DART: A Framework for Regression Testing ‘“Nightly/daily Builds” of GUI
Applications

Atif Memon
Department of Computer Science
and Fraunhofer Center for
Experimental Software Engineering
University of Maryland
College Park, Maryland, USA
atif@cs.umd.edu

Abstract

“Nightly/daily building and smoke testing” have become
widespread since they often reveal bugs early in the soft-
ware development process. During these builds, software is
compiled, linked, and (re)tested with the goal of validating
its basic functionality. Although successful for conventional
software, smoke tests are difficult to develop and automat-
ically rerun for software that has a graphical user inter-
face (GUI). In this paper, we describe a framework called
DART (Daily Automated Regression Tester) that addresses
the needs of frequent and automated re-testing of GUI soft-
ware. The key to our success is automation: DART auto-
mates everything from structural GUI analysis, test case
generation, test oracle creation, to code instrumentation,
test execution, coverage evaluation, regeneration of test
cases, and their re-execution. Together with the operating
system’s task scheduler, DART can execute frequently with
little input from the developer/tester to retest the GUI soft-
ware. We provide results of experiments showing the time
taken and memory required for GUI analysis, test case and
test oracle generation, and test execution. We also empiri-
cally compare the relative costs of employing different levels
of detail in the GUI test cases.

1. Introduction

“Nightly/daily builds and smoke tests” [19, 23, 32]
have become widespread [34] as many software develop-
ers find them useful [15]. Popular software that use daily
nightly/builds include WINE [1], Mozilla [2], AceDB [3],
and openwebmail [4]. During nightly builds, software is
compiled, linked and “smoke tested” (“smoke tests” are also
called “sniff tests” or “build verification suites” [21]). Typ-

Ishan Banerjee, Adithya Nagarajan
Department of Computer Science
University of Maryland
College Park, Maryland, USA
{ishan, sadithya}@cs.umd.edu

ically unit tests [34] and sometimes acceptance tests [12]
are executed during smoke testing. Such tests are run to
(re)validate the basic functionality of the system [21]. The
smoke tests exercise the entire system; they don’t have to
be an exhaustive test suite but they should be capable of
detecting major problems. A build that passes the smoke
test is considered “a good build”. Bugs are reported, usu-
ally in the form of e-mails to the developers [34], who can
quickly resolve the bugs. This practice is a useful qual-
ity assurance mechanism to catch defects early in software
systems that are typically being simultaneously modified
by several developers. Frequent building and re-testing is
also gaining popularity because new software development
processes (such as extreme programming [14, 38]) advo-
cate a tight development/testing cycle [33]. A number of
tools support daily builds; some of the popular tools include
CruiseControl [5], IncrediBuild [6], Daily Build [7], and Vi-
sual Build [8].

A limitation of current nightly builds is inadequate test-
ing and re-testing of software that has a graphical user
interface (GUI).! Frequent and efficient re-testing of con-
ventional software has leveraged the strong research con-
ducted for automated regression testing [36], which is a
software maintenance activity, done to ensure that modifi-
cations have not adversely affected the software’s quality
[36]. Although there has been considerable success in de-
veloping techniques for regression testing of conventional
software [11, 35], regression testing of GUIs has been ne-
glected [24]. Consequently, there are no automated tools
and efficient techniques for GUI regression testing [25].

Not being able to adequately test GUIs has a negative
impact on overall software quality because GUIs have be-
come nearly ubiquitous as a means of interacting with soft-

Note that we focus on testing the functionality of the GUI, not usabil-
ity [37] issues such as user-friendliness.

ware systems. GUIs today constitute as much as 45-60%
of the total software code [31]. Currently, three popular
approaches are used to handle GUI software when perform-
ing nightly builds. First, and most popular, is to perform no
GUI smoke testing at all [21], which either leads to compro-
mised software quality or expensive GUI testing later. Sec-
ond is to use test harnesses that call methods of the under-
lying business logic as if initiated by a GUI This approach
not only requires major changes to the software architecture
(e.g., keep the GUI software “light” and code all “impor-
tant” decisions in the business logic [22]), it also does not
perform testing of the end-user software. Third is to use ex-
isting tools to do limited GUI testing [13, 20]. Examples of
some tools used for GUI testing include extensions of JUnit
such as JFCUnit, Abbot, Pounder, and Jemmy Module? and
capture/replay tools [16] such as WinRunner? that provide
very little automation [26], especially for creating smoke
tests. Developers/testers who employ these tools typically
come up with a small number of smoke tests [23].

In this paper, we describe a new framework called DART
(Daily Automated Regression Tester) that addresses the
needs of re-testing frequent builds of GUI software. The
key to the success of DART is automation. DART auto-
mates everything from structural GUI analysis (which we
refer to as GUI ripping), test case generation [29, 27], test
oracle creation [28], and code instrumentation to test exe-
cution, coverage evaluation [30], regeneration of test cases,
and their re-execution. Together with the operating system’s
task scheduler (e.g., Unix cron job), DART can execute fre-
quently with little input from the developer/tester to smoke
test the GUI software. We provide results of experiments
showing the time taken by the ripper, test case generator,
test oracle generator, and test executor. We also empirically
compare the relative costs (in terms of time and memory)
of employing different levels of oracle information for re-
testing.

The important contributions of the method presented in
this paper include the following.

e We define a formal model of a GUI derived from spec-
ifications that is useful for smoke testing. In this paper
we demonstrate its usefulness in developing an effi-
cient and automated regression tester that can be run
daily.

e We develop a new process for re-testing nightly builds
of GUI software.

e Our regression testing process can not only be used for
nightly builds but for general GUI re-testing.

e We show our re-testing process as a natural extension
of our already implemented GUI testing tools [26, 28,
29, 25, 30, 27, 24].

2http://junit.org/news/extension/gui/index.htm
3http://mercuryinteractive.com

Phase Step Developer/tester DART
Identification 1 |Identify AUT
2 Rip AUT's GUI
Analysis 3 Verify and modify
structure
4 Create event-flow graphs
Test Adequacy and integration tree
Definition 5 Create matrix M
6 |Define M’
Test 7 Generate test cases
Generation 8 Generate expected output
Modification | 9 |Modify AUT
10 Instrument code
Execute test cases and
11 compare with expected
Regression output
Testing 12 Generate execution report
13 Generate coverage report
14 E-mail reports
15 Examine reports and fix
bugs
Analysis and 16 |Modify M" if needed
Regeneration | |7 Generate additional test
cases
13 Generate additional
expected output

Table 1. Roles of the Developer/tester and
DART.

In the next section, we describe the process employed by
DART for GUI re-testing. In Section 3, we present details
of the design of DART. Results of experiments in Section 4
show that DART is efficient enough for frequent re-testing.
We discuss related research and practice in Section 5 and
finally conclude in Section 6 with a discussion of ongoing
and future work.

2. The DART Process

In this section we present the steps of the DART process.
The goal is to provide the reader with a high-level picture
of the operation of DART and highlight the role of the de-
veloper/tester in the overall process. Details of technologies
used to develop DART are given in Section 3. Some of the
terms used here will be formally defined later. These steps
are also summarized in Table 1.

1. The developer identifies the application under test
(AUT). This essentially means that the source files and
executables are identified.

2. DART automatically analyzes the AUT’s GUI struc-
ture by a dynamic process that we call GUI ripping.

Matrix M Test Case Length
Component Name | 1 2 3 4
Main 56| 791 14354| 255720
FileOpen 10| 80| 640| 5120
FileSave 10| 80| 640| 5120
Print 12/108| 972 8748
Properties 13[143| 1573] 17303
PageSetup 11] 88| 704| 5632
FormatFont 9| 63| 441] 3087

Figure 1. Matrix M for MS WordPad.

It automatically traverses all the windows of the GUI,
identifies all the GUI objects and their properties, and
saves the extracted structure in an XML file.

. The developer then verifies the correctness of the struc-
ture and makes any needed changes by using an edit-
ing tool. The number of changes needed depend on
the AUT and the implementation platform. Common
examples include missed events and windows. The
changes are saved so that they can be automatically
applied to future versions of the AUT.

. DART uses the GUI structure to create event-flow
graphs and an integration tree [30] (Section 3). These
structures are used in the next step and in Step 7 to au-
tomatically generate test cases and evaluate test cover-
age.

. The developer is then presented with a matrix M (i, j),
where ¢ is a GUI component (a modal dialog with as-
sociated modeless windows; defined formally in Sec-
tion 3) and j is the length of a test case. M (i,j) = N
means that NV test cases of length j can be executed on
component ¢. Although we advocate running at least
all test cases of length 1 and 2 for smoke testing, the
developer is free to choose test cases of any length. An
example of such a matrix for MS WordPad is shown
in Figure 1. The rows show the components of the
WordPad GUI and columns show the length of the test
cases.

. The developer creates a new matrix M’ (i, j); the en-
tries of M’ specify the number of test cases of length
j that should be executed on component i. The devel-
oper needs to fill in the required number of test cases, a
task that typically requires a few minutes. An example
is seen in Figure 2. Note that the test designer has cho-
sen to not generate any length 4 test cases, indicated
by “0” in Column 4.

. DART uses an automated test case generator to gener-
ate the smoke test cases.

. A test oracle generator is used to automatically create
an expected output for the next version of the AUT.
The smoke test suite for subsequent versions is now
ready.

. The development team modifies the AUT.

10.

11.

12.

13.

14.

15.

16.

17.
18.

Matrix M

Test Case Length
Component Name | 1 2 3 4
Main 56| 791 50 0
FileOpen 10| 80 80 0
FileSave 10| 80 70 0
Print 12/108 0 0
Properties 13[143 0 0
PageSetup 11| 88 25 0
FormatFont 9| 63| 400 0

Figure 2. Matrix M’ for MS WordPad.

The operating system’s task scheduler launches
DART, which in turn launches the AUT. DART auto-
matically instruments the AUT’s source code. A code
instrumenter (e.g., Instr [9]) is used to instrument the
code. This code is executed during testing to gather
code coverage information.

Test cases are executed on the AUT automatically and
the output is compared to the stored expected output.
An execution report is generated in which the executed
test cases are classified as successful or unsuccessful.
Two types of coverage reports are generated: (1) state-
ment coverage showing the frequency of each state-
ment executed, and (2) event coverage, reported as
a matrix C(i,j). The format of C is exactly like
M’, allowing direct comparison between M’ and C.
C(i,j) = N’ shows that N’ test cases were executed
on the AUT.

These results of the test execution are e-mailed to the
developers.

The next morning, developers examine the reports and
fix bugs. They also examine the unsuccessful test
cases. Note that a test case may be unsuccessful be-
cause of (1) the expected output did not match the ac-
tual output. If the expected output is found to be in-
correct, then a test oracle generator is used to auto-
matically update the expected output for the modified
AUT, or (2) an event in the test case had been modified
(e.g., deleted) preventing the test case from proceed-
ing. These test cases can no longer be run on the GUI
and are deleted.

Using the coverage reports, the developers identify
new areas in the GUI that should be tested. They mod-
ify M’ accordingly.

The new test cases, and

oracle information are generated.

Steps 10 through 18 are repeated throughout the devel-
opment cycle of the AUT.

Note that we do not mention test cases other than those
generated for GUI testing. Additional test cases (such as
code-based tests) can easily be integrated in the above cycle
to improve overall test effectiveness.

Test
Executor

Test Oracle
Generator

Coverage
Evaluator

Event-flow Graphs
GUI

Representation

| Integration Tree

| Objects & Properties

Code
Instrumenter

Test case
Generator

Figure 3. Modules of DART.

3. Design of DART

Before we discuss the details of the design of DART, we
will first mention the requirements that provided the driving
philosophy behind this design. We required that DART be:

e automated so that the developer’s work is simplified.
This is especially necessary for first-time generation of
smoke test cases;

o efficient since GUI testing is usually a tedious and ex-
pensive process. Inefficiency may lead to frustration
and abandonment;

e robust; whenever the GUI enters an unexpected state,
the testing algorithms should detect the error state and
recover so that the next test case can be executed;

e portable; test information (e.g., test cases, oracle in-
formation, coverage report, and error report) generated
and/or collected on one platform should be usable on
other platforms if the developers choose to change the
implementation platform during development;

e general enough to be applicable to a wide range of
GUIs.

Figure 3 shows the primary modules of DART and their
interaction. The GUI representation is the “glue” that holds
all modules together. All modules interact with each other
via the representation. We first describe the representation
and then briefly describe each module.

3.1. GUI Representation
The GUI representation is a formal model of the AUT’s

GUI. Note that the entire representation is extracted auto-
matically from the implemented GUI.

Objects & Properties: A GUI is modeled as a set of 0b-
jects O ={o1, 09, ..., 0 } (e.g., Label, form, button,
text) and a set of properties P = {p1, pa, ..., pi} of those
objects (e.g., background-color, font, caption).
Each GUI will use certain types of objects with associated
properties; at any specific point in time, the state of the GUI
can be described in terms of all the objects that it contains,
and the values of all their properties. Formally we define
the state of a GUI as follows:

Definition: The state of a GUI at time ¢ is the set P of all
the properties of all the objects O that the GUI con-
tains. O

With each GUI is associated a distinguished set of states
called its valid initial state set:

Definition: A set of states Sy is called the valid initial state
set for a particular GUI iff the GUI may be in any state
S; € St when it is first invoked. O

The state of a GUI is not static; events performed on the
GUI change its state. These states are called the reachable
states of the GUI.

Events: The events are modeled as functions from one
state to another.

Definition: The events E = {ej, e, ..., €,} associated
with a GUI are functions from one state to another state
of the GUI. O

The function notation S; = e(S;) is used to denote that
S; is the state resulting from the execution of event e in
state S;. Events may be stringed together into sequences.
Of importance to testers are sequences that are permitted by
the structure of the GUI. We restrict our testing to such legal
event sequences, defined as follows:

Definition: A legal event sequence of a GUI is
e1;es;es;...;e, where e;y; can be performed
immediately after e;. O

An event sequence that is not legal is called an illegal
event sequence. For example, since in MS Word, Cut (in
the Edit menu) cannot be performed immediately after
Open (in the File menu), the event sequence Open; Cut
is illegal (ignoring keyboard shortcuts).

Components: GUISs, by their very nature, are hierarchi-
cal, and this hierarchy may be exploited to identify groups
of GUI events that may be performed in isolation. One
hierarchy of the GUI, and the one used in this research,
is obtained by examining modal windows in the GUIL, i.e.,
windows that once invoked, monopolize the GUI interac-
tion, restricting the focus of the user to a specific range of
events within the window, until the window is explicitly ter-
minated. The language selection window in MS Word is

an example of a modal window. Other windows, also ex-
amined, in the GUI are called modeless windows* that do
not restrict the user’s focus; they merely expand the set of
GUI events available to the user. For example, in MS Word,
performing the event Replace opens a modeless window
entitled Replace.

At all times during interaction with the GUI, the user
interacts with events within a modal dialog. This modal
dialog consists of a modal window X and a set of mode-
less windows that have been invoked, either directly or in-
directly by X. The modal dialog remains in place until X
is explicitly terminated. Intuitively, the events within the
modal dialog form a GUI component,’

Definition: A GUI component C' is an ordered pair (RF,
UF), where RF represents a modal window in terms
of its events and U/ F is a set whose elements represent
modeless windows also in terms of their events. Each
element of {F is invoked either by an event in U F or
RF. O

Note that, by definition, events within a component do
not interleave with events in other components without the
components being explicitly invoked or terminated.

Event-flow Graphs: A GUI component may be rep-
resented as a flow graph. Intuitively, an event-flow graph
(EFG) represents all possible interactions among the events
in a component.

Definition: An event-flow graph for a component C is a
4-tuple <V, E, B, I> where:

1. Vs aset of vertices representing all the events in
the component. Each v €V represents an event
inC.

2. E CV x Vis a set of directed edges between
vertices. Evente; follows e; iff e; may be per-
formed immediately after e;. An edge (vg,vy) €
E iff the event represented by v, follows the
event represented by v,.

3. B C V is a set of vertices representing those
events of C' that are available to the user when
the component is first invoked.

4. I C V is the set of events that invoke other com-
ponents.

O

Note that an event-flow graph is not a state machine.
The nodes represents events in the component and the
edges show the follows relationship. An example of
an event-flow graph for a part of the Main® component of

4Standard GUI terminology, e.g., see
http://java.sun.com/products/jlf/ed2/book/HIG.Dialogs.html.

SGUI components should not be confused with GUI widgets that are
the building blocks of a GUL

6The component that is presented to the user when the GUI is first
invoked.

To File, Edit

and Help v

» To File, Edit
and Help

Figure 4. EFG for Part of MS WordPad.

Figure 5. IT for Part of MS WordPad.

MS WordPad is shown in Figure 4. At the top are three
vertices (File, Edit, and Help) that represent part of
the pull-down menu of MS WordPad. They are events
that are available when the Main component is first in-
voked. Once File has been performed in WordPad, any of
Edit, Help, Open, and Save events may be performed.
Hence there are edges in the event-flow graph from File
to each of these events. Note that Open, About and Con-
tents are shown with dashed ovals. We use this notation
for events that invoke other components, i.e., I = {Open,
About, Contents}. Other events include Save, Cut,
Copy, and Paste. After any of these events is performed
in MS WordPad, the user may perform File, Edit, or
Help, shown as edges in the event-flow graph.

Integration Tree: Once all the components of the GUI
have been represented as event-flow graphs, the remaining
step is to construct an integration tree (IT) to identify in-
teractions among components. These interactions take the
form of invocations, defined formally as:

Definition: Component C;; invokes component C, iff C,
contains an event e, that invokes C,. O

Intuitively, the integration tree shows the invokes rela-
tionship among all the components in a GUI. Formally, an
integration tree is defined as:

Definition: An integration tree is a triple < N, R,B >,
where N is the set of components in the GUIl and R €
N is a designated component called the Main compo-
nent. B is the set of directed edges showing the invokes
relation between components, i.e., (Cy,C,) € B iff
C invokes C,,. |

Note that in general, the relationship among components
may be represented by a dag, since multiple components
may invoke a component. However, the dag can be con-
verted into a tree by copying nodes. The tree model also
simplifies our algorithms based on tree traversals of the in-
tegration tree. Figure 5 shows an example of an integra-
tion tree representing a part of the MS WordPad’s GUI. The
nodes represent the components of the GUI and the edges
represent the invokes relationship between the components.
Components’ names indicate their functionality. For ex-
ample, FileOpen is the component of WordPad used to
open files. The tree in Figure 5 has an edge from Main to
FileOpen showing that Main contains an event, namely
Open (see Figure 4) that invokes FileOpen.

3.2. Modules of DART

Having presented a formal model of the GUI, we now
briefly describe each module shown in Figure 3. Note that
due to lack of space, we provide, for each module, only the
details needed to understand this paper. Additional details
and algorithms are available in previously reported litera-
ture [24, 28, 30, 29].

Test Case Generator: Our concepts of events, objects
and properties can be used to formally define a GUI test
case:

Definition: A GUI test case 7" is a pair < Sy, e1; ea; .. .;
en >, consisting of a state Sy € S7, called the initial
state for T, and a legal event sequence eq;€s;. .. ; €n.
O

We know from Section 3 that event-flow graphs and the
integration tree represent legal sequences of events that can
be executed on the GUI. To generate test cases, we start
from a known initial state .Sy and use a graph traversal al-
gorithm, enumerating the nodes during the traversal, on the
event-flow graphs. Sequences of events ej;es;. .. e, are
generated as output that serve as a GUI test case < Sy, e1;
€25 ... Ep >,

Note that all test cases of length 1 and 2 execute all
GUI events and all pairs of events. We recommend that the
smoke test suite contain at least these test cases, although
the final choice of smoke tests lies with the developer.

Test Oracle Generator: Test oracles are used to deter-
mine whether or not the software executed correctly dur-
ing testing. They determine whether or not the output from
the software is equivalent to the expected output. In GUISs,
the expected output includes screen snapshots and positions
and titles of windows. Our model of the GUI in terms of ob-
jects/properties can be used to represent the expected state
of a GUI after the execution of an event.

For any test case < Sp,e1;ea;...e, >, the sequence
of states Sp;.59;....5, can be computed by extracting the

complete (or partial) state of the GUI after each event. De-
pending on the resources available, DART can collect and
compare oracle information at the following different levels
(LOI) of (decreasing) cost and accuracy.’ Detailed compar-
ison between these levels is given in Section 4.

Complete: LOI1 = {(w,p,0), Yw € Windows,
Vo = objects € w, Vp = properties € o}, i.e., the
set containing triples of all the properties of all the
objects of all the windows in the GUL

Complete visible: LOI2 =
V(w € Windows)&(w is visible),
Vo = objects € w, Vp = properties € o}, ie.,
the set containing triples of all the properties of all the
objects of all the visible windows in the GUI.

Active window: LOI3 = {(w, p, 0),
(w = active Window), Yo = objects € w,
Vp = properties € o}, 1i.e., the set containing
triples of all the properties of all the objects of the
active window in the GUIL

Widget: LOI4 = {(w,p,0), (w= active Window),
o = current object, Vp = properties € o}, i.e., the
set containing triples of all the properties of the object
in question in the active window.

{(w,p,0),

In practice, a combination of the above may be generated
for a given test case.

Coverage Evaluator: Although smoke tests are not
meant to be exhaustive, we feel that coverage evaluation
serves as a useful guide to additional testing, whether it is
done for the next build or for future comprehensive testing.
Also, our use of the matrix to specify test requirements is
an intuitive way for the developer to specify smoke test-
ing requirements and analyze testing results. In DART, two
different types of coverage are evaluated — code based and
event based. Code based coverage is the conventional state-
ment/method coverage that requires the code to be instru-
mented by a code instrumenter. In addition, we employ
a new class of coverage criteria called event-based cover-
age criteria to determine the adequacy of tested event se-
quences. The key idea is to define the coverage of a test
suite in terms of GUI events and their interactions.

An important contribution of event-based coverage is the
ability to intuitively express GUI testing requirements and
examine test adequacy via a matrix. The entries of the ma-
trix can be interpreted as follows:

Event Coverage requires that individual events in the GUI
be exercised. These individual events correspond to
length 1 event-sequences in the GUI. Matrix; 1, where
j € S, represents the number of individual events cov-
ered in each component.

TThe need for these levels is explained in detail in earlier reported work
[28].

Generation
Complete | Active)
C?L’"op/ﬁ'e Visible | Window ';‘L/’(‘;%’
(LOI2) | (LOI3)
Complete (LOT1) X
.5 Complete « «
E | Visible (LOT2)
] Active
& | Window (LOT3) X X X
Widget (LOT4) X X X X

Figure 6. Possibilities Available to the Test
Designer for Level of Detail of Oracle Infor-
mation.

Event-interaction Coverage requires that all the edges of
the event-flow graph be covered by at least one test
case. Each edge is effectively captured as a length 2
event-sequence. Matrix; >, where j € S, represents
the number of branches covered in each component j.

Length-n Event-sequence Coverage is available directly
from Matrix. Each column i of Matrix represents the
number of length-i event-sequences in the GUI.

Details of algorithms to compute the matrix are pre-
sented in earlier reported work [30]. We have already shown
examples of matrices in Figures 1 and 2.

Test Executor: The test executor is capable of executing
an entire test suite automatically on the AUT. It performs all
the events in each test case and compares the actual output
with the expected output. Events are triggered on the AUT
using the native OS API. For example, the windows API
SendMessage is used for windows application and Java API
doClick for Java application.

The remaining question, then, is what properties should
be compared. There are several possible answers to this
question, and the decision amongst them establishes the
level of testing (LOT1-LOT4) performed. These levels
of testing correspond directly to the oracle information
that was collected, i.e., complete, complete-visible, active-
window, and widget. During test execution, depending on
the resources available, the test designer may choose to em-
ploy partial oracle information, even though more detailed
information may be available. For example, the test de-
signer may choose to compare only the properties of the
current widget even though the complete property set for
all windows may be available. In fact, the test designer has
the ability to execute at least 10 different such combina-
tions. Figure 6 shows all these combinations, marked with
an “x”. Note that information cannot be used unless it has
been generated, i.e., if LOI4 is available, then LOT1-LOT3
cannot be performed. We compare these combinations in an
experiment in Section 4.

Subjects Windows| LOC |CI. Components
TerpPaint 8 9287 42 7
TerpSpreadsheet 6 9964 25 5
TerpPad 8 1747 9 5
TerpCalc 3 4356 9 3
TerpDraw 5 4769 4 3
TerpManager 1 1452 3 1

TOTAL 31 31575 92 24

Table 2. Our Subject Applications.

4. Experiments

Having presented the design of DART, we now examine
its practicality using actual test runs and reporting execution
time and memory requirements.

4.1. Open Questions

We identified the following three questions that needed
to be answered to show the practicality of the process and
to explore the cost of using different levels of testing.

1. How much time does DART take for complete smoke
testing?

2. What is the additional cost (in terms of time and mem-
ory) of generating detailed test oracle information?

3. What is the additional cost of test execution when us-
ing detailed test oracle information?

To answer our questions we needed to measure the cost
of the overall smoke testing process while controlling the
details of the test oracle and the different levels of testing.

4.2. Subject Applications

For our study, we used six Java programs as our sub-
jects. These programs were developed as part of an Open-
Source office suite software®. Table 2 describes these sub-
jects, showing the number of windows, lines of code, num-
ber of classes and components. Note that these are not toy
programs. In all, they contain more than 30 KLOC, with at
least two programs almost 10 KLOC.

4.3. Experimental Design

Variables: In the experiment, we manipulated three in-
dependent variables:

1. P: the subject programs (6 programs),
2. LOI: level of oracle information detail (4 levels: com-
plete, complete visible, active window, widget),

8The software can be downloaded from
http://www.cs.umd.edu/users/atif/TerpOffice

3. LOT: levels of testing (4 levels). Note that for a given
test run, LOI > LOT, i.e., the information must be
generated before it can be used.

On each run, with program P, levels LOI, levels LOT, we
generated test information for 1000 test cases and measured
the total generation time and memory required. We then
executed all these test cases for each of the 10 possible LOI
and LOT combinations (Figure 6). In all, for our complete
experiment, we generated and executed 6 x 10 x 1000 =
60000 test cases.

Threats to internal validity are influences that can af-
fect the dependent variables without the researchers knowl-
edge. Our greatest concerns are test case composition and
platform-related effects that can bias our results. We have
noticed that some events, e.g., file operations, take longer
than others (e.g., events that open menus); hence a short
test case with a file event may take more time than a long
test case without a file event. Also, performance of the Java
runtime engine varies considerably during test execution;
the overall system slows down as more test cases are exe-
cuted. The performance improves once the garbage collec-
tor starts. To minimize the effect of this threat we executed
each test independently, completely restarting the JVM each
time.

Threats to external validity are conditions that limit our
ability to generalize the results of our experiment. We con-
sider at least one source of such threats: artifact represen-
tativeness, which is a threat when the subject programs are
not representative of programs found in general. There are
several such threats in this experiment. All programs are
written in Java and they were developed by students. We
may observe different results for C/C++ programs written
for industry use. As we collect other programs, we will be
able to reduce these problems.

Threats to construct validity arise when measurement
instruments do not adequately capture the concepts they are
supposed to measure. For example, in this experiment our
measure of cost is CPU time. Since GUI programs are often
multi-threaded, and interact with the windowing system’s
manager, our experience has shown that the execution time
varies from one run to another. One way to minimize the
effect of such variations is to run the experiments multiple
number of times and report average time.

4.4. Results

The results of these experiments should be interpreted
keeping in mind the above threats to validity.

Figure 7 shows the memory requirements for the six sub-
ject programs. LOI0 represents test cases that contain no
oracle information. We had expected that the memory re-
quirements would increase as the level of oracle detail in-
creases. Figure 7 shows that the memory requirements grow

mLOI0 OLOK mLOI3 @LOI2 ELOI

10000000
1000000 -
100000 -
10000
1000

100 4

Kilobytes

- - - ° -

g 8 < 8 & g

@ s 9 2 3 g

2 5 g 5 =3 8

%) = K e k3] =
Application

Figure 7. Memory Requirements of our Sub-
ject Applications for Different Level of Detail
of Oracle Information.

very rapidly when using a detailed level of test oracle. Note
that we are using a logarithmic scale to improve readabil-
ity. The memory demands are not so serious for our smaller
subject programs. However, the memory requirements be-
come very high for our large programs (TerpPaint and Ter-
pDraw) that contain a large number of windows. We also
observe that many GUIs create multiple windows (few in-
visible to the user) after the software is launched. When a
user “opens” a window, it is programatically made visible.
Although good for speed, this practice imposes unnecessary
demands on memory.

Figure 8 shows the total execution time for all levels of
detail of oracle information. We see that using all-windows
is, in general, expensive compared to widget. As noted ear-
lier, a test designer may choose a lower LOT even if a high
LOI is available. Figure 8 shows the total execution times
for all our subject programs for all possible combinations of
LOI and LOT.

In these experiments, we note that the maximum time
taken for generation and execution is that of TerpPaint with
LOI = LOT = all-windows. The execution time consists
of application launching time and test execution. It was
observed that launching time dominates the test execution
time. Also note that we have normalized the y-axis for
all applications except TerpPaint. We discovered that the
splash screen in TerpPaint contains an artificial delay of a
few seconds, leading to increased execution time. Hence
the times obtained for TerpPaint are skewed.

The total time required to set up DART is usually a few
minutes. The developer interaction is mainly required for
inspecting and validating the analyzed GUI structure, and
also to fill in the M’ matrix (Section 2). The rest of the
process is automated. The total time to execute 1000 test
cases is less than 10 hours for each of these applications.

[—#—LOT4 —8—LOT3 —A—LOT2 =%—LOT1 —4—LOT4 —B—LOT3 —4—LOT2 =LOT1 —4—LOT4 —8—LOT3 — —LOT2 —%—LOT1
= = 14000 5 14000
S 40000 g 8
8 e ——— == & 12000 2 12000
P ?
& 30000 - & 10000 & 10000
8
Z 25000 2 8000 T 8000
£ 20000 £ 2]
g g 6000 S 6000 * hd g
8 15000 8]
5 10000 5 4000 5 4000
@ J 3 2000 Syl ‘s 2000
g 5000 g g
S 0 T T T F 0 S 0 . . -
Lol4 Loi3 Loi2 Lon Lol4 Loi2 Lon Lol4 Loi3 Loi2 Lol
Level of Oracle Information (LOI) Level of Oracle Information (LOI) Level of Oracle Information (LOI)
(a) TerpPaint (b) TerpPad (c) TerpCalc
[—#—LOT4 —8—10T3 —A—LOT2 —¥=LOT1 [—#—LOT4 —8—LOT3 —&—LOT2 ——LOT1 [—#—LOT4 —8—LOT3 —4—LOT2 —¥—LOT1
— 14000 —~ 14000 ~ 14000
o S 4 4
& 12000 X 8 12000 § 12600
¢ s 2 11200
& 10000 - @ 10000 X @ 9800 -
g 8000] ._‘ggg—ﬁ § 8000 £ 84004
2 2 £ 7000
g 60004 8 6000 8 5600 4
T 4000 5 4000 T 42004 o 9 =i
2 o T 2000 2 2800 4
2 2000 £ & 1400
F 0 = 0 : F 0 . . .
Lol4 LoI3 Loi2 Lon Lol4 Lol2 Lol Lol4 Loi3 Loi2 Lon
Level of Oracle Information (LOI) Level of Oracle Information (LOI) Level of Oracle Information (LOI)
(d) TerpSpreadSheet (e) TerpDraw (f) TerpManager

Figure 8. Total Execution Times for Individual Subject Applications for Different LOIl and LOT.

This makes the process suitable for nightly execution.

5. Related Work

Daily building and smoke testing has been used for a
number of large-scale projects, both commercial and Open-
Source. For example, Microsoft used daily builds exten-
sively for the development of its popular Windows NT op-
erating system [23]. The GNU project’ continues to use
daily builds for most of its projects. While there are many
projects that use daily builds, we found very little reported
literature on techniques and tools for daily builds and smoke
tests and none for GUI software.

A closely related paper discusses automating acceptance
tests for GUISs in an extreme programming environment [13]
in which frequent testing of the software is imperative to
the overall development process. Programmers create tests
to validate the functionality of the software and whether the
software conforms to the customer’s requirements. These
tests are run often, at least once a day [13, 10]. Hence,
there is a need to automate the development of re-usable and
robust tests. One approach is to implement a framework-
based test design [13, 18]; scripts that control the function
call are created manually using a capture/replay tool. An-
other popular method for testing of GUIs in XP environ-
ments is the use of xUnit frameworks, such as jUnit and
jfcUnit. GUI widgets are accessed from the GUI and tested

http://www.gnu.org

for existence and functionality [17]. Even with limited au-
tomation, the tests have to be written manually and testing
GUI functionality becomes complex. Furthermore, these
tests are intensely data-driven and very fragile. A variable
name change is all that is necessary to break the test.

6. Conclusions and Future Work

Nightly builds and smoke tests have become widespread
and they are useful to reveal bugs early in the software de-
velopment process. Although successful for conventional
software, smoke tests are difficult to develop and automat-
ically rerun for software that has a GUI In this paper, we
presented a technique for re-testing software that has a GUI.
We empirically demonstrated that the technique is practical
and may be used for smoke testing nightly/daily builds of
GUI software.

We have implemented our technique in a system called
DART. DART is efficient enough to be used for any type
of frequent GUI re-testing. Our technique is not restricted
to smoke testing of nightly builds only. In the future, we
will extend DART to generate and execute tests other than
smoke tests. The GUI smoke tests are not meant to replace
other code-based smoke tests. However, DART is a valu-
able tool to add to the tool-box of the tester/developer.

In the future, the effectiveness of the DART process will
be studied by analyzing the number of faults detected.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

http://wine.dataparty.no/.
http://ftp.mozilla.org/pub/mozilla/nightly/latest/.
http://www.acedb.org/Software/Downloads/daily.shtml.

http://openwebmail.org/openwebmail/download/redhat/rpm/daily-

build/.

http://cruisecontrol.sourceforge.net/.
http://www.xoreax.com/main.htm.
http://positive-g.com/dailybuild/.
http://www.visualbuild.com/.
http://www.glenmccl.com/instr/instr.htm.

K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

D. Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23(8):498-
516, Aug. 1997.

L. Crispin, T. House, and C. Wade. The need for speed: au-
tomating acceptance testing in an extreme programming en-
vironment. In Second International Conference on eXtreme
Programming and Flexible Processes in Software Engineer-
ing, pages 96-104, 2001.

M. Finsterwalder. Automating acceptance tests for gui ap-
plications in an extreme programming environment. In Pro-
ceedings of the 2nd International Conference on eXtreme
Programming and Flexible Processes in Software Engineer-
ing, pages 114 — 117, May 2001.

J. Grenning. Launching extreme programming at a process
intensive company. [EEE Software, 18:27-33, 2001.

T. J. Halloran and W. L. Scherlis. High quality and open
source software practices. In Meeting Challenges and Sur-
viving Success: 2nd Workshop on Open Source Software En-
gineering, May 2002.

J. H. Hicinbothom and W. W. Zachary. A tool for automati-
cally generating transcripts of human-computer interaction.
In Proceedings of the Human Factors and Ergonomics Soci-
ety 37th Annual Meeting, volume 2 of SPECIAL SESSIONS:
Demonstrations, page 1042, 1993.

R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Pro-
gramming Installed. Addison Wesley, 2001.

C. Kaner. Improving the maintainability of automated test
suites. In Proceedings of The 10th International Soft-
ware/Internet Quality Week, 1997.

E.-A. Karlsson, L.-G. Andersson, and P. Leion. Daily build
and feature development in large distributed projects. In
Proceedings of the 22nd international conference on Soft-
ware engineering, pages 649-658. ACM Press, 2000.

H. A. Lee White and N. Alzeidi. User-based testing of gui
sequences and their interactions. In Proceedings of the 12th
International Symposium Software Reliability Engineering,
pages 54 — 63, 2001.

B. Marick. When should a test be automated? In Pro-
ceedings of The 11th International Software/Internet Qual-
ity Week, May 1998.

B. Marick. Bypassing the GUI. Software Testing and Qual-
ity Engineering Magazine, pages 41-47, Sept. 2002.

S. McConnell. Best practices: Daily build and smoke test.
IEEE Software, 13(4):144, 143, July 1996.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]
(35]

(36]

[37]

(38]

A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

A. M. Memon. GUI testing: Pitfalls and process. IEEE
Computer, 35(8):90-91, Aug. 2002.

A. M. Memon. Advances in GUI testing. In Advances in
Computers, ed. by Marvin V. Zelkowitz, volume 57. Aca-
demic Press, 2003.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GUIs. In Pro-
ceedings of the 21st International Conference on Software
Engineering, pages 257-266. ACM Press, May 1999.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Proceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering (FSE-8), pages 30-39, NY, Nov. 8-10 2000.
A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical
GUI test case generation using automated planning. IEEE
Transactions on Software Engineering, 27(2):144-155, Feb.
2001.

A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. In Proceedings of the 8th European
Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-9), pages 256267, Sept. 2001.
B. A. Myers. User interface software tools. ACM Transac-
tions on Computer-Human Interaction, 2(1):64-103, 1995.
K. Olsson. Daily build - the best of both worlds: Rapid
development and control. Technical report, Swedish Engi-
neering Industries, 1999.

C. Poole and J. W. Huisman. Using extreme programming
in a maintenance environment. [EEE Software, 18:42-50,
2001.

J. Robbins. Debugging Applications. Microsoft Press, 2000.
D. S. Rosenblum and E. J. Weyuker. Using coverage infor-
mation to predict the cost-effectiveness of regression test-
ing strategies. IEEE Transactions on Software Engineering,
23(3):146-156, Mar. 1997.

G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software En-
gineering and Methodology, 6(2):173-210, Apr. 1997.

M. C. Salzman and S. D. Rivers. Smoke and mirrors: Set-
ting the stage for a successful usability test. Behaviour and
Information Technology, 13(1/2):9-16, 1994.

P. Schuh. Recovery, redemption and extreme programming.
IEEE Software, 18:34-41, 2001.

