_dist

Jaro-Winkler Distance, similar to Jaro Distance, but
favors matches from the beginning [19]

jawi_dist

jacc_dist Jaccard similarity for the two sets where each set is

the 3-gram representation of each word as elements

mara_dist measure of whether two names are pronounced simi-

larly using the Match Rating Approach algorithm [20]

len_prop the number of characters in the correct word divided
by the number of characters in the misspelled word

ntoken_prop the number of tokens in the correct word divided by
the number of tokens in the misspelled word

nunique_prop the number of unique characters divided by the number

of unique characters among the two words

sfx_match the length of the longest common prefix over the length

of the shorter string

pfx_match the length of the longest common suffix over the length

of the shorter string

can also take place right after the test inputs are generated
as they do not require the test oracle. However, given the
output of the test oracle, our workflow can prioritize these
clustered subcategories based on the fraction of k-hits for
further triaging.

1) Featurization: Prior to testing the Speller instance, each
test case was generated with a (misspelled) query and its
expected correction. For instance, the queries that share edit-
1 ins are randomly generated from Algorithm 1. While the
actual position and character are inserted are random, we
characterize how the query differs from its expectation based
on several numeric features, listed in TABLE I. Each feature
requires an ordered pair of strings with an expected correction
followed by its misspelled query. Positional features, e.g.,
sfx_match and pfx_match, capture the location of typos
both from the beginning and from the end. Distance features,
e.g, leve_dist and jaro_dist, offer different ways to
count the degree of typos regardless of positions. Other mea-
sures such as phonetic difference, e.g., mara_dist, account
for more subtle sources of spelling mistakes. These features
are chosen to capture typo patterns that are independent of
the expected correction, such that test cases can be grouped
together accounting for mainly their misspell patterns.

2) Clustering: We apply spectral clustering [21] based on
the derived features (each normalized to zero mean and unit
variance) across all the test cases within a category defined in
our coverage space. As an example, we would apply spectral
clustering on all short words within the category in ins-
sub typos, and determine more fine-grained subcategories that
belong to ins-sub. For example, one cluster could define a



subcategory where the insertions are all space insertions that
break a correctly spelled query in half. Our spectral clustering
relies on a standard n-nearest neighbor graph construction
[21], so the only hyper-parameter that we need to select
is n, the number of nearest neighbors. Following the graph
construction where each node represents a test case, we rely
on the graph spectrum to determine the (disjoint) independent
components. Here the hyper-parameter n affects the number of
resulting clusters: the larger n is the fewer number of clusters.
We use n = 30 as default, because we found that it empirically
gives us a good balance between generality and specificity in
each of the subcategories.

3) Feedback to the Input Curator: Clustering results in
more refined partition of the original multi-dimensional cov-
erage space. For instance, the coarse dimension of edit-1
deletions can contain single whitespace deletions in the query
string. Even though the test curator did not initially sample
production data to cover such cases, overrepresented passes
or failures in such a cluster may suggest a new dimension to
be covered in the next iteration. In general, unsupervised clus-
tering can be useful for revealing new patterns that represent
new coverage subspaces to track more nuanced regressions.

D. Developing End-to-End Testing Cycles

Our strategy can be flexibly implemented in practical soft-
ware testing workflows that operate on different testing cycles.
Broadly speaking, there are two scenarios that can trigger
the Speller tests: ML updates due to training data updates or
model changes, which take place less often, e.g., weekly; and
Continuous Integration (CI) due to any code changes, which
take place more often, e.g., hourly.

1) ML Updates: The first scenario relies on all components
of our complete ML testing strategy, where we leverage pro-
duction data to generate millions of test cases. Even though the
frequency of testing ML is less than that for CI, the frequency
of our test data refresh remains significantly higher than that of
typical training refreshes for ML modeling and training. When
comparing a baseline instance to a new instance of a software,
we can rely on the coverage analysis to track the k-hit-based
pass rate in each dimension and among different combinations.
If any specific pass rate significantly decreases, e.g., more
than 5%, then test case clustering can help enumerate similar
failures that indicate defect classes.

2) CI: The second scenario of CI focuses on detecting any
software regression based on a subset of test cases retrieved
from the first scenario. For performance in this scenario, we
prefer a minimal set of high confidence test cases which
should always pass based on either 100% 1-hits or 20-hits.
For test coverage, not only do we have sufficient test cases
generated and categorized based on our coverage dimensions,
we also have subcategories of test cases that define more
refined subspaces in the overall coverage space. Test cases
in each cluster share redundant patterns with one other, so we
can simply keep one representative per cluster that perform
stably as test cases for CI. In practice, the resulting number
of test cases may only be a few hundred for such a test run.

IV. HYPOTHESIS AND RESULTS

We have implemented our methodology in an automated
regression test authoring tool that we now apply on our Speller
to evaluate 3 hypotheses presented next.

A. Hypothesis 1: Our strategy detects a large number of
previously unknown defects due to an increased scale of test
cases

Metrics: For each test case, we rely on the test oracle to
compute its two boolean values for the 1-hit and 20-hit status
respectively. Recall from Section III-B that 1-hit is TRUE only
if the expected correction is ranked first, whereas 20-hit is
TRUE if the expected correction is suggested among the 20
candidates regardless of the ranking. Given n test cases, let
noo be the number of 20-hits and n; be the number of 1-
hits, we rely on percentage-based metrics that capture the two
boolean status for aggregate reporting: nag/n (20-hits over
total), m1/ngo (1-hits over 20-hits), and n;/n (1-hits over
total). The larger the values the better the performance of the
Speller. In general, both nyy/n and n;/ngy are application-
dependent because they reflect candidate generation and are
sensitive to the extent of misspell (e.g. edit distance). On the
other hand, n, /nyo can be interpreted as a measure of the ML
ranking performance because the denominator corresponds to
the suggested candidates. If the ranker performed completely
randomly, then the expected value for m;/noy would corre-
spond to 5%. In general, we consider over 80% as robust
performance for these metrics for our application.
Procedure: We randomly sampled over one million queries
from our production traffic, where the data contain no personal
identification information by our privacy policy. These queries
had successful user interactions but did not require any spelling
correction, thus contained correctly-spelled queries as well
as contextual information. The typo generator automatically
mutated each of these queries to contain misspells, ceteris
paribus, so that new tests cases alter the original user spelling
but preserve the original context and intent. Then, we tested
these new inputs with a new Speller instance, and used the
test oracle to summarize the performance metrics.

Results: The aggregated percentages over the one million test
cases are summarized below:

% of total | % of 20-hit
1-hit 61.48% 88.68%
20-hit 69.33% 100.00%

Over 30% tests cases contained some level of defects, as
suggested by the 1-hit and 20-hit percentages of the total
cases we tested (61.48% and 69.33%, respectively). The
typo patterns used to mutate the test cases were designed
to drastically exaggerate the percentage of failures that we
would see in practice. The main reason that we increase the
harder instances, where Speller more frequently fails to pro-
vide the correct suggestion or ranking, is to generate enough
samples to cover the high-dimensional input space and reveal
systematic behavior in automated clustering. (We will defer
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Fig. 2. Breakdown of the measures based on the query size. For each

short/long word/phrase combination, the left plot shows the 20-hits over the
total tests cases (which measures if the expected correction is suggested among
the candidates), and the right plot shows the 1-hits over the 20-hits (which
measures if the expected correction is ranked on the top, given that it is among
the candidates). The red dashed lines correspond to the aggregated measures
(left: 69.33%, right: 88.68%) prior to breaking them down by query size.

the discussion of the coverage and clustering results under the
other hypotheses.) We also observed that 88.68% of the 1-hits
among the 20-hits, meaning that for the test cases where the
expected spelling is suggested, the ML ranker recovered them
as the top ranked suggestion 88.68% of the time. We found
this percentage consistent with the performance of the trained
ML model on its training and test data sets, even though our
test cases did not include any data points from either data set.
Discussion: What differentiates our testing framework from
existing ones is its ability to detect more failure cases, thanks
to both the scale of the production data and the degree
of test automation. We remark that generating test cases
at this scale is impractical with traditional human-curated
tests. Meanwhile, to capture the same number of test cases
with defects from production data, one would also need to
collect at least 10-times more samples, as we estimated that
approximately 10% of the traffic contains real typos (and most
of them are often easier to correct than our automatically-
generated test cases).

B. Hypothesis 2: Sufficient coverage of cases in a multidimen-
sional space reveals boundary regions of the ML system

Metrics: When evaluating the Speller in a multidimensional
input space, we continue to focus on the two metrics: ngg/n
(20-hits over total) and n;/mgg (1-hits over 20-hits). By
viewing these metrics that are aggregated over specific input
regions, we can better understand the boundary behavior
of the ML system. We first independently divided on each
of the two key coverage dimensions: query size and typo
categories, defined in Section III-A3. Then, we analyzed the
interaction of the two coverage dimensions by considering the
metrics in regimes with specific query size and typo category
combinations.

Procedure: For our one million data points, we first parti-
tioned all the test cases based on the short and long query
sizes to compute the two metrics (resulting in a total of 4
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Fig. 3. Breakdown of the measures based on the typo categories. Similar

to Figure 2, the left plot shows the 20-hits over the total tests cases, and the
right plot shows the 1-hits over the 20-hits. The red dashed lines correspond
to the aggregated measures (left: 69.33%, right: 88.68%).
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Fig. 4. Performance matrices of the measures for candidate generation and
ML-based ranking. Similar to Figs. 2 and 3, the top plot shows the 20-hits
over the total tests cases, and the bottom plot shows the 1-hits over the 20-hits.
Each cell in the matrices represents test cases that share the same combination
of query size and typo category.

aggregation regimes). The breakdown of the number of test
cases over the first dimension of query size as follows:

word phrase
short | 107,416 | 245,481
long | 166,317 | 593,831

Longer phrases were most frequent and shorter words were
least frequent in this production data set. Next, we partitioned
all test cases based on the typo categories to compute the
same metrics (resulting in a total of 9 aggregation regimes).
To exaggerate the typo patterns and provide sufficient coverage
in each category, we randomly distributed around 12,000 test
cases for each category uniformly. Last, we considered the



performance for every query size and typo category combina-
tion, which lead to 36 aggregation regimes, and report the two
metrics in two 4 X 9 performance matrices.

Results: As shown in Figure 2, we observed that the Speller
performs better on longer words and phrases than their shorter
counterparts because the search space for longer inputs is
much narrower. Based on the breakdown along the second
coverage dimension in Figure 3, the Speller indeed performed
better on edit-1 typos than on edit-2 typos. However, among
edit-2 typos, ML-based ranking performed best on ins-ins,
whereas candidate generation performed best on sub-sub. We
also compared the performance in greater detail by looking at
the combinations in performance matrices, as shown in Figure
4. With the multidimensional coverage space, we can track the
performance of the Speller’s ML behavior in different regimes
that capture the intrinsic difficulty of spelling correction. We
interpret the collection of test cases from a cell which scores
below average (e.g., the edit-2 errors in short words) as classes
of boundary cases in the combination space.

Discussion: Comparing the two plots in Figure 2 and in
Figure 4, we observed an interesting phenomenon: candidate
generation generally performs better on longer inputs but
performs worst on short phrases, whereas ML-based ranking
generally performs better on phrases but performs worst
on short words. We reasoned that the ML-based ranking
component relies heavily on contextual information as well as
query-based features, such as the number of tokens, so when
only a short word is given (compared to a phrase of similar
size), there is more uncertainty in the ML decision. In contrast,
a simple search-based system for candidate generation is more
efficient in searching for similar words than phrases because
the search space is smaller.

Our metrics identify boundary regions that distinguish the
behavior of candidate generation and ML-based ranking for
the Speller. Regions with lower performance scores often
result from (1) heuristics that limit the search space for
computational tractability, and (2) insufficient data in this
particular region during model training. Typically, ML models
rely on one aggregate measure, such as the F score, across
all test or validation samples. Yet, such aggregate measures
can mask systematic biases when the model performance
improves in one regime but worsens in another. With the built-
in granular structure we developed, the performance matrices
can not only suggest regimes to sample additional training
data for model improvement but also track the performance
of different versions of the Speller and alert developers if any
regression occurs in any cell.

C. Hypothesis 3: Automatic clustering can triage subcate-
gories of defects within the multidimensional coverage space

Metrics: Previously, we aggregated the two metrics: mog/n
(20-hits over total) and m;/ngo (1-hits over 20-hits) over
predefined 2-D input spaces, where the inputs are divided into
4 x 9 regimes. After unsupervised clustering, each regime can
be further partitioned based on the clusters, and we can re-
evaluate the two metrics in each individual cluster. Because

there could be dozens of clusters in one regime, we compare
the cluster-specific performance with the aggregated one for
this regime to identify outliers. For instance, for the (short-
phrase, ins) regime that has 75.81% 20-hits over total in
Figure 4, if any of the clusters within this regime has less than
this value, they are indeed as worse than average. In general,
we can prioritize triaging the test cases from clusters with the
lowest score, especially if it diverges far from the average.
Procedure: We relied on unsupervised clustering within each
cell in the 4 x 9 performance matrix. The spectral clustering
algorithm (based on 30-nearest neighbor graphs) partitioned
test cases in each cell such that the cases in the same
subcategory share more refined typo attributes (e.g., position
and phonetics) Figure 5 illustrates an example of 5 randomly
selected samples from 3 representative clusters (out of 79
clusters) under the category of ‘“edit-1 insertions in a long
word”. Each of these 3 subcategories include a specific type
of edit-1 insertion: cluster 1 captures a space insertion in the
middle of a word; cluster 2 captures a double-spell insertion
near the middle of a word; and cluster 3 captures a random
letter insertion in the beginning of the word. These clusters
and others can be differentiated because their features capture
the insertion positions, unique characters, resulting number of
tokens, and etc. Additionally, as shown in Figure 5, some of
the distance features (i.e., distance-based measures) are more
similar to each other compared to positional features (i.e.,
prefix and suffix matches).
Results: To visualize aggregate summaries of all clusters/-
subcategories simultaneously, we consolidated scatter plots
measuring the percentage of 1-hits over 20-hit against the
percentage of 20-hits over total within each subcategory in Fig-
ure 6. As expected, the Speller’s performance on short queries
(marked as orange) vs. long queries (marked as blue) are
visually distinguishable. Consistent with the previous results,
Figure 6 suggests that candidate generation is more variable
in phrase inputs whereas ML-based ranking is more variable
in word inputs, as the scattered points spread vertically on the
top row and horizontally on the bottom row.
Discussion: Unsupervised clustering automatically organizes
subcategories that would have been challenging to inspect by
manual inspection because each category has over thousands
of cases that are highly diverse. With newly identified subcate-
gories where test cases share similar typo patterns, it becomes
more convenient for developers to identify defect class.
Among the word inputs, we identified a subcategory (pin-
pointed in the top row of Figure 6) with 251 test cases of in-
sertions including “ochi” (expect correction: “mochi”), “lubs”
(expect correction: ‘“clubs”), and “laze” (expect correction:
“blaze”), where the first letter of a short word is deleted. As
one can imagine, there are many ways to correct the spelling of
these short queries and the ML ranker can only rely on limited
contextual information to rank them, so these queries indicate
a boundary case with more defects than others. Among the
phrase inputs, we identified a subcategory (pinpointed in the
bottom row of Figure 6) with 66 tests cases of deletions such as
“1 apple park wpay” (expected correction: “1 apple park way”)
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Fig. 5. Example test cases with their clustering features. Five test cases were
selected from three representative clusters. Each case is displayed based on
the query and its expected correction in the following brackets. Each row of
the heatmap corresponds to a test case, and each column is a distinct feature.
The color of each cell represents the feature values (in z-score for display
purpose). The test cases are ordered by their cluster grouping (based on from
our automatic triaging), and the columns are ordered by automatic hierarchical
clustering (based on built-in plotting utility function for display purpose).

and “100 fourth est’(expected correction: “100 fourth st”),
where the patterns are related to multi-token addresses where
last (short) token is modified. We discovered this defect class
because when short tokens such as “st”, “rd”, “way”, and etc.
are misspelled, multiple corrected addresses can confuse the
ML-based ranking system. These edge cases would have been
hidden with non-address queries if we only considered them
as part of their broader category of “edit-1 insertions within
short phrases”. Instead, unsupervised clustering allowed us to
identify such patterns without requiring manual inspection of
all phrases in this broad category.

V. RELATED WORK

We build upon the work of others to develop a practical
methodology to address challenges of regression testing for
ML software. Here we discuss prior work on testing ML
systems, input perturbation, testing spelling correction sys-
tems, and limitations of existing metrics to assess the overall
correctness of ML systems.

Several researchers have enumerated the challenges of as-
suring the quality of ML systems. Zhang et al. [2] surveyed
a comprehensive landscape of ML testing, linking research
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Fig. 6. Scatter plots of performance measures for subcategorized test cases.
The rows correspond to word vs. phrase inputs and the columns correspond to
different edit-1 typos. (We omitted edit-2 typos due to space limit.) Each ‘x’
marks a specific cluster/subcategory of test cases, and its position indicates
the two percentages computed on the test cases within the subcategory. The
percentages aggregated over tests cases across all the clusters in one category
are marked as ‘0’ (previously shown as individual cell values in Figure 4).
Short and long query types are distinguished by orange and blue respectively.
The red arrows highlight the worst performing clusters of test cases across
all word and phrase input types respectively.

topics in robustness, privacy, efficiency, and fairness. Other
reviews have emphasized general aspects such as defect de-
tection in ML programs [9] or implementation quality [1].

Crafted perturbations in testing trace back to metamorphic
testing [10]: it relies on perturbation patterns where the ex-
pected change in the output is predictable. Thus, metamorphic
testing can effectively alleviate the test oracle problem and
the test case generation problem. Xie et al. [22] proposed
multiple ways to apply mutational analysis in ML systems
including addition or removal of samples, classes, and features.
Zhang et al. [11] introduced perturbation into the training data
labels, re-trained the model, and measured the decrease of
accuracy to assess model fit. Often, the mutations are crafted
such that the ML system validation performance should be
invariant to the perturbations. For image data, Huang et al.
[23] relied on manipulations such as changes to camera angle
or lighting conditions to assess the robustness of an individual
image classification. Many works have proposed white-box
testing approaches that narrow down the focus on specific ML
models, specially neural networks. Pei et al. [12] proposed
DeepXplore, a differential white-box testing approach for
neural networks: it relies on gradient-based search techniques
to automatically optimize inputs cases so that it achieves a
‘neuron coverage’ (the fraction of activated neurons in a neural
network for a set of test inputs). Odena and Goodfellow
[13] modified coverage-guided fuzzing such that adaptively
mutated inputs can be updated to automatically search for
diverse neural networks states.

Our Speller developers use classical metrics, such as F
score to evaluate the goodness of their ML models in isolation.



However, the F; score alone cannot fully capture end-to-
end software service behavior. The technical reason is that
the actual ML code sits among many supporting software
components that need to function correctly [24]. When the F}
score is low, the root cause can be large amount of noise in the
data, the choice of a ML model with low predictive power [16],
or software issues related to logic condition handling, data
conversion, numerical accuracy, and etc. For software testing,
we need to rely on additional metrics and processes so that
we can distinguish issues that require data collection or ML
model improvements from those that require more immediate
bug fixes.

VI. CONCLUSION

We identified several practical challenges for functional
regression testing of ML software: the rapid obsolescence of
input and expected output parts of test cases; lack of coverage
measures; and insufficiency of individual ad hoc test failures
to reveal systematic bugs. We presented a methodology to
overcome these challenges, the salient features of which are
coverage-driven perturbation of production data to automati-
cally author a large number of test cases, consisting of both test
inputs and corresponding expected outputs, followed by clus-
tering to reveal failure patterns indicative of software/model
bugs. We demonstrated our methodology by applying it to a
context-aware ML-based Speller software. Our results showed
that we can completely automatically “refresh” our test suite
in numbers that are large enough to reveal patterns of failures.

Our study that focuses on the ML-based Speller raises some
threats to validity due to its empirical nature. We analyzed one
large set of production data that reflected specific bugs during
clustering. Thus, data captured in other time windows may
yield different test cases and clustering patterns. Due to the
data constraint in our application, spelling corrections used for
very long input strings, such as sentences and text documents,
have not been explored. Further, the context variables we
consider does not reflect the wide spectrum of all possible
contexts available to other spelling correction software.

Nevertheless, the key elements of the Speller testing
methodology are generalizable, including (1) leveraging the
scale of production data to automatically generate both test
inputs and expected outputs using a learned domain-specific
perturbation model. These test cases generalize the existing
cases in the production data to enrich edge cases that are
underrepresented in real training and test data; (2) adopting
user interaction data from production to resolve the oracle
problem: we determine the expected output of a number of
test cases where the consequent feedback is positive and
indicates that the users receive correct outputs; and (3) mining
the patterns of test cases using unsupervised learning and
clustering the test cases so we can automatically detect defect
classes based on the subgroups with high number of failure
cases. Our next step is to apply the methodology to additional
ML systems to automatically author test cases.
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