
Using Tasks to Automate Regression Testing of GUIs
Atif M. Memon

Department of Computer Science
& Institute for Advanced Computer Studies

& Fraunhofer Center for Experimental Software Engineering
University of Maryland, College Park, Maryland, USA

email: atif@cs.umd.edu

ABSTRACT
Graphical User Interfaces (GUIs) present unique chal-
lenges for software testing. In this paper, we demonstrate
that a test suite originally used to test a GUI contains a large
number of unusable test cases for the modified GUI. We
present a novel technique to recreate unusable test cases by
associating meta-information (called a task) with each test
case. Tasks represent activities that can be performed by
using the software. The sequence of events in a test case
represents the actions needed to complete its associated
task. Even when changes to the GUI make test cases unus-
able, many tasks remain valid across successive GUI ver-
sions. We experimentally show that our technique is able
to automatically and efficiently regenerate a large number
of test cases.

KEY WORDS
Regression testing, AI planning, GUI testing

1 Introduction

A GUI test case contains two parts: (a) an initial GUI state
S0 in which the test case is executed, and (b) a sequence
of events e1; e2; . . . ; en which is the test input to the GUI
[12]. The initial state is used to initialize the GUI to a
desired state before events are executed on it. A change
in the GUI may render some of the test cases useless, ei-
ther because they specify an unreachable initial state or an
incorrect sequence of events for the modified GUI. Such
test cases are called affected and cannot be executed on the
modified GUI. In practice, since a large number of the orig-
inal test cases cannot be reused, GUI regression testing re-
quires redeveloping new test cases from scratch, expending
considerable resources [18].

In this paper, we reuse affected test cases by associ-
ating meta-information (called a task) with each test case.
Tasks are activities that can be performed by using the soft-
ware. The sequence of events in a test case represents the
actions needed to complete its associated task. An exam-
ple of a task for a drawing program may be: “duplicate an
object”, i.e., given a GUI in a state S0 = {circle, C1}, we
want a state S1 = {two circles, C1, C2}. A commonly
used sequence of events needed to achieve this task would
be < select(C1), copy(C1), paste(C2) >. Even when

changes to the GUI make test cases unusable, tasks remain
valid across successive GUI versions. In the above exam-
ple, even if copy and paste were removed from the GUI
and replaced with a duplicate event, the task would re-
main valid even though the sequence of events needed to
perform it would change. The test designer maintains a
task pool, modifying it when the GUI changes. The test
designer labels tasks as new, obsolete, or continuing for the
modified GUI. We represent tasks using an initial and goal
state pair. In prior work we have used tasks in a system
called Planning Assisted Tester for grapHical user inter-
face Systems (PATHS) [13, 17] that employs AI planning
to generate test cases for GUIs. We now leverage our expe-
rience to show how maintaining these tasks can be used for
automatic GUI regression testing.

In the next section, we give an overview of the design
of the regression tester and our replanning technique by us-
ing an example. In Section 3, we give a brief overview
of AI planning. In Section 4, we formally define a GUI
test case. The detailed design of the regression tester is
described in Section 6. We then describe experiments and
their results in Section 7. Finally, we conclude in Section 9
with a discussion of ongoing and future work.

2 Overview

Figure 1 shows a high-level view of the regression tester.
The inputs are the original test suite, generated to test the
original GUI, representations of both the original and mod-
ified GUIs, and the task pool. The outputs are the test case
that need to rerun and discarded test cases. The key com-
ponents of the regression tester include:

• Test case selector that partitions the original test suite
into (1) unaffected test cases, (2) test cases for obso-
lete tasks, and (3) test cases that are affected.

• Planning-based test case regenerator that uses plan-
ning to regenerate the affected test cases that have an
illegal event sequence. If successful, then the regener-
ated test case is used for regression testing; otherwise,
if the planner fails to find a plan, then the task is obso-
lete and the test case is discarded.

Details of the design of each of the above components
is presented in Section 6. We now give an overview of

New

Obsolete Continuing

Regression Tester
Original

test
suite

Test case
selector

Test case
selector

Test cases
to rerun

Output

Input

Discarded
test cases

(3)

(1)

(2)
Affected Test

Cases

with
illegal
event

sequence

with
illegal
event

sequence

Planning-based
test case

regenerator

Planning-based
test case

regenerator

Original &
modified

GUIs’
representations

Input

Output

Task
Pool

Figure 1. A High-level Overview of the Regression Tester.

their operation by taking an example of the popular xfig
software available on most Unix platforms1. We use ver-
sions Xfig 3.2 patchlevel 0-beta4 (Proto-
col 3.2) and Xfig 3.2 patchlevel 3c (Pro-
tocol 3.2), which we will refer to as the original and
modified software respectively. The original software is
shown in Figure 2. Note that the shaded boxes are not a part
of the GUI. They represent labels that we have used to rep-
resent events in the GUI. Dashed lines show the relation-
ships between these names and the corresponding events.
For example, the shaded box TypeInTextField repre-
sents an event used to enter text in the text-field. Solid line
arrows show the relationships between windows and the
events used to open them. For example, the event File
invokes the window entitled “Xfig: File menu”.

Consider the test case, generated for the original soft-
ware, shown in Figure 32. The test case uses a new event
ClickOnObject(OBJECT), which translates to clicking
the left mouse button on an OBJECT. Note that we have
represented events using the function notation with param-
eters. The exact representation details are discussed later
in Section 4. The test case first launches xfig, loads a file
named original.fig, cuts a circle object, saves the re-
sulting drawing in new.fig, and exits the application. An
example of running this test case using a specific instance
of the file original.fig is shown in Figure 4.

Now consider the modified software shown in Fig-
ure 5. The modified software contains most of the function-
ality of the original software. Specifically, a user is able to
load/save files and delete objects. A test designer perform-

1http://www.xfig.org/
2The initial state is not shown for space reasons.

File

TypeInTextField
(“FileName”, TEXT)

LoadClickButtonOnToolbar
(DELETE-objects)

Save

Quit

Figure 2. The Original Software (Xfig 3.2 patch-
level 0-beta4 (Protocol 3.2)).

Launch-application
(“xfig”) File TypeInTextField

(“FileName”, “original.fig”) Load

ClickButtonOnToolbar
(DELETE-objects)

ClickOnObject
(circle1) File

SaveTypeInTextField
(“FileName”, “new.fig”) Quit

Figure 3. Test Case for the Original Software.

ing regression testing on the modified software would need
to verify whether the tested functionality that was avail-
able in the original software works correctly in the mod-
ified software. However, examining the test case of Fig-
ure 3 shows that it cannot even be executed on the modified
software; performing File opens a pull-down menu, (not
the window as originally done) preventing event Type-
InTextField from being performed. Hence the mod-
ifications have made the test case of Figure 3 useless for
the modified software because the event sequence of the
test case has become illegal. The test case selector marks
this test case as “affected” so that it can be regenerated by
the planning-based test case regenerator. From our prior
experience of using xfig, we know that the modified soft-
ware can be used to perform the task of Figure 4. If we
were to perform the task manually, we would need to adapt
the event sequence to the modified software. The test case
needed to achieve the same task using the modified soft-

1. Open original.fig from
default directory.

2. Cut the small circle.
3. Save the modified file as
new.fig in default
directory.

1. Open original.fig from
default directory.

2. Cut the small circle.
3. Save the modified file as
new.fig in default
directory.

Steps needed to achieve task

Initial State

Goal State

Figure 4. Running the Test Case on a Specific Instance of
original.fig.

ware is shown in Figure 6. Our regression tester uses plan-
ning to generate the modified test case automatically. This
test case can be used for regression testing.

In principle, the approach outlined above can be used
for regression testing of GUIs if tasks are maintained with
each test case. However, regenerating test cases from
scratch is unnecessary since parts of the original test case
are still valid and may be reused. We employ a form of hi-
erarchical planning with caching to reuse these parts. We
provide details of this technique in Section 6. Later in Sec-
tion 7, we show that employing this technique considerably
speeds up the regression testing process.

3 Plan Generation

We now provide some an overview on plan generation. Au-
tomated plan generation has been widely investigated and
used within the field of artificial intelligence. Given an ini-
tial state, a goal state, a set of operators, and a set of objects,
a planner returns a set of steps (instantiated operators) to
achieve the goal. Many different algorithms for plan gen-
eration have been proposed and developed. The interested
reader can consult [24] for examples of recent work in the
field.

In this work, we employed a recently developed plan-
ning technology that increases the efficiency of plan gener-
ation. Specifically, we generate single level plans using the
Interference Progression Planner (IPP) [9], a system which
extends the ideas of the Graphplan system [5] for plan gen-
eration. Graphplan introduced the idea of performing plan
generation by converting the representation of a planning

File Open TypeInTextField
(“ FileName” , TEXT)

Open1
ClickButtonOnToolbar

(DELETE-objects)

SaveAs

Save

Exit

Figure 5. The Modified Software (Xfig 3.2 patch-
level 3c (Protocol 3.2)).

problem into a propositional encoding.
IPP forms plans at a single level of abstraction. We

have extended this to hierarchical planning, which is valu-
able for GUI test case generation for several reasons.
Firstly, since GUIs tend to be large, the use of a hierar-
chy allows us to decompose it into parts at different levels
of abstraction, resulting in greater efficiency. Secondly, de-
composition of the GUI results in generating plans for each
level individually. Changes to one component of the GUI
does not invalidate all the test cases. In fact, most of the
test cases can be retained. Changes need to be made only
to the test cases specific to the modified component, aiding
regression testing.

One final point concerns the generation of alternative
plans. As noted earlier, one of the main advantages of using
the planner in this application is to automatically generate
alternative plans for the same goal.

4 Representing GUI Test Cases

In this section, we first present a model of GUIs that we
have used earlier for test case generation [15, 16, 17], test
coverage evaluation [19], and test oracles [14, 12]. We then
formally define a GUI test case, and explain what we mean

ClickButtonOnToolbar
(DELETE-objects)

ClickOnObject
(circle1) File SaveAs

SaveTypeInTextField
(“ FileName” , “ new.fig”) File Exit

Launch-application
(“ xfig”) File TypeInTextField

(“ FileName” , “ original.fig”) Open1Open

Figure 6. Test Case for the Modified GUI.

by affected and unaffected test cases.
A GUI is modeled as a set of objects O = {o1, o2,

. . . , om} (e.g., label, form, button, text) and a set
of properties P = {p1, p2, . . . , pl} of those objects (e.g.,
background-color, font, caption). Each GUI
will use certain types of objects with associated properties;
at any specific point in time, the state of the GUI can be
described in terms of all the objects that it contains, and the
values of all their properties. Formally we define the state
of a GUI as follows:

Definition: The state of a GUI at time t is the set P of all
the properties of all the objects O that the GUI con-
tains at time t.

With each GUI is associated a distinguished set of
states called its valid initial state set:

Definition: A set of states SI is called the valid initial state
set for a particular GUI iff the GUI may be in any state
Si ∈ SI when it is first invoked.

The state of a GUI is not static; events performed on
the GUI change its state. These states are called the reach-
able states of the GUI. Events are modeled as state trans-
ducers. The function notation Sj = e(Si) is used to denote
that Sj is the state resulting from the execution of event e in
state Si. Events may be grouped together into sequences.
Of importance to testers are sequences that are permitted
by the structure of the GUI. We restrict our testing to such
legal event sequences, defined as follows:

Definition: A legal event sequence of a GUI is
e1; e2; e3; ...; en where ei+1 can be performed imme-
diately after ei.

Finally, we define a GUI test case as:

Definition: A GUI test case T is a triple < S0, e1; e2;
. . .; en, Sn >, consisting of a reachable state S0,
called the initial state for T, a legal event sequence
e1; e2; . . . ; en, and Sn, the final state of the GUI after
the test case is executed.

Note that S0 and Sn are a part of the test case and
represent the task associated with the test case.

5 Modeling GUI Events as Operators

Formally, each event is represented by an operator. These
operators are used by AI planners to generate plans. De-
tails of operator definitions have been presented in earlier
reported work [14]. Here, we give an overview of operators
by presenting an example. Intuitively, an operator specifies
the preconditions and effects of the event it represents. Pre-
conditions represent the conditions that must hold before
the event can be executed on the GUI. Effects represent the
modifications made to the GUI after the execution of the
event. For example, the following operator represents an
event called set-background-color used to change
the background-color of a GUI window:

Name: set-background-color(wX: win-
dow, Col: color)

Preconditions: is-open(wX)
Effects: background-color(wX, Col)

The operator definition shows that the event set-
background-color(wX, Col) takes two param-
eters: a window wX and color Col; wX and Col may
take specific values in the context of a particular GUI ex-
ecution. The preconditions require that the event set-
background-color(wX, Col) can only be exe-
cuted in a state in which window wX is open; the effects
being the background color of wX becomes Col.

6 Detailed Design of the Regression Tester

As shown earlier in Figure 1, the regression tester consists
of two main components: test case selector and test case
regenerator. This section provides details of the design of
these components.

Test case selector: The test case selector’s primary
function is to identify affected test cases. In addition, it
performs preliminary identification of discarded test cases.
For example, it discards all test cases associated with obso-
lete tasks.

Test case regenerator: The design of the test case
regenerator is essentially the same as that of PATHS [17]
except that we introduced a cache to reuse parts of the
original, affected test case. We haven’t included details of
the planning algorithms because of space reasons. The key
idea is to exploit the hierarchical planning algorithm and,
instead of invoking the planner for each sub-plan, we first
check to see whether a valid part of the test case already
exists. If it exists, then we reuse that part of the test case.

7 Experiments

To explore the practicality of our new regression test
case selection and replanning techniques, we imple-
mented the regression tester and evaluated its performance
on Xfig 3.2 patchlevel 0-beta4 (Protocol
3.2) and Xfig 3.2 patchlevel 3c (Protocol

1239

391

212

603

0

200

400

600

800

1000

1200

1400

Time to Regenerate
All

Test Case Selector Test Case
Regenerator with

Cache

Total Regression
Test Generation

T
ot

al
 T

im
e

(s
ec

.)

Figure 7. Time Taken to Perform Regression Test Selec-
tion/Regeneration vs. Time Taken to Regenerate All.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

6 20 30 40 50 60 70 80 90 124

Test Case Length

A
ve

ra
ge

 T
im

e
(s

ec
.) without cache

with cache

Figure 8. Replanning Using a Cache vs. Not Using a
Cache.

3.2). We used the former as our original GUI and the
latter as our modified GUI. We specifically wanted to de-
termine (1) how much time it takes to selectively generate
the regression test suite and how it compares to regenerat-
ing all test cases, (2) how much total time is saved in terms
of regeneration and re-execution, and (3) what affect cache
has on the regeneration process. The study was conducted
on a 1.7 GHz Pentium Workstation with 1 GB of RAM. All
execution times are CPU time. The study consisted of the
steps described next.

Generating test cases for the original software: There
are several automated test case generation techniques that
we may have used: (1) task-based using AI planning [17],
(2) structural using event-flow graphs and integration trees
[19], (3) user-model based using genetic algorithms [8],
and (4) random. Since we were going to use the planning-
based regression testing technique, we chose to use plan-
ning to generate the test cases in the first place. We used
the Unix-based IPP [10] planner.

We identified 100 tasks for which we generated 1000
test cases. Note that we can generate multiple test cases for
a given task. The test cases varied from length 6 to 124.

The total time taken to generate the test cases was 1239
seconds (Figure 7).

Implementation: All the components of the regres-
sion tester were implemented, except the planner that we
used off-the-shelf. Specifically, the test case selector was
implemented in Perl.

Regenerating test cases: The test case regenerator
successfully regenerated the affected test cases using the
tasks.

Cache vs. no Cache: We wanted to see what effect the
cache had on the performance of the test case regenerator.
So, we also generated test cases without using the cache.
The results are shown in Figure 8. The x-axis shows the
test case length, the y-axis shows the average time taken
to generate the test cases. In general, the cache cut the
regression test case generation time in half.

The regression test cases obtained above form an im-
portant part of the regression testing test suite. The test de-
signer will also need to generate additional test cases from
new tasks to check the new parts of the GUI.

In this experiment we have successfully demonstrated
that our technique is practical and can be used to select
test cases for GUI regression testing. The use of this tech-
nique helps reduce the cost of GUI regression testing. Our
experience with GUI testing has shown that the currently
employed techniques, which are largely manual aided with
capture/replay tools, require weeks to develop only a few
hundred test cases.

8 Related Work

Although regression testing of conventional software has
received a lot of attention [4, 21, 22, 23], there has been
almost no reported research on GUI regression testing.
The exception is White [25] who proposes a Latin square
method to reduce the size of the regression test suite. The
underlying assumption is that it is enough to check pairwise
interactions between components of the GUI. The tech-
nique requires that each menu item appears in at least one
test case. This strategy seems promising since it also em-
ploys GUI events. However, the technique needs to be ex-
tended to GUI items other than menus. Moreover, detailed
studies need to be conducted to verify whether the pairwise
interactions checking assumption is sufficient.

Several strategies for regression testing of conven-
tional software have been proposed [2, 6, 20, 11]. One re-
gression testing strategy proposes rerunning all test cases
that have not become obsolete. Since this retest-all strat-
egy is resource intensive, numerous efforts have been made
to reduce its cost. Selective retest techniques [1, 3, 7] at-
tempt to reduce the cost of regression testing by testing
only selected parts of the software. These techniques have
traditionally focused on two problems: (1) regression test
selection problem, i.e., selecting a subset of the existing
test cases [22], and (2) coverage identification problem, i.e.,
identifying portions of the software that require additional
testing.

9 Conclusions

This paper presented a new technique for GUI regression
testing based on replanning affected GUI test cases. Re-
planning is facilitated by associating a task with each test
case. Tasks are activities that can be performed by us-
ing the software. The sequence of events in a test case
represents the actions needed to complete its associated
task. Even when changes to the GUI make test cases un-
usable, tasks remain valid across successive GUI versions.
Affected test cases are identified by employing the spec-
ifications of the GUI. Differences between the event-flow
graphs and integration trees of the original and modified
GUIs are obtained to identify affected test cases. Re-
sults of a case study performed on Xfig 3.2 patch-
level 0-beta4 (Protocol 3.2) and Xfig 3.2
patchlevel 3c (Protocol 3.2) show that the re-
gression testing technique is efficient, in that it identifies
test cases that need not be rerun on the modified GUI and
helps select a set of affected test cases that are efficiently
regenerated and rerun.

References

[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London.
Incremental regression testing. In Proceedings of the Con-
ference on Software Maintenance, pages 348–357, Wash-
ington, Sept. 1993.

[2] T. Ball. On the limit of control flow analysis for regres-
sion test selection. In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analy-
sis (ISSTA-98), volume 23,2 of ACM Software Engineering
Notes, pages 134–142, New York, Mar.2–5 1998.

[3] P. Benedusi, A. Cimitile, and U. DeCarlini. Post-
maintenance testing based on path change analysis. In Pro-
ceedings of the IEEE Conference on Software Maintenance,
pages 352–368, 1988.

[4] D. Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23(8):498–
516, Aug. 1997.

[5] A. L. Blum and M. L. Furst. Fast planning through plan-
ning graph analysis. Artificial Intelligence, 90(1–2):279–
298, 1997.

[6] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Transactions
of Software Engineering and Methodology, 2(3):270–285,
July 1993.

[7] M. J. Harrold and M. L. Soffa. Interprocedual data flow
testing. In Proceedings of the ACM SIGSOFT ’89 Third
Symposium on Testing, Analysis, and Verification (TAV3),
pages 158–167, 1989.

[8] D. J. Kasik and H. G. George. Toward automatic genera-
tion of novice user test scripts. In Proceedings of the Con-
ference on Human Factors in Computing Systems : Com-
mon Ground, pages 244–251, New York, 13–18 Apr. 1996.
ACM Press.

[9] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos. Ex-
tending planning graphs to an ADL subset. Lecture Notes
in Computer Science, 1348:273, 1997.

[10] J. Koehler, B. Nebel, J. Hoffman, and Y. Dimopoulos. Ex-
tending planning graphs to an ADL subset. In S. Steel
and R. Alami, editors, Proceedings of the 4th European
Conference on Planning (ECP-97): Recent Advances in AI
Planning, volume 1348 of LNAI, pages 273–285, Berlin,
Sept.24 –26 1997. Springer.

[11] D. C. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. On
regression testing of object-oriented programs. The Journal
of Systems and Software, 32(1):21–31, Jan. 1996.

[12] A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

[13] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GUIs. In
Proceedings of the 21st International Conference on Soft-
ware Engineering, pages 257–266. ACM Press, May 1999.

[14] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Proceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Soft-
ware Engineering (FSE-8), pages 30–39, NY, Nov. 8–10
2000.

[15] A. M. Memon, M. E. Pollack, and M. L. Soffa. Plan gen-
eration for GUI testing. In Proceedings of The Fifth Inter-
national Conference on Artificial Intelligence Planning and
Scheduling, pages 226–235. AAAI Press, Apr. 2000.

[16] A. M. Memon, M. E. Pollack, and M. L. Soffa. A planning-
based approach to GUI testing. In Proceedings of The 13th
International Software/Internet Quality Week, May 2000.

[17] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierar-
chical GUI test case generation using automated planning.
IEEE Transactions on Software Engineering, 27(2):144–
155, Feb. 2001.

[18] A. M. Memon and M. L. Soffa. Regression testing of GUIs.
In Proceedings of the 9th European Software Engineering
Conference (ESEC) and 11th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE-11), Sept. 2003.

[19] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. In Proceedings of the 8th European
Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-9), pages 256–267, Sept. 2001.

[20] D. Rosenblum and G. Rothermel. A comparative study
of regression test selection techniques. In Proceedings of
the IEEE Computer Society 2nd International Workshop on
Empirical Studies of Software maintenance, pages 89–94,
Oct. 1997.

[21] D. S. Rosenblum and E. J. Weyuker. Using coverage infor-
mation to predict the cost-effectiveness of regression test-
ing strategies. IEEE Transactions on Software Engineering,
23(3):146–156, Mar. 1997.

[22] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software En-
gineering and Methodology, 6(2):173–210, Apr. 1997.

[23] G. Rothermel and M. J. Harrold. Empirical studies of a safe
regression test selection technique. IEEE Transactions on
Software Engineering, 24(6):401–419, June 1998.

[24] R. Simmons, M. Veloso, and S. Smith, editors. Proceedings
of the Fourth International Conference on Atrificial Intelli-
gence Planning Systems, Pittsburgh, PA, June 1998. AAAI
Press.

[25] L. White. Regression testing of GUI event interactions. In
Proceedings of the International Conference on Software
Maintenance, pages 350–358, Washington, Nov.4–8 1996.

