
Extending Manual GUI Testing Beyond Defects by
Building Mental Models of Software Behavior

Emily Kowalczyk
University of Maryland, College Park

Department of Computer Science
College Park, MD 20742
emilyk@cs.umd.edu

Atif Memon
University of Maryland, College Park

Department of Computer Science
College Park, MD 20742

atif@cs.umd.edu

ABSTRACT
Manual GUI testing involves providing inputs to the soft-
ware via its GUI and determining the software’s correctness
using its outputs, one of them being the GUI itself. Because
of its human-in-the-loop nature, GUI testing is known to be
a time-consuming activity. In practice, it is done by junior,
inexpensive testers to keep costs low at the very tail-end of
the software development process. In this paper, we posit
that the importance of GUI testing has suffered due to its
traditional narrow role – to detect residual software defects.
Because of its human-in-the-loop nature, GUI testing has
the potential to provide outputs other than defects and to
be used as inputs to several downstream activities, e.g., se-
curity analysis. One such output is the mental model that
the GUI tester creates during testing; a model that implic-
itly informs the tester of the software designer’s intent. To
evaluate our claim, we consider an important question used
for security assessment of Android apps: “What permission-
sensitive behaviors does this app exhibit?” Our assessment
is based on the comparison of 2 mental models of 12 An-
droid apps – one derived from the app’s usage and the other
from its public description. We compare these two models
with a third, automatically derived model – the permissions
the app seeks from the Android OS. Our results show that
the usage-based model provides unique insights into app be-
havior. This model may be an important outcome of GUI
testing, and its consistency with other behavioral informa-
tion about the app could later be used in software quality
assurance activities such as security assessment.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Software Testing

Keywords
GUI Testing, Mobile Security, Human Factors, User Study

1. INTRODUCTION
System testing, i.e., testing a software system as a whole,
of a GUI-based software necessarily involves supplying test
inputs via the GUI and observing the software’s correctness
through the GUI [7, 11, 23, 27, 38]. In practice, a large
portion of system testing is done manually, making it an
expensive activity [24]. Most organizations employ junior
testers, interns, and“trainees”to perform this type of testing
at the tail end of the development process in order to keep
their costs low [2, 35]. In doing so, they fail to fully harness
the full potential of manual GUI testing.

In this paper, we posit that the human-in-the-loop nature of
manual GUI testing may be exploited to broaden its scope
beyond defect detection. A human tester who goes about
for hours and days testing the software, clicking on buttons,
opening windows, entering data, and examining output, cre-
ates an implicit mental model of the software under test. For
example, while testing an automobile loan approval software
application, the tester may create a mental model of the
various parameters used by credit companies to determine
eligibility for a loan. As another example, upon seeing a
“camera” button in a mobile app, a tester may create a pre-
liminary mental model that the app uses the device’s cam-
era, perhaps to take photos or video. The tester may then
refine this preliminary model by additional interactions with
the software. Such mental models may be useful for other
software engineering activities, such as security assessment,
especially if the tester’s model of the software’s behaviors is
related to security-sensitive aspects of the software.

The very philosophy of GUI design lends itself to our new
vision for manual GUI testing. GUIs are typically designed
to help users form correct productive mental models [16,
19, 29]. These models are built upon prior knowledge, and
GUI designers use this fact; relying on the familiarity of a
user with an old, frequently used system gains user trust
and helps accomplish tasks. Since recognition is better than
recall, an effective GUI provides cues and visual elements to
relieve the user from the memory load necessary to recall
the functionality of the system [29, 34]. It is this design
philosophy of GUIs that we now exploit to build mental
models during GUI testing/usage and apply it to an aspect
of software security analysis.

Our exemplar platform is the Android OS. Given an An-
droid app, we have found that it is non-trivial to determine
the type and nature of permission sensitive API calls that

it might make [8, 12, 18], and consequently, the type and
set of device sensors (e.g., mic, camera) it might access. For
example, it is not easy to answer this question: Does the app
invoke the phone’s camera? or in other words: Does the app
invoke a permission-sensitive API method that would lead to
the app accessing the device camera? These questions have
clear implications for security – no one wants to install an
app that might maliciously take pictures and send them to
a network location. Current attempts to address these is-
sues are largely based on static analysis of the app’s code
[6, 8, 20] or extraction of its requested permissions from
its AndroidManifest.xml file [1, 10, 17, 28]. However, static
analysis faces severe problems because Android apps typi-
cally import large code libraries without using them and are
over-privileged [5, 12, 18, 30, 36].

We take a first step towards showing that the mental model
from manual GUI testing may be used to develop a set of
expected permissions an app may request. Specifically, we
designed a survey to develop two different user mental mod-
els of an app’s behavior based on differing perspectives: (1)
on using an app (the use perspective) and (2) on reading
an app’s description (the description perspective). We then
compared the outputs with a third perspective of an app’s
behavior, the app’s permission requests in the AndroidMan-
ifest.xml file (the permission perspective). Our results indi-
cate that while the models have many behaviors in common,
each perspective still contains behaviors unsupported by the
other perspectives. In fact, the model developed by app us-
age gives the most distinct perspective of the app’s behavior
with nearly 30% of its behaviors unsupported by the descrip-
tion or permission requests. We feel that our results may be
used to encourage adding a new dimension to GUI testing,
where GUI testers not only output a set of bugs, but also
the mental model they developed during testing, one that
describes what they expected the app to do.

In the next section we discuss related work and background.
In Section 3, we present the design of our survey with results
in Section 4. We conclude in Section 5 with a discussion of
limitations and future work.

2. BACKGROUND & RELATED WORK
Mental models have received significant attention in fields
such as psychology, cognitive science and human computer
interaction. While there are many uses and purposes for
mental models [29], in this paper we refer to them in the
most general sense, an underlying understanding of a sys-
tem’s workings, i.e., the app and its functionality. Mental
models have a long history in the field of human computer
interaction where they have had use in such areas as user in-
terface design and usability testing [25, 26, 32, 32]. In these
areas they’ve typically been used to better understand how
the user perceives the defined system and how to instruct
the user or design to reduce user error.

Mental models and user expectation have also been incorpo-
rated into issues of app privacy. For example, Felt et al. [13]
constructed a mental model of users’ perception on different
mobile privacy risks. They asked 3,115 smartphone users on
99 risks associated with 54 smartphone privileges. Each user
was to rate how upset they would be if the risk was to oc-
cur and the results were used to rank privacy risks based on

their importance to the surveyed users. Lin et al [22] used
crowdsourcing to capture users’ expectations of what sensi-
tive resources mobile apps use. They then used this data
to assess people’s perceptions of whether a given action is
legitimate for an app to do and how that action makes users
feel with respect to privacy.

User comprehension of app permissions has also been stud-
ied. Felt et al. [14] evaluated whether Android users pay
attention to understand and act on permission information
during installation. They conducted two usability studies:
an Internet survey of 308 Android users and a laboratory
study where 25 Android users were interviewed and ob-
served. Overall, they found users rarely paid attention to
the permissions when installing and few comprehended what
they meant. Similar conclusions were made by Kelley et
al. [21] who conducted interviews with 25 users in two dif-
ferent cities and also found users did not pay attention to
nor understand permissions.

Recently, significant attention has been given to expecta-
tion in app security. This research has primarily focused on
defining expectation through static artifacts such as permis-
sions and descriptions and has yet to incorporate a dimen-
sion based on use in their analysis. Qu et al. [28] examine the
app’s Description and Permission requests. Their analysis
tries to determine whether text in the app description pro-
vides any indication for why the app needs a specific permis-
sion (they considered only 3 permissions: READ CONTACTS,
READ CALENDAR, and RECORD AUDIO).

In later work [33], they check for consistency between De-
scription and Permissions, which they call description-to-
permission fidelity. Their results show that the description-
to-permissions fidelity is generally low on Google Play with
only 9.1% of applications requesting permission sets that
can be inferred from the description. They hypothesize
that new or individual developers—those not from a soft-
ware company—may fail to completely discuss the need for
some permission in the app description.

Gorla et al. [17] make use of app Description and API usage.
Their goal is to identify suspicious/outlier apps in respect
to API usage. They first examine the description text to
cluster descriptions into topics, and then use API calls to
reclassify apps as normal or abnormal depending on whether
their API usage falls in “normal” behavior, where normal is
defined by other apps in the cluster.

Further, Huang et al. [20] compare text strings used in the
user interface of an app with API calls to determine whether
the API usage is consistent with user expectation; Fuchs
et al. [15] extract security specifications from manifest files
to check whether data flows through those applications are
consistent with the specifications; and Peng et al. [31] use
probabilistic models to assign each app a risk score based on
its requested permissions.

Our research differs from the works mentioned above in that
it focuses on the mental model developed by using the app,
not the comprehension when reading the permissions re-
quested or from static artifacts alone. Further, our research
differs in its ultimate aim. We seek to construct models not

for usability testing, but understanding what the users ex-
pect the app to do and using this expectation to find apps
behaving unexpectedly.

3. SURVEY DESIGN
We now describe in detail our study, which focused on de-
termining whether mental models of an app’s functionality
constructed by using an app were distinct from those de-
veloped by other sources. Note the study’s aim was not
to determine the truth of such models but only that they
were distinct from those generated using other sources and
provided a unique perspective of the app. Specifically, we
sought to answer the following research question:

RQ: Does the mental model built from using an app
give unique information regarding an app’s behavior
that is not given in other commonly used specifica-
tion sources?

To answer this question, we conducted a series of user stud-
ies where each tester was asked to complete a series of tasks
and surveys. These responses were then compared against
models constructed from other common sources of behav-
ioral information such as an app’s description and requested
permissions. In the section that follows, we describe in de-
tail the sample of apps evaluated and the users who partic-
ipated. We then walk through a typical user study session
and the evaluation methods used to develop and compare
the constructed models.

3.1 Sample of Apps
Our testers’s evaluated 12 randomly selected apps from the
Google Play Store. These apps were selected from a database
of 400,000 Play Store apps downloaded from Jan-Nov 2014.
We sought a sample of diverse and commonly used apps. In
order to better ensure this, two constraints were placed on
the selection: 1) that the set of selected apps spanned a num-
ber of different Play Store categories (i.e., Games, Health,
Productivity, etc) and 2) each had over 1 million downloads
at the time of the study. Further details on the sample can
be found in Table 1.

3.2 Testers
The testers evaluating the apps and descriptions consisted
of 10 graduate and undergraduate students taking an upper-
level Android mobile programming course or a graduate level
software engineering course at the University of Maryland.
Participants had varying degrees of familiarity with the An-
droid framework, ranging from no knowledge to expert, and
each had over 2 years of experience in programming. Since
our participants were not professional testers and were in-
stead using the app as opposed to testing, the terms tester
and user are used synonymously through out the rest of the
paper.

3.3 User Sessions & Surveys
A typical session lasted approximately 30 minutes and was
broken into two sub-studies. The first study, which we will
refer to as the ”description study”, asked users to read a set
of app descriptions and then answer a one question survey
regarding their expectation of the app’s behavior based on
the description. The second study, which will be referred

to as the ”use study”, asked users to use a set of apps for 3
minutes each and complete a similar survey based on their
interaction with the app. Note that the apps evaluated by a
user in the description study were never the same as those
evaluated in the use study (i.e., no user completed a survey
for an app in the description study and then also completed
a survey for the app in the use study).

In the description study, users were handed a copy of an
app’s description taken from the Google Play Store as well
as a survey. Users were asked to read both documents and
complete the one question survey which asked:

Based on the description you just read, which of the below
behaviors would you NOT be surprised the app did?

The survey question was constructed to allow users to fo-
cus on what the app did (as opposed to what it did not)
and make sure behaviors the user was uncertain of were not
labelled unexpected. A checklist of possible behaviors was
then listed and users were asked to check those behaviors
which best applied. Each listed behavior correlated to one of
Android’s permission categories and a written description of
the behavior was provided based on Android documentation.
This description was provided to assist those users unfamil-
iar with the Android permission scheme and assist in be-
havior comprehension. For example, the contacts behavior
correlated to apps who requested at least one of the following
permissions: android.permission.READ CONTACTS or an-
driod.permission.WRITE CONTACTS. These permissions
had the following documentation:

• READ CONTACTS: Allows an application to read the
user’s contacts data.

• WRITE CONTACTS: Allows an application to write
(but not read) the user’s contacts data.

As a result, the contacts behavior next to the checkbox on
the survey was listed as follows:

Access or write to your contacts.

In total, there were 10 behaviors listed on the survey–accounts,
audio, bluetooth, camera, calendar, contacts, location, net-
work/internet/wifi, phone, and SMS/MMS.

During the use study, the user was given an Android device
and asked to use a given app until notified to stop. Each
user was instructed to pay special attention to UI elements
such as text, pictures or videos during their use as well as
explore the app’s UI and execution space as much as possible
(i.e. click all possible options to see different windows and
dialogs). In addition, users were given a new survey. This
time asking, ”Based on your interaction with the app you
just used, which behaviors would you NOT be surprised the
app did?” The same 10 behaviors were provided as choices.

In total, 10 user study sessions were conducted. For the
description study, each user read the description of 2-3 apps

Table 1: The apps evaluated and their survey coverage. ”D” is the number of completed description surveys
and ”U” is the number of completed user surveys. Apps in the left-hand table have multiple surveys for both
studies, while those on the right-hand have multiple for one.

App Category Installs D U App Category Installs D U

Accuweather Weather >10M 3 3 Amazon Shopping >10M 1 2
Bubble Shooter Galaxy Casual >5M 2 3 Google+ Social >1B 2 1
Dictionary.com Books & Ref >10M 2 2 Instagram Social >500M 0 3
LED Flashlight Tools >100M 3 2 Pandora Music & Audio >100M 1 3
Runkeeper Health & Fitness >10M 2 3 Skype Communication >500M 3 0
Utorrent Media & Video >50M 3 2
YouTube Media & Video >1B 3 3

and for the use study each user used 2-3 apps. Whether a
user evaluated 2 or 3 apps for either study was based only
on the allotted time and the user’s availability.

3.4 Evaluation Methods
In order to answer our research question, we constructed a
series of venn diagrams to visualize and assess the relation-
ship between the perspectives. Specifically, we generated
the individual venn diagrams for each app (Fig. 1) by doing
the following:

1. For both the description and use study, we averaged
the available survey responses for each. A behavior was
included in the average set if 50% or more of the users
had checked the behavior. The resulting average set
is referred to as the mental model for the given study.
A mental model is said to be for a specific perspective
based on the study the model represents. Therefore,
each app has potentially 2 mental models developed
from the studies. These models represent two differ-
ent perspectives: 1) D, the mental model built from
responses for the description study and representing
the description perspective, and 2) U , the model built
from the use study and representing the use perspec-
tive.

2. We then obtained M , a model based on the app’s re-
quested permissions and representing the permission
perspective. We obtained these permissions by disas-
sembling the apk file with apktool [4] and mapping
the requested permissions to the behaviors based on
PScout and Android documentation [3, 9]. Note only
behaviors which mapped to the 10 behaviors listed on
the survey were included and therefore any permissions
mapping to different behaviors were excluded from the
model.

3. We then plotted the available perspectives–U , D, or
M–against each other using the R ’VennDiagram’ pack-
age [37].

To obtain a summary venn diagram (Figure 2), we plotted
the sum of each category (i.e., U,M,D,U ∩M,U ∩D,D ∩
M,U ∩M ∩ D) across the individual apps. To restrict er-
rors, we restricted the sums to only include the 7 apps that
contained multiple survey responses for each study.

All additional analysis was done using basic set operations
on the resulting venn diagrams.

3.5 Threats to Validity
At this time, we outline several potential threats to validity.
First, since the apps evaluated are well known apps, prior
knowledge of the app may have been brought to the study.
For example, users evaluating Skype may have used the ap-
plication or been aware of its behavior prior to completing
the survey. This previous knowledge may have influenced
their response and allowed them to more accurately predict
the app’s behavior. That said, this would only cause the
survey results to be more likely to match the app’s true be-
havior and other perspectives, not less likely. Second, the
behaviors evaluated in our survey represent only a subset
of possible app behaviors. Therefore, the models we con-
struct are not exhaustive models of each app. The survey
excluded other functions such as accessing bookmarks, his-
tory, and social streams as well as reading and writing to
external storage. Further studies could be done to include
these and other additional behaviors.

4. SURVEY RESULTS & DISCUSSION
We now discuss the results of our research question, ”Does
the use of an app give information regarding an app’s func-
tionality that is not given in other commonly used sources?”
We approach this question from two angles: 1) how the use
perspective relates to other perspectives for individual apps
in the study and 2) how the use perspective compared across
the entire sample. Overall, 52 surveys were collected with 25
collected for the description study and 27 for the use. The
survey coverage for each app can be seen in Table 1. Note
the 7 apps listed on the left have multiple survey responses
for both studies, while the ones on the right have multiple
surveys for only one.

4.1 U vs. D vs. P : Per App
We begin by looking at the results for each app in the survey
and their resulting venn diagrams (Fig. 1). As discussed
in Section 3, we constructed these diagrams for each app
by averaging the individual survey responses and collecting
its requested permissions from the AndroidManifest.xml file.
As a result, we obtained at most three sets of behaviors for
each app which we call a model for a perspective. These
models include:

• U(use perspective), the average set of behaviors users
expected based on using the app

• D(description perspective), the average set of behav-
iors users expected based on the app’s description

Figure 1: Comparing suggested behaviors in each app. ”M”represents behaviors based on an app’s permission
requests. ”U” and ”D” are the average behaviors expected by users based on the app’s description (D) or
their use of the app (U). The numbers represent the number of behaviors in each set and intersection.

• M(permission perspective), the set of behaviors based
on the requested permissions in the app’s Manifest file

Each of these perspectives were then plotted against each
other as venn diagrams. Below we highlight some observa-
tions made from these diagrams.

1: No app had all three perspectives equal. This
means that none of the apps resulted in three equal sets
where U = M = D. That said, Skype did obtain equality
for all perspectives collected for it. Specifically, Skype had
no survey response for U , but did have D = M . This result
means the average user reading Skype’s description found
all requested permissions to be reasonable from the descrip-
tion. The app requested 9 of the 10 permission related be-
haviors: accounts, audio, bluetooth, camera, contacts, in-
ternet/wifi/network, location, phone, and sms. The aver-
age user response had checked all of these. Bubble Shooter
Galaxy was also close to achieving such equality, and will be
discussed in more detail in observation 4.

2: Two apps had all behaviors supported by at least
two perspectives. AccuWeather and YouTube were close
to achieving three equal sets with all of their behaviors being

supported by at least two perspectives. This is represented
in the diagrams by all of the behaviors being contained in
the intersections U ∩M , M ∩D, and U ∩M ∩D. For Ac-
cuWeather, U ∩M = {accounts}, M ∩ D ={SMS/MMS},
and U ∩M ∩D = {internet, location}. For YouTube, U ∩M
= {camera}, M ∩D ={accounts}, and U ∩M ∩D = {inter-
net}. Neither app contained behaviors in U∩D, meaning no
behaviors were in both the U and D perspective that were
not also supported in M .

3: Several apps had perspectives contained in other
perspectives. These apps included Dictionary.com, Run-
Keeper, Google+ and Amazon. Such cases suggest two pos-
sible scenarios: the use or description perspective may offer
a limited view of the app’s behavior or the containing per-
spectives is too large in scope. In 3 of the 4 apps, it was
D that was the contained set. In one instance D was con-
tained in M (RunKeeper) and in the others it was contained
in U ∪M (Dictionary.com) and U ∩M (Amazon). Google+
had U contained in D∩M . Other than the three apps men-
tioned above (Skype, Amazon and AccuWeather), M was
never contained in any other perspective.

4: Several apps had empty perspectives. Bubble Shooter

Galaxy, a popular Android game, obtained surveys for both
studies but on average users who used the app did not expect
it do any of the listed behaviors based on their use. Since U
is an empty set, the resulting venn diagram plots only 2 per-
spectives, D and M , despite having collected results for all
3. The plotted perspectives are completely aligned, meaning
that the behavior that is requested by the permission was
expected by the readers of the description. This behavior
contained in D and M was internet usage.

LED Flashlight also contained an empty set and users who
read its description did not find any listed behavior reason-
able to expect. As a result, D was an empty set and only
U and M are plotted in the venn diagram. Both U and M
disagree on the majority of the behaviors, sharing only one
in common which was again internet usage.

5: On average, each app had 2 behaviors unsup-
ported by other perspectives. Of the 12 apps evaluated,
24 behaviors were unsupported with each app on average
containing 2 such behaviors. When considering all 12 apps,
these were most often seen in the permission perspective,
followed by the use perspective and then description. When
considering only the 7 apps with multiple surveys for each
perspective, these unsupported behaviors occurred most of-
ten in the use perspective, followed by permissions and then
the description perspective. This suggests permissions offer
the most unique perspective of the app followed by the use
and the description, while in the more robust sample the
use perspective offered the most distinct perspective of the
app’s behavior.

In conclusion, 3 apps had all their behaviors supported–
Skype, AccuWeather, and YouTube (obs. 1 & 2). Of these
3, none had all three perspectives fully contained in U ∩
M ∩ D. On average each app had 2 behaviors that were
unsupported by other perspectives (obs. 5). Further, of
these perspectives, the use perspective was less likely than
D to be contained and was occasionally nearly disjoint (obs.
3 & 4).

4.2 U vs. D vs. P : Overall
To generalize our results, we combined the individual venn
diagrams into a cumulative venn diagram as described in
Section 3 and presented in Figure 2. Overall, across the 7
apps considered, there were 34 unique behaviors suggested
across the three perspectives. All three perspectives had a
similar number of behaviors with |M | = 21, |U | = 20 and
|D| = 17.

Of these behaviors, over half of each appeared in the in-
tersection and were therefore supported by at least one of
the other perspectives. Specifically, D had 15 of 17 intersect
with U∪M , U had 14 of 20 intersect with M∪D, and M had
18 of 21 intersect with M ∪U . Of these intersections, U ∩D
had the least. |U ∩M ∩D| = 7 and therefore only 7 of 31 be-
haviors (22.6%) were predictable from all three perspectives:
use, description and permissions. U ∩M and M ∩ D were
nearly equally split with |U ∩M | = 12 and |M ∩ D| = 13.
Therefore, if a behavior in M was not contained in both per-
spectives it slightly favored being suggested via description
over use. |U ∩D| = 2 so very few behaviors were expected
by users based on both the description and use that were not

Figure 2: Comparing behaviors across all apps. ”M”
represents behaviors based on app permission re-
quests. ”U”and ”D”are behaviors expected by users
based on its description (D) or their use of the app
(U). The numbers represent the number of behav-
iors in each set and intersection. Only apps with
multiple surveys for both sections are considered.

represented in the permissions. Similarly, only 2 behaviors
were in D that were unsupported by the others. 18 of 21
behaviors in M were within (U ∩M)∪ (D∩M). This means
of the behaviors found in the permissions roughly 86% were
supported via use or reading the description.

While each set appeared to have the majority of its be-
haviors supported by at least one other perspective, when
viewed collectively each set still gave a distinct perspective
of the app’s behavior with a large number of behaviors con-
tained in one perspective and not in the others. In fact,
|U + M + D| = 11. Therefore, 11 of 31 behaviors (nearly
35%) are suggested from only one perspective. Of these 11
behaviors, 6 were suggested by use only, 3 by permissions,
and 2 by description. Therefore, users tended to consider
more behaviors reasonable when using the app, but these
behaviors were nearly a third of the time unsupported by
the app’s permissions or description. In contrast, behaviors
suggested by permissions or description where unsupported
by any other perspectives only 13% of the time.

In conclusion, each perspective’s mental model had 70-88%
overlap with other perspectives, but the remaining 12-30%
provided a unique view of the app’s behavior with mental
models built while using the app being the most disjoint
perspective of the three. Combined with the per app re-
sults discussed above, we conclude that the use perspective
does indeed offer information about an app’s behavior not
provided in common sources such as the description or re-
quested permissions (RQ).

5. CONCLUSION
Over the last 2 decades, many of us have advocated the
automation of GUI system testing. In this paper, we have
taken a step back, and instead have shown the benefits of
performing GUI testing manually. We showed that the hu-
man tester/user implicitly builds a mental model of the soft-
ware while testing/using the software. This mental model,

if output and used correctly, can be used for other software
quality assurance activities. We demonstrated that a very
simple mental model, captured as a set of expected permis-
sions, has the potential to gain a unique understanding of a
software’s capabilities than would be obtained from its pub-
lic description and the formal permissions it seeks combined.

Our survey based approach is just a starting point to under-
standing the true potential of manual GUI testing. Much
future research is needed – we have identified 3 for the im-
mediate future. First, more sophisticated mental models can
be developed, perhaps reused from the human-computer in-
teraction literature, and their benefits studied. Second, tied
to these additional mental models, one needs to develop new
perspectives, so that other downstream activities may be de-
veloped. Finally, new processes that support the new “more
central” role of manual GUI testing need to be developed.

6. ACKNOWLEDGMENTS
This material is based on research sponsored by the National
Science Foundation 1205501 and DARPA under agreement
number FA8750-14-2-0039. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

7. REFERENCES
[1] K. Alharbi, S. Blackshear, E. Kowalczyk, A. M.

Memon, B.-Y. E. Chang, and T. Yeh. Android apps
consistency scrutinized. In CHI’14 Extended Abstracts
on Human Factors in Computing Systems, pages
2347–2352. ACM, 2014.

[2] C. Andersson and P. Runeson. Verification and
validation in industry - a qualitative survey on the
state of practice. In Empirical Software Engineering,
2002. Proceedings. 2002 International Symposium n,
pages 37–47, 2002.

[3] Official android documentation.
http://developer.android.com.

[4] Apktool. http://ibotpeaches.github.io/apktool/.

[5] AppBrain. Appbrain stats.
http://www.appbrain.com/stats/libraries.

[6] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
K. Rieck, and C. Siemens. Drebin: Effective and
explainable detection of android malware in your
pocket. In Proceedings of the Annual Symposium on
Network and Distributed System Security (NDSS),
2014.

[7] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and
F. Tip. A framework for automated testing of
javascript web applications. In Software Engineering
(ICSE), 2011 33rd International Conference on, pages
571–580. IEEE, 2011.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps.
SIGPLAN Not., 49(6):259–269, June 2014.

[9] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 217–228. ACM, 2012.

[10] Z. Aung and W. Zaw. Permission-based android
malware detection. International Journal of Scientific
and Technology Research, 2(3):228–234, 2013.

[11] O. El Ariss, D. Xu, S. Dandey, B. Vender,
P. McClean, and B. Slator. A systematic capture and
replay strategy for testing complex gui based java
applications. In Information Technology: New
Generations (ITNG), 2010 Seventh International
Conference on, pages 1038–1043. IEEE, 2010.

[12] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM conference on Computer
and communications security, pages 627–638. ACM,
2011.

[13] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99
problems, but vibration ain’t one: a survey of
smartphone users’ concerns. In Proceedings of the
second ACM workshop on Security and privacy in
smartphones and mobile devices, pages 33–44. ACM,
2012.

[14] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
page 3. ACM, 2012.

[15] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
Scandroid: Automated security certification of android
applications. Manuscript, Univ. of Maryland,
http://www. cs. umd.
edu/avik/projects/scandroidascaa, 2(3), 2009.

[16] W. O. Galitz. The essential guide to user interface
design: an introduction to GUI design principles and
techniques. John Wiley & Sons, 2007.

[17] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking app behavior against app descriptions. In
Proceedings of the 36th International Conference on
Software Engineering, pages 1025–1035. ACM, 2014.

[18] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 101–112, New
York, NY, USA, 2012. ACM.

[19] M. G. Helander. Handbook of human-computer
interaction. Elsevier, 2014.

[20] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang.
Asdroid: Detecting stealthy behaviors in android
applications by user interface and program behavior
contradiction. In Proceedings of the 36th International
Conference on Software Engineering, pages 1036–1046.
ACM, 2014.

[21] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. Sadeh, and D. Wetherall. A conundrum of
permissions: installing applications on an android
smartphone. In Financial Cryptography and Data
Security, pages 68–79. Springer, 2012.

[22] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist,
and J. Zhang. Expectation and purpose:
Understanding users’ mental models of mobile app
privacy through crowdsourcing. In Proceedings of the
2012 ACM Conference on Ubiquitous Computing,
UbiComp ’12, pages 501–510, New York, NY, USA,

2012. ACM.

[23] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Hierarchical gui test case generation using automated
planning. Software Engineering, IEEE Transactions
on, 27(2):144–155, 2001.

[24] K. Naik and P. Tripathy. Software testing and quality
assurance: theory and practice. John Wiley & Sons,
2011.

[25] J. Nielsen. Usability engineering. Elsevier, 1994.

[26] D. A. Norman. The design of everyday things: Revised
and expanded edition. Basic books, 2013.

[27] A. C. Paiva, N. Tillmann, J. C. Faria, and R. F. Vidal.
Modeling and testing hierarchical guis. In Abstract
State Machines, pages 329–344. Citeseer, 2005.

[28] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie.
Whyper: Towards automating risk assessment of
mobile applications. In USENIX Security, volume 13,
2013.

[29] S. J. Payne. Mental models in human-computer
interaction. The Human-Computer Interaction
Handbook, pages 63–75, 2007.

[30] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
Addroid: Privilege separation for applications and
advertisers in android. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, pages 71–72. ACM, 2012.

[31] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi,
R. Potharaju, C. Nita-Rotaru, and I. Molloy. Using
probabilistic generative models for ranking risks of
android apps. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 241–252. ACM, 2012.

[32] J. Preece, Y. Rogers, H. Sharp, D. Benyon,
S. Holland, and T. Carey. Human-computer
interaction. Addison-Wesley Longman Ltd., 1994.

[33] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and
Z. Chen. Autocog: Measuring the
description-to-permission fidelity in android
applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, pages 1354–1365. ACM, 2014.

[34] B. Shneiderman. Designing the user interface. Pearson
Education India, 2003.

[35] J. Spolsky. Top five (wrong) reasons you don‘t have
testers. In Joel on Software, pages 171–177. Apress,
2004.

[36] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and
H. Chen. Investigating user privacy in android ad
libraries. In Workshop on Mobile Security Technologies
(MoST). Citeseer, 2012.

[37] Venndiagram- r package.
http://cran.r-project.org/web/packages/venndiagram.

[38] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for gui-based software
applications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(1):4,
2007.

