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Abstract

Many software systems rely on third-party components
during their build process. Because the components are
constantly evolving, quality assurance demands that de-
velopers performcompatibility testingto ensure that their
software systems build correctly over all deployable combi-
nations of component versions, also calledconfigurations.
However, large software systems can have many configu-
rations, and compatibility testing is often time and resource
constrained. We present a prioritization mechanism that en-
hances compatibility testing by examining the “most impor-
tant” configurations first, while distributing the work overa
cluster of computers. We evaluate our new approach on two
large scientific middleware systems and examine tradeoffs
between the new prioritization approach and a previously
developed lowest-cost-configuration-first approach.

1 Introduction

As today’s software systems become increasingly large
and complex, they are subject to several trends.
Increased reliance on third-party components:In prac-
tice, little software is developed entirely from scratch
any more. Instead, majority of software is assembled
from (third-party) components (e.g., libraries, tools, ob-
jects). While this practice allows complex systems to
be developed quickly, it also creates problems for qual-
ity assurance. One such problem involvesbuild test-
ing. Because end-users often have different versions of
third-party components installed on their computer sys-
tems (e.g.,/usr/local/lib/gcc, Python, numerical
libraries, etc.), software developers must ensure that their
systems build correctly over all deployableconfigurations
(combinations of components). We call this process of build
testing multiple configurationscompatibility testing. Be-
cause of the very large number of possible configurations
comprising a complex software system, in practice, com-
patibility testing is a resource intensive process.
Need for quick quality assurance: The practice of fre-

quent build testing has become extremely popular. Auto-
mated tools are deployed to build the latest version of the
application on each check-in, periodically or overnight. Re-
sults from the process are expected to be quickly available
to developers.

Availability of clusters of machines and virtualization
environments: As hardware costs decrease, quality assur-
ance teams have access to powerful clusters of machines.
Moreover, there is an increased use of virtualization envi-
ronments, such as VMware Server, that allow developers
to “mimic” different runtime environments. While this is
desirable because different configurations can be built on
different machines in parallel, it also creates the need for
sophisticated test scheduling and management policies.

Recognizing the above trends, in prior work we have
developedRachet, a process and infrastructure to support
compatibility testing [13, 14]. The key features ofRachet
are its ability to intelligently sample from a vast set of con-
figurations, thereby reducing overall work, and to distribute
the build process over multiple machines, including virtual
machines. These features help to reduce overall turnaround
time needed to perform compatibility testing. One major
limitation is thatRachetalways builds the lowest cost con-
figuration first, completely ignoring developer preferences.
For example, a developer may be more interested in config-
urations that (1) are composed of the latest versions of all
components, or that (2) use a particular version of a spe-
cific component. It is impractical for developers to manu-
ally specify an ordering on the configurations to be tested.
Rachetneeds to be able to handle such preferences in an
automatic and systematic way.

In this paper, we present a prioritization mechanism that
enhancesRachetby testing the configurations “most impor-
tant” to developers first. We describe a mechanism by which
developers can easily specify a preference order for config-
urations. We evaluate our new approach on two large scien-
tific middleware systems. Our results explore the tradeoffs
between the new prioritization approach and our previous
“lowest cost configuration first” approach.

In the next section, we give an overview ofRachet. Sec-
tion 3 describes the user-preference based algorithms and
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Figure 1. An Example System Model

overall approach. In Section 4, we present results from em-
pirical studies on two large software systems. Section 5
describes related work and Section 6 concludes with a brief
discussion of future research plans.

2 Rachet Overview

The Rachet process consists of four steps. First, devel-
opers model the system under test (SUT) using a formal
representation consisting of two parts: (1) a directed acyclic
graph called theComponent Dependency Graph (CDG)and
a set of (2)Annotations. As illustrated in the example in
Figure 1, a CDG specifies inter-component dependencies
by connecting components with AND and XOR relation-
ships. For example, the componentA in the example CDG
depends on the componentD and either one ofB or C (cap-
tured via anXOR node represented by+). Annotationsin-
clude version identifiers for components, and constraints
between components and/or over configurations, written in
first-order logic. Together, the CDG and annotations define
the set of all valid configurations for the SUT.

Second, developers determine which parts of the config-
uration space will be tested. Since it is normally infeasi-
ble to test the entire configuration space, Rachet employs
a mechanism to systematically sample the space. One such
sampling strategy is based on the observation that the ability
to successfully build a componentc is strongly influenced
by the components on whichc directly depends. In CDG
terms, a componentc directly depends on a set of compo-
nents,DD, such that for every component,DDi ∈ DD,
there exists at least one path, not containing any other com-
ponent node, from the node encodingc to the node encod-
ingDDi. From this definition, Rachet obtains relationships,
calledDD-instances, between versions of each component
and versions of all other components on which it directly
depends. ADD-instanceis encoded as a tuplet = (cv, d)
wherecv is a versionv of a componentc; d is the depen-
dency information used to buildcv; it is a set of versions
of components on whichc directly depends. The end result
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Figure 2. An Example DD-coverage Test Plan

of this strategy is a set of configurations to test. For this
example, that set would include configurations in which all
DD-instances for all system components are covered. We
call this criterionDD-coverage.

Third, Rachet automatically produces a set of configura-
tions satisfying the test coverage criteria. To satisfy theDD-
coverage criterion, for example, Rachet produces configu-
rations where each DD-instance is covered by at least one
configuration. For each DD-instance not yet covered, for
every component in a CDG, Rachet adds appropriate DD-
instances for components on which the component directly
depends to the configuration under construction. (If multi-
ple DD-instances are appropriate, we prefer one that is not
covered yet.) This process is applied recursively until the
configuration contains all DD-instances required to build
the component version encoded by the initial DD-instance.
Rachet usesProlog as an external constraint checker to de-
termine whether a configuration under construction violates
any constraint (from the Annotations) during the recursive
process.

Fourth, Rachet combines the produced configurations
into a tree data structure called a prefix tree. The prefix tree
acts as atest planin which each node corresponds to a DD-
instance contained in the configurations; each path from the
root node to a leaf node corresponds to a produced config-
uration. The rationale behind combining configurations is
that we may reduce the overall time to execute configura-
tions by reusing configurations partially completed (built)
by a machine. A test plan with DD-coverage for the ex-
ample model is shown in Figure 2. Note that each node in
the tree represents a DD-instance – it is of the form(cv, d)
wherecv is a component version andd is a set of versions
of components on whichcv directly depends.

Finally, Rachet executes the test plan by scheduling con-
figurations to multiple machines and collecting results. In-
stead of distributing full configurations, Rachet distributes
partial configurations, calledtasks, to increase the reuse
of partial builds that share sub-configurations (prefixes in
the tree) across configurations. We have examined three
plan execution strategies to determine the task to distribute
next for a client request: (1) aparallel depth-firststrat-
egy that tries to maximize the reuse of tasks locally avail-
able in each client, (2) aparallel breadth-firststrategy that
tries to maximize task parallelism throughout plan execu-
tion, and (3) ahybridstrategy that combines the benefits of
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Figure 3. Rachet Architecture Overview

the depth-first and breadth-first strategies. The hybrid strat-
egy achieves maximum parallelism in its initial execution
stage by scheduling the test plan in breadth-first order, and
then tries to increase task reuse locality by scheduling tasks
in depth-first order.

Figure 3 gives an overview of the architecture ofRachet.
The global coordinatoris responsible for taking the CDG
and annotations as input, producing the set of valid config-
urations, and creating the test plan. Aplan execution man-
agerdistributes the build tasks to variouslocal coordinators
residing in different physical machines, also calledclient
machines. The actual component builds are done in avir-
tual machine (VM). When a task is successfully completed,
i.e., all component versions contained in the task are built
successfully without errors, the VM state realizing the task
is cached in the client machine for later reuse. The global
coordinator is made aware of all successful and failed builds
so that it can adapt the plan execution accordingly.

One example of plan adaptation is Rachet’s use of
contingency planning when a component build fails. A
build failure for a component version encoded by a DD-
instance prevents building DD-instances encoded by nodes
in subtrees rooted atall nodes encoding the identical DD-
instance.1 In this case, Rachet’s global coordinator dynam-
ically modifies the test plan by removing sub-trees and cre-
ating new configurations to build the DD-instances encoded
by the removed nodes in alternate ways, if possible.

3 A Preference-Driven Plan Execution

Software developers are often more interested in some
configurations than others. For instance, they may be more
interested in configurations with recently changed compo-
nents or in those that use more popular versions of particu-
lar components. In this section, we present a methodology
for executing test plans in a way that reflects differing de-
veloper priorities. We first describe how developers specify

1Multiple nodes may encode an identical DD-instance when it is added
to multiple configurations in the process of producing configurations.

their preferences. We then discuss how we use these pref-
erences to determine the order in which configurations are
tested. Our key objectives are to conduct testing efficiently
while producing test results for higher preference configu-
rations before ones with lower preference.

3.1 Specifying Preferences

Modern systems can have an enormous number of con-
figurations. Thus, it is impractical for developers to explic-
itly specify preferences for all configurations to be tested.
Therefore we use a simple method in which developers first
express preferences between all system components. Then
for each component they express preferences between all
versions of that component. User preferences may be repre-
sented in any form that specifies relative user interest across
component versions. For this work, we encode version pref-
erences as positive integer values with larger values indicat-
ing higher preference. If developers do not care to specify
certain preferences, Rachet assigns a default preference –
lower than all developer-specified preferences – in which
components closer to thetop nodeof the CDG are preferred
over lower ones, and more recent versions of a component
are preferred over older ones.

We interpret these partial preference assignments as cap-
turing the developers’ preferred ordering of test results.
That is, we believe they want test results for configurations
with high-preference versions of high-preference compo-
nents before test results of other configurations.

3.2 Using Developer Preferences

In this section we give more detail on how we use devel-
oper preferences to guide the test process. Given a set of de-
veloper preferences we could just opportunistically test con-
figurations containing the most preferred components and
component versions first. This would, however, be quite in-
efficient. As our previous work clearly shows, intelligently
coordinating build effort across multiple configurations can
save substantial time and effort. Therefore, our testing ap-
proach needs to consider not only developer preferences,
but also the structure of the test plan so that total test effort
can be reduced.

To this end we transform developer preferences (ex-
pressed over components and component versions) into
preferences over nodes in the test plan. Remember that ev-
ery node in the test plan represents the building of a partial
system configuration. That is, a test plan node represents
building all components represented by the nodes on the
path from the root node in the plan to that node. When
building a node from scratch, the start of the path will be
the root node of test plan, while building from a cached test



Component & Version
A B C D E F G

Pref. 1 A1 B1 C1 D1 E1 F1 G1

Pref. 2 B2 C2 D2 E2 F2

Pref. 3 B3 D3 E3 F3

Pref. 4 E4 F4

Pref. 5 F5

Table 1. Example Preference Assignments

result means the start of the path is somewhere in the middle
of the path.

Logically, component version preferences are repre-
sented as vectors, calledpreference vectors. A preference
vector has one element for each component, with these el-
ements ordered by component preference.2 The elements
values are assigned as follows: for a componentC with
versioncv, each element takes the value 0, except for the el-
ement associated withC, whose values takes the preference
assignment ofcv. For example, consider the system shown
in Figure 1. Assume that the components A–G have pref-
erences 7–1 respectively. Assume further that the version
preferences for each component are sequentially numbered
preferences starting at 1. This data is represented graphi-
cally in Table 1.

Given these preference assignments, we write the pref-
erence vector for componentB, versionB3, for example,
as (0, 3, 0, 0, 0, 0, 0). This becauseB is the second high-
est preferred component and because versionB3 has pref-
erence assignment 3. Similarly, the preference vector for
componentF , versionF3 is (0, 0, 0, 0, 0, 3, 0)

Given the component preference vectors we can now
define preference vectors for every possible step in the
test process. For a given path we do this by taking a
component-wise vector sum of each node in the path. For
example, going back to Figure 2, consider the gray-shaded
leaf node with the label starting withA1. To build that
node from scratch, we must build each node from the
root of the test plan to this node. Therefore, we com-
pute the preference vector for this entire task by sum-
ming the preference vectors of all nodes appearing in that
path: G1 : (0, 0, 0, 0, 0, 0, 1), F1 : (0, 0, 0, 0, 0, 1, 0),
E2 : (0, 0, 0, 0, 2, 0, 0), D2 : (0, 0, 0, 2, 0, 0, 0), B1 :
(0, 1, 0, 0, 0, 0, 0), A1 : (1, 0, 0, 0, 0, 0, 0). This gives a re-
sulting preference vector of(1, 1, 0, 2, 2, 1, 1). Note that the
third vector element is zero because componentC is not
contained in the task.

In the next section we describe how we use path prefer-
ences to guide execution of the test plan.

2To simplify the presentation we restrict discussion to cases in which
preference assignments are unique.Rachet can, however, handle non-
unique component preferencesby allowing an element in a preference
vector to encode version preferences for multiple components with
identical preferences.

3.3 Preference-guided Plan Execution

As mentioned earlier, Rachet clients (local coordinators)
repeatedly request tasks from the Rachet global coordinator.
For each request, the global coordinator selects the task to
execute next in a greedy fashion, by first ordering the task
preferences associated with all nodes not yet assigned to
any client. Logically, this ordering is done by lexicograph-
ically sorting task preference vectors. We give a high-level
description of the selection process in Algorithm 1.

Algorithm 1 Schedule a task to execute, considering both
user preference and task execution cost
Algorithm Prioritized-Execution(Plan, C, W)

1: // C: requesting client,W : window size
2: TaskSet← ∅

3: for each taskt for not-yet assigned noden ∈ Plan do
4: lt← # of comps to build fort reusing a local task
5: rt← # of comps to build fort reusing a remote task
6: stealt← # of clients containing a cached task fort

7: TaskSet← TaskSet∪ < t, preft, lt, rt, stealt >

8: end for

9: SortTaskSetby pref

10: return a task with minimum lt, or a task with min-
imum stealt among the first W tasks in TaskSet. (rt

is used to break tie with identicalstealt)

In the algorithm, we first extend each candidate taskt

with auxiliary information.lt is the number of component
versions that must be built to executet reusing the best lo-
cally available cached task in which a subset of the compo-
nent versions contained int are already built. When multi-
ple clients are used to execute a test plan, this information
may be used to maximize task reuse in each client, taking
advantage of previous tasks executed by a client.

The variablesrt andstealt are used to reduce redundant
work across clients.rt is the number of component versions
that must be built for taskt, reusing the best task cached in a
client. stealt is the number of clients that have at least one
cached task that may be reused to executet. When there is
no task that can reuse a locally available task, Rachet exe-
cutes a task that minimizesstealt. rt is used to break ties
when there are multiple candidate tasks with an identical
stealt value. Note that Algorithm 1 has to be repeatedly
invoked for each task request, since the plan execution state
(including cache states at clients) changes continuously and
the auxiliary information used in scheduling tasks depends
on which client requests a new task.

Although the auxiliary information may be used to de-
crease overall plan execution time by efficiently sharing the
effort needed to execute the tasks for different configura-
tions, the most important concern for developers is still the



task preferences. Therefore, we sort theTaskSetin task
preference order. We always execute the first task in the
set to produce more highly preferred results earlier.3 How-
ever, due to the large size of cached tasks and limited cache
space in each client, scheduling tasks by only taking into ac-
count preference order may increase the number of remote
task cache hits and as a result, the rate of local cache reuse
drops and total plan execution time can increase compared
to a solely cost-based scheduling policy.

Rachet allows developers to determine how rigidly they
want their preferences enforced. With a strong preference,
the test plan always selects the most highly preferred con-
figuration that has not yet been assigned to a client to be ex-
ecuted (or has already completed), and with a weaker pref-
erence the scheduling considers other factors, such as task
reuse locality, that help to minimize the overall plan exe-
cution time, in exchange for allowing less highly preferred
configurations to be executed earlier.

Developer preference strength is expressed via awindow
sizeparameter, denotedW. As shown in Algorithm 1, we in-
spect the firstW tasks in theTaskSetand select the task that
requires building the fewest components, considering reuse
of locally cached task results for that client. This means that
less highly preferred tasks can be selected if they can be ex-
ecuted at low cost by reusing the results from previously
executed tasks at that client. If no locally cached task re-
sult can be used, the scheduling algorithm selects a task for
execution that has the smallest overlap with tasks currently
being executed by other clients, to maximize the potential
for future task result reuse.

An interesting case occurs when the window size is set
to a value greater than or equal to the number of nodes in
the test plan. In that case, since we first try to execute tasks
that reuse locally cached task results, and then try to reuse
a remotely cached task result, the test plan is executed in a
similar order to thehybridplan execution strategy described
in Section 2, that minimized overall plan execution time as
shown in our prior work.

4 Evaluation

We now evaluate our prioritization approach by con-
structing two scenarios that often occur during compatibil-
ity testing. In the first scenario, we want to test full con-
figurations that are based on more recent versions of the
SUT. In the second scenario, we prefer configurations that
use recent versions of specific components required to build
the SUT. In this section we describe these scenarios, de-
scribe two large software systems to which our prioritiza-
tion technique is applied, and present benefits and tradeoffs
of the overall approach. We specifically want to compare

3However, results may still not be produced in preference order because
of varying component, and therefore configuration, build times.

our prioritization approach with our last-best-known hybrid
approach measuring the time it takes to test preferred con-
figurations. We also want to study the tradeoffs involved in
varying the window size parameter of Algorithm 1, and in
varying the number of clients used to execute the test plan.

4.1 Subject Systems

We use two large software systems for our experiments,
namely InterComm and PETSc. InterComm4 is a middle-
ware library that supports coupled scientific simulations by
redistributing data in parallel between data structures man-
aged by multiple parallel programs. To provide this func-
tionality, InterComm relies on several system components,
including multiple C, C++ and Fortran compilers, paral-
lel data communication libraries, a process management li-
brary and a structured data management library. Each com-
ponent has multiple versions and there are dependencies
and constraints between the components and their versions.

PETSc (Portable, Extensible Toolkit for Scientific com-
putation)5 [2] is a collection of data structures and inter-
faces used to develop scalable high-end scientific applica-
tions. Similar to InterComm, PETSc is designed to work on
many Unix-like operating systems and depends on multiple
compilers and parallel data communication libraries to pro-
vide interfaces and implementations for serial and parallel
applications. To enhance the performance of applications
developed using PETSc, it also relies on third-party numer-
ical libraries such as BLAS [7] and LAPACK [1], and uses
Python as a deployment driver.

We have used these systems in previously reported work
[13, 14], and for this study we have extended models for
the systems by adding more versions of some components
and also by specifying preferences on components and their
versions.

4.2 Modeling the Subjects

Modeling the subject systems involved creating the CDG
and annotations for each system. This process is currently
manual and took almost a week. Dependencies between
components for the systems are shown in Figure 4. We
show a combined CDG, since InterComm and PETSc share
many components. Table 2 shows the version annotations
for the components in the CDG. Component versions added
for this paper are shown in bold font in the table.

In addition to the CDG and version annotations, we en-
forced several constraints on the configurations for the sys-
tems. First, if multiple GNU compilers are used (gcr, gxx,
gf and gf77) in a configuration, they must have the same
version identifier. Second, only a single MPI component

4http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic
5http://www.mcs.anl.gov/petsc/petsc-as
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Figure 4. Combined CDG for Subject Systems

(i.e., lam or mch) can be used in a configuration. Third,
only one C++ compiler, and only one of its versions (gxx
version X or pxx version Y) can be used in a configuration.
Fourth, if both a C and a C++ compiler are used in a config-
uration, they must be developed by the same vendor. (i.e.,
GNU Project or PGI). Based on the PETSc documentation,
we applied an additional constraint for PETSc: compilers
from thesamevendor must be used to build the PETSc and
MPI component. These constraints helped eliminate those
configurations that we knew a priori would not build suc-
cessfully.

4.3 Scenarios

As mentioned earlier, we constructed two scenarios to
evaluate our approach. In the first scenario, developers
want to test configurations that contain recent versions of
the SUT. This scenario was actually encountered during the
development of InterComm. When InterComm version 1.6
was released, the InterComm developers wanted to build-
test recent versions of InterComm. In addition, they also
preferred to test configurations based on more recent ver-
sions of other components; they believed that a large por-
tion of their user base had already updated the system com-
ponents on their machines to recent versions.

To meet this requirement, we assigned components pref-

Comp. Version Description
ic 1.1, 1.5,1.6 InterComm, the SUT
petsc 2.2.0 PETSc, the SUT
python 2.3.6, 2.5.1 Dynamic OOP language
blas 1.0 Basic linear algebra subprograms
lapack 2.0, 3.1.1 A library for linear algebra operations
ap 0.7.9 High-level C++ array management library
pvm 3.2.6, 3.3.11, 3.4.5 Parallel data communication component
lam 6.5.9, 7.0.6, 7.1.3 A library for MPI (Message Passing

Interface) standard
mch 1.2.7 A library for MPI
gf 4.0.3, 4.1.1 GNU Fortran 95 compiler
gf77 3.3.6, 3.4.6 GNU Fortran 77 compiler
pf 6.2 PGI Fortran compiler
gxx 3.3.6, 3.4.6, GNU C++ compiler

4.0.3, 4.1.1
pxx 6.2 PGI C++ compiler
mpfr 2.2.0,2.3.2 A C library for multiple-precision

floating-point number computations
gmp 4.2.1,4.2.4 A library for arbitrary precision arithmetic

computation
pc 6.2 PGI C compiler
gcr 3.3.6, 3.4.6, GNU C compiler

4.0.3, 4.1.1
fc 4.0 Fedora Core Linux operating system

Table 2. Component Version Annotations

erence ranks in the InterComm model by traversing the
CDG in reverse topological order. For version preferences,
higher values are assigned to recent component versions
(the oldest version had value 1). We applied the same pref-
erence requirements for the PETSc model.

In the second scenario, developers prefer to test configu-
rations that contain recent versions of specific components
required to build the SUT. Specifically, for the InterComm
and PETSc model we model that developers prefer configu-
rations containing recent version of the MPFR and the GNU
MP component. Thus, we set high preference ranks for
those components, and set higher version preference values
for recent versions.

4.4 Test Planning and Execution

From the CDG and annotations, there are a total of
639 DD-instances for components in the InterComm CDG,
and Rachet produced 476 configurations satisfying the DD-
coverage criterion. These configurations altogether contain
4421 component versions to build, but the actual number
of component versions to build is reduced to 1908 since
the configurations are combined by Rachet into a single
test plan. For PETSc, there are 185 DD-instances and Ra-
chet produced 88 configurations that contain 846 compo-
nent versions, which is reduced to 522 components in the
test plan.

We first ran actual builds to execute test plans for Inter-
Comm and PETSc and obtained compatibility results for
DD-instances of components in the models. For the In-
terComm model, 134 out of 639 DD-instances were tested
without errors, which means that there were 134 successful
ways to build component versions (18 for the top-level In-



terComm component). A total of 58 DD-instances failed to
build (3 for InterComm). The remaining 447 DD-instances
were not tested because there was no successful way to
build at least one of its required component versions. For
example, all DD-instances to build the InterComm compo-
nent version 1.5 with the PVM component version 3.2.6,
which is a component on which the InterComm directly de-
pends, could not be tested because all feasible ways to build
the PVM component version failed. For the PETSc model,
107 out of 185 DD-instances were tested successfully (8
for the top-level PETSc component) and 62 DD-instances
failed (56 for PETSc). The remaining 16 DD-instances
were not tested.

4.5 Simulations

In the remainder of this study, we use the results of the
actual test runs, including whether the tests were successful
or failed and the execution times to build each component
on top of the components on which it directly depends, to
simulate different test plan execution strategies (prioritized
vs. hybrid), using different number of clients (4, 8, 16, 32),
and using different window sizes (1, 16, 256, 2048) - win-
dow size only matters for the prioritized strategy. In all, we
simulated the 20 possible combinations across the dimen-
sions (4 for the hybrid and 16 for the prioritized strategy).

For each plan execution we recorded the time when con-
figurations succeeded or failed. A configurationsucceeded
if all component versions in the configuration built without
errors. We say a configurationfailed if either its build script
returned errors or one of the components on which it de-
pends failed. Note that if a component version encoded by
a DD-instance in a configuration failed, then all configura-
tions that contain the DD-instance also fail. Thus, when a
DD-instance appears in several branches in a test plan, mul-
tiple configurations fail simultaneously.

4.5.1 Prioritized vs. Hybrid

Figure 5 shows times at which configurations for the subject
systems succeeded (shown as diamonds) or failed (shown
as plus signs). The top two graphs are for InterComm and
the bottom two are for PETSc, while the top graph for each
system is for the hybrid plan execution strategy and the bot-
tom graph is for the prioritized strategy. The x-axis in each
graph shows all configurations, sorted by their preference
order, i.e., the leftmost is the most preferred configuration.
The y-axis shows the time taken to test the configuration.
In this result, we use a window size of 1 and the number
of client machines is 4. From these plots, we observe that
the prioritized strategy achieved results for highly preferred
configurations quickly compared to the hybrid strategy. The
hybrid strategy achieved some results for highly preferred
configurations almost at the end of the plan execution.
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Figure 5. The prioritized strategy achieves re-
sults for highly preferred configurations ear-
lier compared to the hybrid strategy.
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Figure 6. Time difference between the priori-
tized and the hybrid strategy decreases with
more machines.

Failed configurations form multiple bands in the graph
for the prioritized strategy. This is because multiple config-
urations failed simultaneously when a component version
failed to build, and because many of those configurations
were different by only one or two DD-instances so had sim-
ilar priorities.

Each plot in Figure 5 contains different number of
configurations for the prioritized and hybrid plan execu-
tion strategies because Rachet applies contingency planning
when there are build failures, so produces additional config-
urations to build those DD-instances affected by the failures
in alternate ways. The number of additional configurations
differs depending on the time and the order failures are dis-
covered.

The graphs for InterComm contain almost ten times
more configurations than graphs for PETSc because there
were initially 476 configurations in the InterComm model
compared to 88 for PETSc. Moreover, InterComm had
many failures for components represented by intermediate
component nodes in the CDG.

We also observed that plan execution with the prioritized
strategy overall took longer than for the hybrid strategy. The
prioritized strategy took 48% and 19% more time for Inter-
Comm and PETSc, respectively, for a window size of 1.
This is mostly attributed tolow task reuse localityduring
plan execution. When we strongly guide the plan execution
by user preference (window size 1), Rachet always sched-
ules the most preferred task to a requesting client, without
considering potential cost savings from reusing task results
already cached in the client.

4.5.2 Varying the Number of Clients

The prioritized strategy took more time to execute a test
plan. However, we observed an interesting result when we
increased the number of clients for testing. As seen in Fig-
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Figure 7. The prioritized strategy executes a
test plan faster with larger window size, for 4
client machines.

ure 6, the time difference between the prioritized and the
hybrid strategy decreases for both scenarios for InterComm
as the number of clients increases. We infer that the com-
munication time spent for transferring task results (i.e.,vir-
tual machines) across clients is overlapped more with the
time to build components in parallel when there are more
clients, since more tasks are executed in parallel.

4.5.3 Varying Window Size

Algorithm 1 enables developers to control preference guid-
ance by modifying thewindow size. A window size of 1
means that developers only care about their preferences, not
overall plan execution cost. In this situation, Rachet always
schedules the most preferred configuration for any client
task request. As the window size increases, Rachet con-
siders other factors, including task reuse locality, that can
reduce the overall plan execution time.

Figure 7 shows that the InterComm test plan executed
faster with larger window sizes for both scenarios. When
the window size is equal to or greater than the number of
nodes in a test plan (the case with W =n), the execution
time with the prioritized strategy was comparable to the hy-
brid strategy. In this case the prioritized strategy ignores the
developers preferences, and instead executes the test plan
so as to maximize reuse of locally stored tasks and mini-
mize redundant work across clients. The cost to gain the
improved overall performance, as seen in Figure 8, is that
test results for less highly preferred configurations are pro-
duced earlier than some more highly preferred configura-
tions with larger window sizes.

4.5.4 Quantitative Analysis

In the previous sections, we have measured the costs and
benefits of the prioritized strategy by visually inspecting
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Figure 8. As window size increases, less highly preferred co nfigurations may be executed earlier
than more highly preferred ones.

patterns in the scatter plots in Figures 5 and 8. To evalu-
ate the results more quantitatively, we developed a metric
to measure conformance to preference order. Specifically,
whenever a configuration finishes test, we compute the ra-
tio between: 1) the number of already-tested configurations
whose preference was greater than the current configura-
tion’s preference and 2) the number of already-tested con-
figurations.

If all configurations finish testing in preference order
than this metric will always be 1. In fact, for many of our ex-
periments using the prioritized strategy with a window size
of 1, the metric stayed very close to 1. However, in some
cases test results come out of order. This occurs for several
reasons. First, the times to build component versions con-
tained in various configurations are different, and client ma-
chine speeds also vary. Although we schedule more highly
preferred configurations earlier, results for those configura-
tions may be produced out of order. Second, when we fail
to build a component version encoded by a DD-instance,
multiple configurations that contain the DD-instance are
marked to fail at the same time, while other more highly
preferred configurations are still being executed.

Figure 9 shows the conformance to preference order for
successfully completed configurations, when we execute
the InterComm test plan for the first scenario with the hy-
brid strategy and with the prioritized strategy, for different
window sizes. We showed results after applying a smooth-
ing technique calledLoess smoothing[5, 6]. As seen in the
figure, with a window size of 1 the plan execution conforms
completely to developer preferences and that the degree of
conformance drops as we increase the window size. An
extreme case is when we execute the plan with a window
size equal to the plan size. For that case, the prioritized
strategy shows similar behavior to the hybrid strategy, since
both strategies execute the test plan completely ignoring the
developer specified preferences.
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5 Related Work

There have been several studies that incorporate user re-
quirements into test case prioritization. Bryce et al. [4] de-
scribe a technique to prioritize test cases that cover pair-
wise interaction between factors when testers have differ-
ent priorities between factors and their levels. They showed
that test cases that take into account user priorities quickly
achieved higher coverage for interactions in which users
have more interest. Srikanth et al. [10, 11] used con-
sumer priorities on requirements to prioritize system-level
test cases. We share with those approaches the basic idea of
considering user requirements to prioritize build tests.

Continuous integration [3] recommends that develop-
ers integrate changes made every few hours into the com-
plete software system and inspect whether those changes
cause problems. Continuous integration also suggests test-
ing whether those changes cause problems for configura-
tions that mimic expected field configurations [8]. This ap-
proach has been highly advocated since it can be applied to
many software projects with relatively low effort and also
because problems originating from the difference between



development and field configurations can be detected early
in the software development process [9]. Our approach is
complementary to continuous integration. Rachet can be
used to produce a set of field configurations and then test
the configurations that developers think are most likely to
appear in the field so that they are tested early in the test
process. Such an approach would allow developers to per-
form integration testing on preferred configurations within
the time allowed for each round of integration, in a seam-
less way without any developer intervention, and effectively
utilize a set of available test resources.

As an approach to support automated software compati-
bility testing, Rational, IBM and VMware have jointly de-
veloped a solution calledTest lab automation[12]. Al-
though this approach provides developers with an auto-
mated environment for testing software systems in multi-
ple configurations without modifying the persistent state of
test resources, the number of configurations can be very
limited because developers are responsible for creating the
configurations. In addition, developers must also directly
determine the order in which the desired configurations are
tested. Compared to this approach, Rachet automatically
produces a set of configurations that effectively test inter-
component compatibility, and also enables executing tests
in parallel. Our process does not require any intervention
from developers after they model their software system and
specify preferences.

6 Conclusion and Future Work

In this paper we have presented a method for prioritiz-
ing the order in which configurations are executed, taking
into account developer preferences. The goal is to obtain
test results for configurations of higher importance early,
in resource-constrained test environments. To accomplish
this goal, we have developed methods that aid developers in
specifying their preferences in a straightforward way, and
also shown algorithms that intelligently schedule configu-
rations considering specified preferences. Results from our
empirical studies show that our techniques can help devel-
opers achieve results for preferred configurations early in
the overall testing process, by guiding plan execution to
consider the developer specified preferences.

In the future, we will investigate how to apply the pri-
oritization techniques when compatibility testing needs to
be performed repeatedly. Considering properly the results
from prior test plan executions can allow not re-executing
a large portion of the test plan that has already been de-
termined to work correctly. While the benefits of such a
strategy are clear, the question is how to best integrate both
test plan execution history information and update informa-
tion to component versions that would invalidate prior test
execution results, to best schedule a new round of testing.
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