
Definition and Evaluation of Mutation Operators for
GUI-level Mutation Analysis

Rafael A.P. Oliveira
ICMC/USP

University of Sao Paulo
Sao Carlos, Brazil

rpaes@icmc.usp.br

Emil Alégroth
Software Eng. and Tech.

Chalmers University
Gothenburg, Sweden

emil.alegroth@chalmers.se

Zebao Gao
Dept. of Computer Science
University of Maryland,
College Park MD, USA
gaozebao@cs.umd.edu

Atif Memon
Dept. of Computer Science
University of Maryland,
College Park MD, USA

atif@cs.umd.edu

Abstract—Automated testing has become essential in software
industry to meet market demands for faster delivery and higher
quality software. Testing is performed on many levels of system
abstraction, from tests on source code to Graphical User Interface
(GUI) tests. New testing techniques and frameworks are also
continuously released to the market.

Mutation analysis has been proposed as a way of assessing
the quality of these new test techniques/frameworks as well as
existing test suites in practice. The analysis is performed by
seeding defects, referred to as mutants, into the system under test
with the assumption that a technique/test suite of high quality
will “kill” the mutants. However, whilst support for mutation
analysis exists for test techniques that operate on on lower levels
of system abstraction, i.e. method-level mutation operators, the
support for GUI-level mutation analysis is currently lacking.

In this paper we perform an empirical analysis of 18 GUI-level
mutation operators defined in our previous work and compare
their efficiency and comprehensiveness to state-of-practice lower
level mutation operators. The main findings of our analysis are
(1) that traditional method-level mutation operators are not
precise enough for GUI-level mutation; (2) the defined GUI-
based mutation operators provide comprehensive support for
GUI-level mutation; and (3) GUI-based mutation operators can
be automated but are challenged by the dependencies between
GUI widgets.

Keywords-mutation testing, GUI testing, Graphical User Inter-
face, mutation operators, software testing1

I. INTRODUCTION

GUI(Graphical User Interface)-based applications are sys-
tems in which the interaction between underlying code and
users occurs through a pictorial human-machine interface [1].
GUIs alleviate the users’ efforts on exploring resources and
functionality of software systems, increasing their productiv-
ity and saving time. Users can interact with the underling
code of a GUI-based application through “events”: mouse
clicks, mouse drags, keyboards shortcuts or commands, object
manipulation, etc [2]. Currently, GUI-based applications are
ubiquitous in practice and well designed GUIs are often key
for the success of software application.

Due to the their importance, today’s GUI-based software has
attracted the attention of both practitioners and researchers.
Software developers are spending a significant amount of

1Rafael is supported by FAPESP 2012/06474-1
2015 IEEE Eighth International Conference on Software Testing, Verifica-

tion and Validation Workshops (ICSTW)
10th International Workshop on Mutation Analysis (Mutation 2015)
978-1-4799-1885-0/15/$31.00 c©2015 IEEE

time modeling, implementing and testing software systems on
a GUI-level of abstraction. Additionally, significant research
efforts are spent on developing and analyzing novel automated
test techniques and strategies [3]. Research warranted by
automated and systematic GUI-level testing transitioning from
a want to an essential need for companies to keep up with the
software market’s demands for faster software delivery and
higher software quality [4].

New testing techniques are continuously developed on dif-
ferent levels of abstraction. Most of these techniques are
addressed for specific purposes. In industrial scenarios, com-
panies develop their own GUI supporting tools, limiting the
share of knowledge in this research area. Generic solutions for
GUI level testing are lacking [3]. Regardless, there is a need
for assessing the quality of these new techniques, which has
been proposed be achieved with mutation testing concepts [5].

Mutation testing [5] is a promising strategy to support the
evaluation of novel GUI testing techniques and strategies for
generating testing data for GUI-based applications. Mutation
is about comparing slightly modified versions of a program
(mutants) and its original code, observing the program’s
behavior against these modifications [6]. Mutation Operators
(MO) are instruments to include modifications to specific
statements of the source code, generating the mutants. Further,
mutation is a fault-based testing technique in which mutation
operators are syntactic or paradigm-based simple rules used
to change the original program, creating mutated, faulty, SUT
versions. Using a supporting tool, through a test set, testers
then compare the SUT’s (Software Under Test) outputs and the
mutants’ outputs, “killing” the mutants with different outputs.
Mutation analysis is useful not only to assess the fault-finding
effectiveness of test sets, but also to evaluate the application of
new testing approaches for specific domains. As such, applying
novel approaches on mutant programs represents a way to
evaluate the techniques’ benefits and drawbacks.

The body of knowledge on mutation analysis includes an
adequate support for the technique’s applicability for mu-
tation of the underlying system code and its functionality.
However, regarding GUI testing, to guarantee the manifes-
tation of mutants on an SUT’s pictorial GUI, we stipulate
that the concept of mutation analysis needs to be adopted.
To do so, special MOs, derived from the general mutation

analysis paradigm, are required. GUI-testing, in contrast to
testing of low-level underline code, operates across widgets,
properties (and values). GUI testing is executed with scenarios
of events that represent particularities that must be considered
to evaluate the SUT’s requirement conformance [7]. Sequence
of events, properties, and values of properties compose test
data for GUI-based applications, requiring the application
of specific strategies [3]. Traditional mutation tools do not
provide sufficient support to measure the effectiveness of
novel testing techniques for the GUI level of abstraction. In
previous work [8], we identified initial support for this claim
when the generally proposed MOs and associated tools proved
insufficient to create suitable mutants to evaluate the efficiency
of the GUI-based testing techniques component-based and
Visual GUI Testing (VGT) [4]. Thereby warranting a need to
adapt existing approaches of mutation analysis for GUI testing.

In this paper we build on our previous work and present a
multi-step empirical study where we evaluate the effectiveness
of a set of 18 GUI-based MOs and compare them against
traditional method-level MOs2. Results of the comparison
show that our operators are comprehensive to create GUI
level mutants and that method-level MOs are difficult to guide
to create suitable GUI-level mutants. Further, the study is
performed on both a smaller calculator application as well
as a larger Open-Source Software (OSS).

The contributions associated with this paper are:
• An empirical analysis on the fault-seeding effectiveness

of traditional MOs to explicitly generate GUI-level mu-
tants in comparison to the specific GUI-level MOs;

• A framework for automating the generation of mutated
GUIs from the MOs proposed in [8];

• Proof of concept of the applicability of the automated
MOs on the GUI-level of a real complex OSS application,
eliciting their benefits and weakness.

The continuation of this paper is organized as follows:
Section II presents basic concepts on GUI-based applications,
and GUI testing; Section III details the MOs for GUI-level
mutation analysis; three research questions, a pilot study, and
a proof-of-concept are described in Section IV; in Section
V we present further discussions about the findings outlines
from the proof-of-concept and the potential answers to our
research questions; Section VI discuss threats associated to
our study; finally, Section VII presents the final remarks and
the conclusions from this study.

II. BACKGROUND

This section presents fundamental concepts associated with
this paper: GUI-based applications, and some concepts on
testing them; and MOs for GUI-level mutation analysis.

A. GUI-based applications

GUI-based applications have some different particularities
in comparison to regular applications. GUI accepts as input

2In the scope of this study, traditional method-level mutation operators are
those able to modify operands and statements creating slight versions of the
original code.

events from users or from the system by itself. Then, from
these events, they generally, produce deterministic graphical
outputs. The representation of a GUI instance is defined by
a state, which is modeled as a triple (Ws, textitP, textitV). In
this scenario, let Ws = Ws1,Ws2, ...,Wsn be a set of widgets.
Each widget has a set of properties Ps = Ps1, Ps2, ...Psn and,
finally, each property can assume a value in its contemplation
Vs = Vs1, Vs2, ...Vsn [1].

B. GUI testing

GUIs’ particularities lead to some test related challenges.
A GUI testing activity must have test cases modeled as
sequences of user inputs combined in events [1]. Testers design
a sequence of inputs to exercise GUI’s widgets (e.g., click
on buttons, fill text fields out, resizes, changing orientation,
etc), revealing potential faults [3]. Faults, in the GUI context,
can be associated to the underline code as well as the visual
appearance of the interface. In this context, several challenges
arise from the GUI testing philosophy: generation of events,
test oracle design, and defining what to test on the GUI
perspective [3]. Depending on the SUT, the tester has to define
a set of adequate criteria to define whether the SUT behaves
according to its specification.

Regarding the automation support, [4] have stated that au-
tomated GUI testing strategies and tools can be classified into
three different chronological generations: (1) the first genera-
tion consists of approaches based on screen coordinate-based
interaction with the SUT such as Record/Playback; (2) the sec-
ond generation of tools relies on software component/widget-
based SUT interaction; and (3) Visual GUI Testing (VGT)
that combines image recognition and script-based high-level
testing.

The first generation tool’s have been abandoned due to poor
robustness and high maintainability. Second generation tools
are common in practice, support high-level testing, have quick
execution times, etc. However, these tools operate against the
GUI model, i.e. the underlying code that defines the visual
appearance of the GUI, rather than the actual GUI. Therefore,
these tools can miss GUI level defects if they are not also
represented in the model. Visual GUI testing (third generation)
does not have this problem since the technique operates against
the pictorial GUI as shown to the user. Hence, emulating user’s
behavior and exploring computational vision strategies [4].

Due to the competitiveness in the software market, GUI-
based applications need for more sophisticated testing strate-
gies and support. According to [3], several automated GUI
testing techniques have been proposed and evaluated in the last
decade. As a consequence, researchers and practitioners need
for methods to support assessing the quality of their automated
test cases and new test techniques. Section III presents a set
of MOs recommended for GUI-level mutation analysis.

III. MUTATION OPERATORS FOR GUI-LEVEL MUTATION
ANALYSIS

As opposed to their effect on regular source code, traditional
MOs, which mimic typical programming errors, have few

influence on the GUI level, stifling their ability to be used for
GUI-level mutation analysis. This section presents in details a
set of MOs particularly designed to mimic GUI-level faults.

A. MOs for GUI-level mutation analysis

Initially proposed in previous work [8], Table I presents
a set of platform-independent mutation operators that can be
implemented in different GUI libraries. The mutation operators
considered in the scope of this study can be divided into
three different classes: (1) “removing”; (2) “adding”; and (3)
“modifying” code in the SUT. Often GUI faults result in
missing components, wrong position of components, blurred
or distorted images, unexpected screens, etc. Then, [8] match
different classes of MOs to a potential fault of the SUT that
is propagated through the GUI.

TABLE I: MOs for GUI testing techniques

Class Mutant Operator Acronym
1

R
em

. –Remove Existing Widget REW
2 –Set Widget Invisible SWI
3 –Remove Existing Listener REL
4

A
dd

in
g –Add Identical Widget AIW

5 –Add Similar Widget ASW
6 –Add Different Widget ADW
7 –Add Another Listener AAL

8

M
od

if
yi

ng

–Expand/Reduce size of Win-
dows and Widgets will Auto-
adjust Their Sizes EWWAR/ RWWAR

9

–Expand size of windows and
widgets will not auto-adjust their
sizes EWWNAR/ RWWNAR

10
–Reduce size of windows to hide
widgets RWHW

11
–Modify location of a widget to
a proper location MLWP

12
Modify location of a widget to
edges of windows MLWE

13
–Modify location of a widget to
overlap with another MLWO

14 –Modify size of widgets MWS
15 –Modify appearance of widgets MWA

16
–Modify type of widgets (Button
changed to TextField) MWT

17

–Modify GUI library for widgets
(Swing button changed to AWT
Button) MWL

18

–Expand/Reduce size of Win-
dows and Widgets will Adjust
their Sizes EWWAR/ RWWAS

MOs belonging to the “Adding” class imply that function-
ality is added to the SUT to change its behavior. For instance
that an additional conditional statement is added to a method
or class. The “Modifying” class implies that functionality
is changed to change the SUT’s behavior. For instance that
the statement of conditional statement is changed from one
operator to another, e.g. “less than” to “less than equal” or
“greater than”. Finally, “Removing” implies the removal of
functionality from the SUT. For instance, a conditional state-
ment is removed from a method or class. These operators have,
as stated, been implemented in tools that can automatically
mutate a SUT.

B. Concepts on generic MOs for GUI-level

The operators presented in Table I are derived from the
generic operators defined in the body of knowledge on muta-

tion analysis and provide a comprehensive list of 18 operators
to create GUI-level mutants. Below, divided by classes, we
present an analysis of each operator, providing examples of
how they can be applied in practice. One can notice that the
provided examples are not comprehensive, which means it is
possible to create many different instances of each operator,
similarly to some traditional mutation operators. In the context
of this study, “widget” is defined as a component on the SUT’s
GUI that can receive input or display output, e.g. buttons, text
fields, canvases, etc.

1) Removing MOs: Remove Existing Widget (REW): This
operator includes all instances where a widget or widgets
are removed from the SUT’s GUI. This does not imply that
the underlying functionality associated with the widget is
removed. The operator asserts that the test suite fails given
that expected widget is not visible on the screen or in the
GUI model.

Set Widget Invisible (SWI): In this instance the widget is
removed from the pictorial GUI but is still connected to the
underlying functionality and visible in the GUI model. The
purpose of the operator is to verify that the test suite fails if
the instance occurs. For GUI-driven techniques that interact
with the GUI-model this could imply a requirement to verify
that the widget’s opacity/visibility properties are enabled.

Remove Existing Listener (REL): This operator aims at
evaluating the test suite/techniques ability to correctly assert
the outcome of an interaction. Hence, it asserts the test’s ability
to fail when SUT stimuli does not result in any GUI output.

2) Adding MOs: Add Identical Widget (AIW): This MO
asserts that the test technique/suite can uniquely identify
a widget regardless of its properties and appearance. This
instance is valid for GUI’s with many equal widgets that
are by a human uniquely identified by another widget, e.g.
a toggle button next to a labeled pane. Failure to identify
this mutant can imply that the search properties of the test
technique require modification.

Add Similar Widget (ASW): This operator serves the same
purpose as AIW. However, the number of properties between
the different widgets differ more than for AIW.

Add Different Widget (ADW): In this operator a new widget
is added to the GUI, e.g. a button or window. The operator
asserts that changes to the GUI does not affect the test suite.
Instances where it can fail is when the new component changes
in the property information of other widgets, e.g. ID numbers,
or moves a widget to a new location where it is no longer
visible.

Add Another Listener (AAL): Similar to operator REL,
this operator asserts that the test technique/suite can identify
a discrepancy between the actual and expected output. The
operator can be implemented by connecting the same listener
twice to a widget or by connecting a listener from another
widget to the mutated widget.

3) Modifying MOs: Expand/Reduce size of Windows and
Widgets Will Auto-adjust their Sizes (EWWAR/ RWWAR): This
operator asserts that the test technique/suite behaves correctly
independent of widget size, resolution, etc. The operator also

implies that the SUT’s GUI widgets are scalable. This operator
is of particular importance for mobile applications that should
support different mobile devices in different orientations, and
operating systems.

Reduce size of Windows to Hide Widgets (RWHW): Similar
to the operators REV and SWI, this operator asserts that the
test technique/suite behaves correctly if widgets are hidden
from view. Note that this operator still implies that the widgets
are visible in the GUI model.

Modify Location of a Widget to a Proper location (MLWP):
In this instance the operator asserts that the test suite behaves
correctly even if the widgets’ locations are changed. The
simplest implementation of this operator is to switch the
location of one or several widgets. This operator does however
still require the widget to be moved to another location that
is visible on the screen.

Modify Location of a Widget to Edges of windows (MLWE):
Unlike MLWP, this operator requires that the mutated widget
is only partially visible on the SUT’s GUI. Note that this can
cause problems for GUI model driven approaches since the
widget is still fully visible in the GUI model.

Modify location of a widget to overlap with another
(MLWO): Similar to MLWE this operator implies that one,
or several, widgets are only partially visible on the pictorial
GUI. The operator asserts the test technique’s sensitivity to
GUI layout.

Modify Size of Widgets (MWS): Similarly to
EWWAR/RWWAR, this operator asserts that the testing
technique/suite behaves correctly when the widgets’ resolution
or size changes. Note that a correct behavior is dependent on
if the change of the widget is intentional or unintentional. An
intentional change implies that the test should pass and an
unintentional change that it should fail.

Modify Appearance of Widgets (MWA): Similar to MWS
this operator asserts the behavior of the test technique/suite
based on the intentional/unintentional change of a widget. It
implies that the test should fail if the change is unintentional
and pass if it is intentional. Changes to the appearance can be
implemented by changing color, font and shape of the widget.
Note that size is covered by MWS and WWAR/RWWAR.

Modify Type of Widgets (Button changed to TextField)
(MWT): This operator asserts the test technique’s/suite’s ability
to distinguish between different widget types. This is espe-
cially important for SUT’s with custom widget since changes
to the widgets should not affect the test suite’s robustness.

Modify GUI Library for Widgets (Swing button changed to
AWT Button) (MWL): This operator asserts that the testing
technique/suite is applicable on SUT’s built with several
different GUI libraries or in system’s where the GUI libraries
are interchangeable. The expected outcome of the test in this
instance is that it should pass the test case after the GUI library
has been changed.

IV. METHODOLOGY

We now provide a detailed view of our research questions,
the methodology we followed, and the experimental strategies

we have designed. Basically, this study aims at assessing the
fault-generation effectiveness of a set of GUI-based MOs and
a comparative analysis between: (1) traditional MOs, and (2)
GUI-based MOs for GUI-level mutation analysis.

A. Research Questions

The study is designed to answer the following Research
Questions (RQ):

RQ1: Are the defined GUI-based MOs more effective on
seeding faults associated to the GUI level than traditional
MOs?
RQ2: Is it possible to automate the generation of GUI
mutants?
RQ3: Is it possible to use these proposed GUI operators
on a real-world GUI application?

B. Research Strategy

To find empirical evidences to answer the aforementioned
RQs, we divided our study into three parts:
(1) A pilot experiment, in which we have applied a semi-
automatic strategy to generate mutants using a set of random
GUI-based MOs; We first explored a set of nine mutation
operators in a simple Swing GUI-based application. In this
part of the study, we also identified generic ways to automate
generate mutants, through scripts, for applications developed
with the Java GUI library Swing. In addition, in this pilot study
we have included a comparison between traditional method-
level mutation operators generated by MuJava [9] and a set of
specific GUI-based MOs;
(2) A proof-of-concept study with an OSS GUI-based appli-
cation. More specifically, a randomly selected GUI of WEKA
[10], a tool with a collection of machine learning algorithms
for data mining tasks. The study was performed by applying
a semi-automated strategy to generate mutants to observe
the operators, and the strategies, feasibility in a real-complex
environment. A semi-automated approach was required since
some operators proved challenging to automate, which we
return to in Section V-A2; and
(3) An analysis of some important issues connected to GUI
testing, detailed in Section IV-E. This analysis aims at eval-
uating the effect of the mutation operators on the GUI, we
have analyzed. In addition, to measure how useful the GUI-
based mutation operators are, this part of our study aimed at
identifying issues of equivalence and redundancy among the
current mutants generated from our approach.

C. Pilot experiment: Java Swing Calculator

In order to provide research data towards answering RQ1
and RQ2, in our pilot study we have followed a sixfold
strategy: (1) choosing as subject application a random GUI-
based application from an open-source code repository; (2)
randomly select three mutation operators from each class of
GUI-based MOs (Table I); (3) analyzing the source code of the
subject application to identify strategies of how to automate
the generation of the mutants through the MOs selected in step
two; (4) generating, automatically or manually, a reasonable

amount of mutants for each GUI-based mutation operator
we have selected; (5) using MuJava to generate traditional
method-level mutants for the same application; (6) manually
analyzing the results of the MOs regarding their GUI-level
effects and how these effects impact different GUI-level testing
technologies.

This pilot experiment was designed mainly with two objects:
(1) using a sample of the GUI-based mutation operators,
evaluate their applicability and measure their efficacy;

(2) compare the GUI effect of our mutation operators and
traditional mutation operators.

1) Subject application: We selected a GUI-based calculator
application implemented in Java with the GUI library Swing
– in the continuation of the paper referred to as “Java
Calculator”. The choice of this application is based on two
reasons: (1) simplicity of the application; and (2) well-defined
functionality to be performed through an intuitive GUI.

Figure 1 presents the GUI of Java Calculator.

Fig. 1: Original GUI of Java Calculator.

2) Applying the GUI-based mutation operators: We have
randomly selected three different GUI-based MOs from each
class. Specifically, the mutation operators accronymed REW,
SWI, and REL were selected to represent the “removing”
class. In turn, AIW, ASW, and ADW were selected to represent
the “adding” class. Finally, MWS, EWWAR-RWWAR, and
RWHW were chosen to represent the “modifying” class. We
have selected nine GUI mutation operators because MuJava
implements nine traditional mutation operators on a method
level. Then, to starting establishing a line of comparison, we
decided to use the same number of GUI-based MOs.

After studying each one of the mutation operators and the
original source code of the subject application, we have im-
plemented several scripts to support the automatic generation
of GUI mutants. Out of the nine randomly selected mutation
operators, we created automated scripts for seven of them. Due
to their complexity, mutants generated from the MOs called
EWWAR/RWWAR and RWHW were generated manually.

At the end of the mutation process, 87 mutants were
obtained with several GUI effects. As many of the mutants as
possible were generated automatically. Regarding the mutants
generated manually that we could not automate, we generated
at least one mutant to represent the visual appearance of the
potential error according to the specification of the MO. Figure
2 presents four GUIs of muted versions of Java Calculator
generated from different MOs. We took several screenshots
of all of the mutants generated by our approach that can be

accessed online3.

(a) ADW effect. (b) REW effect.

(c) SWI effect. (d) ASW effect.

Fig. 2: Four mutated instances of the Java Calculator.

After generating the mutants, we analyzed their effect on the
application’s GUI. We have had a special attention in some
particular aspects detailed in the third part of our research
strategy (Section IV-A). All of our findings are presented and
discussed in Section V.

3) Study on applying traditional MuJava MOs: MuJava
implements 12 method-level mutant operators for Java pro-
grams. Table II details all of the traditional MuJava MOs,
originally proposed by [11]. Some of the MOs may have slight
variations such as, AOI (Arithmetic Operator Insertion) that
can be implemented through basic unary operators (AOIU) or
short-cut operators (AOIS).

TABLE II: Tradition method-level MOs implemented by Mu-
Java

MuJava – Traditional method-level MOs
Operator Description Variations
AOR Arithmetic Operator Replacement AORB , AORU , and AORS

AOI Arithmetic Operator Insertion AOIU and AOIS
AOD Arithmetic Operator Deletion AODU and AODS

ROR Relational Operator Replacement –
COR Conditional Operator Replacement –
COI Conditional Operator Insertion –
COD Conditional Operator Deletion –
SOR Shift Operator Replacement –
LOR Logical Operator Replacement –
LOI Logical Operator Insertion –
LOD Logical Operator Deletion –
ASR Assignment Operator Replacement –

408 mutants were generated by MuJava that have, like
previous mutation results, been posted online4. Despite we
used all of the available method-level mutation operators, we
observed that a set of nine mutation operators out of 12 (plus
its variations) actually generated mutants: AOIS , AOIU , AORS ,
COI, LOI, ROR, AORB , COD, and COR. Then, AOD, SOW,
LOR, LOD, and ASR did not generated any mutant. Figure

3All of the data collect from this pilot experimentation is available. See:
http://www.labes.icmc.usp.br/∼rpaes/ICST2015Data/Mutation2015.html

4All of the data collect is available online. See:
http://www.labes.icmc.usp.br/∼rpaes/ICST2015Data/Mutation2015-2.html

3 presents some examples of the effect of traditional MOs
on the Java Calculator’s GUI. After the mutants had been
created they were all visually analyzed to identify what effect
the method level operators had on the GUI. The analysis is
presented in more detail in Section V.

(a) AIOS effect. (b) AOIU effect.

(c) COI effect. (d) ROR effect.

Fig. 3: Mutants of Java Calculator generated from traditional
MuJava MOs.

D. Proof-of-concept: real-world complex GUI-based OSS

To answer RQ3, we conducted a proof of concept study
where the nine MOs from part 1 of the study were applied on a
larger OOS application – WEKA. The study was performed in
four steps: (1) selecting a real-complex Java Swing application
from web; (2) studying its GUI code and selecting one of its
GUIs to apply the set of nine GUI-based MOs explored during
the pilot (Section IV-C); (3) generating the mutants through
the previous implemented scripts or manually when there is no
script available; and (4) manually analyze the resulting mutants
regarding their GUI effects and implications for testing with
different GUI-based test technologies and regarding the step
three of our research strategy.

Differently from the pilot experiment, this proof-of-concept
study had only one goal: provide support for the applicability
of the GUI-based mutation operators in real GUI applications.

1) Subject application: WEKA5 is a well known envi-
ronment that supports users to solve data mining problems
through a set of machine learning algorithms [10]. WEKA,
which is an open-source application implemented under the
General Public License version 3.0 (GPLv3), includes a set
of user interfaces implemented using Swing. Our choice to
explore this application is because WEKA’s source code is
organized in more than 80 packages and its GUI code is easy
to understand and manipulate. Thus making the application
notably representative of real-world software but yet easy to
manipulate as required in our study.

Table III presents some metrics6 we have collected from

5See more about WEKA: https://sourceforge.net/projects/weka/
6The Eclipse plug-in’s “Metrics” was used to measure the code metrics:

http://metrics.sourceforge.net/

Java Calculator in comparison to WEKA’s source code. The
differences between the projects are notable. Despite this fact,
after manual analysis, we have noticed the WEKA’s GUI code
is well documented and understandable.

TABLE III: Complexity analysis of Java Calculator

Metrics from the subject applications
App. NoC NoM NoSM LoC CC
Java Calculator 3 19 1 461 4.55
WEKA 1230 16570 1241 260226 2.82
NoC – Num. of Classes; NoM – Num. of Methods
NoSM – Num. of Static Methods; LoC – Lines of Code
CC – Cyclomatic Complexity (average)

After analyzing WEKA’s source code, we identified a part
of WEKA’s GUI to apply our GUI-based MOs on. Figure 4
represents the visual appearance of the WEKA’s GUI for pre-
processing dataset useful for data mining experiments. One can
see that the GUI is simple and it includes a lot of different
Swing components.

Fig. 4: WEKA’s original pre-processing GUI.

2) GUI-based MOs applied on WEKA: Aiming to generate
mutants using the GUI-based MOs, we have set our previously
implemented scripts to work properly on the source code of
WEKA’s pre-processing GUI. For some MOs, we had to set
the scripts with some exceptions treatments to avoid generating
invalid mutants. This process was done manually, however,
overall, the process of generating mutants through scripts, or
manually, was quick. Hence, the human efforts required to
generate mutants were alleviated by the scripts.

The process of generating mutants for WEKA has resulted
in 130 versions of the original code. A deep analysis on
all of the mutated WEKA’s GUI is available online7. Figure
5 shows the visual appearance of a mutated WEKA’s pre-
processing GUI. Section V presents a wide discussion on the
applicability of the GUI-based MOs in real complex GUI-
based applications. All of the GUI effects are deeply analyzed
to support the discussions and findings presented in this paper.

7Data collect from proof-of-concept and pilot study are available online.
See: http://goo.gl/T8JMym

Fig. 5: Mutant of WEKA generated from GUI-based MOs.

E. Quantitative analysis and of evaluation of properties of
MOs for the GUI-level

For both experimentation scenarios (pilot and real-word
application) we have analyzed different aspects: numbers of
mutants generated, visual equivalent mutants, structural equiv-
alent mutants, capacity of generating mutants, etc. From these
numbers, we performed a quantitative and qualitative analysis
among the MOs involved in our experiment.

In addition to that, we formulated a yes/no questionnaire to
identify properties associated with the GUI generated from
the MOs. This questionnaire aims to identifying properties
associated with each MOs regarding both scenarios “pilot” and
“real-world application”. Table IV presents these properties we
defined. These properties are important for GUI testers, once
they can differ depending on the generation of the GUI-testing
approach.

TABLE IV: Questionnaire – Properties of GUI-based MOs.

Yes/No – GUI-based MOs
P1 Does it change the GUI appearance?
P2 Does it change the GUI model/structure in testing tools?
P3 Can it change the SUT’s input behavior?
P4 Can it change the SUT’s output behavior
P5 Does it create equivalent mutants?

P5.1 – Structural equivalent mutants?
P5.2 – Visual equivalent mutants?

V. RESULT DISCUSSIONS

The results collected from the empirical study detailed in
Section IV. In Section V-A we present potential answers to
the RQs. Based on our findings, Section V-B presents several
benefits for GUI testers on using GUI-level mutation operators.
Further, in Section V-C, based on our own point of view, we
elicit future directions for the concepts of mutation analysis
and GUI-level testing.

A. Answers to the RQs
Regarding the previous defined RQs (Section IV-A) our

experiments contribute to clarify several points. Based on the
empirical data we have collect, below we present all of the
evidences that contribute to respond the RQs.

1) RQ1: Our empirical data and the study conducted reveal
that regarding the comparison among traditional MOs and
GUI-based MOs, the second approach is not only more
effective on seeding faults associated to the GUI level, but
also it generates mutants able to represent more complete set
of GUI-associated faults. This is due to the fact of GUI-based
MOs were specifically designed to reproduce different faults
associated to the GUI-level of the SUT. In addition, using GUI-
based MOs can be more productive for GUI testers, once a
reduced set of mutants is generated to represent a complete
set of potential GUI faults.

Supporting data to answer this question can be found in
Table V, which presents a comparison among nine traditional
MOs and nine GUI-level MOs. For Java Calculator the table
presents an analysis of more than 400 mutants generated with
traditional MOs and 87 GUI-based MOs, which were gener-
ated with a semi-automated approach. All of the mutants were
manually analyzed and classified considering three issues:

• Alive vs Dead: there are some cases in which the mutated
code is not possible to run due to the throw of some
unpredictable exception. These cases were common for
mutants generated with traditional MOs. For the scope
of our study, when a mutated code throws an exception
and the GUI can not be available due to this, we consider
the mutant as “dead”, otherwise, the mutant is considered
“alive”;

• GUI effects: observing the GUI of the subject application,
for both approaches, we have noticed some MOs reflect
directly on the GUI, modifying its visual appearance.
Then, regarding the two mutation approaches (traditional
and GUI-based) we only counted the number of mutants
with effects on the GUI;

• Mutant Equivalence: for GUI testing, we have grouped
equivalence into two groups: (1) visually equivalent; and
(2) GUI-model equivalent. Visual equivalent is a mutant
that generates a visually identical GUI in comparison to
the original GUI of the SUT. GUI-model equivalent is a
mutant that generates an event-flow graph identical to the
graph generated for the original GUI. Table V presents
only the visually equivalent mutants. However, we have
analyzed all of the mutants also for GUI model equiva-
lence. Two of the authors of this paper have conducted
these processes manually; and

• Redundancy: In both approaches, we have noticed sev-
eral mutants, that were generated from the same MOs,
are identical from a GUI testing context. For example,
depending on the GUI Layout employed, SWI and REW
may generate visually identical mutants. In the scope of
this study, exploring concepts of previous investigations
[12], we called this mutants redundant. In this context,
our study performed an analysis of each MOs aiming to
identify these particular cases.

Table V, aforementioned, presents the results from the
mutation analysis strategy applied on the application Java
Calculator using traditional MOs and GUI-based mutations

operators. For each MO, the table shows the total number
of mutants, the number of invalid/dead mutants, the number
of alive mutants with an effective GUI effect, the number of
visually equivalent mutants, and, finally, some statistics on the
efficiency of the MO regarding the GUI testing.

Traditional MOs presented a mean of 11.27% of GUI-
fault seeding effect, i.e. useful GUI mutants. In comparison,
GUI-based MOs presented a mean of 83.90% of GUI-fault
seeding effect, implying their proficiency for GUI testing
experiments over method-level MOs. In addition, traditional
mutation operators generate a huge number of equivalent mu-
tants (73%), which implies low productivity of usable/valuable
GUI mutants.

Analysis of the GUI mutants created by the traditional MOs
also showed that all mutants were either of type MWA (Modify
Appearance of Widgets) or MLWO (Modify the Location of
a Widget to Overlap Another). Figure 6 shows an example
of one of these cases. This is because the mutants generated
by traditional MOs are primarily only able to change font
size, font color (Fig. 6a), widget text (Fig. 6b), etc. The other
reason was because the mutated application contained a vector
of buttons, which order could be changed by the traditional
operators.

(a) LOI effect. (b) AOIU effect.

Fig. 6: Effect of traditional MOs on the GUI-level.

2) RQ2: The GUI-based MOs have different goals in
comparison to traditional MOs, therefore the answer to RQ2
is based on empirical support gained by the automation of
GUI-level mutant generation.

In our empirical analysis, we implemented “semi-
automated” scripts to generate mutants for seven different
MOs for the Java Swing GUI library. These scripts are referred
to as semi-automated because they do not execute the mutant
version of the code. The scripts are able to manipulate the
original source-code, looking for potential commands in which
the mutation reflects on the GUI. The step-by-step of this
approach is: searching for specific keywords (depending on the
MO), modifying the original code, and saving the “mutant” in
a specific folder with a suggestive name.

Technically, each script works following a five-steps work-
flow: (1) read the original code as a text file; (2) find some
target command or specific keyword on the code; (3) replace,
comment, or rejoin with other pre-defined code; (4) save the
modified version of the code in a new folder; and (5) repeat
steps 2 to 5 until reach the end of the file.

Regarding this framework to automatically generate GUI-
based mutants for Swing applications, one can notice that each

MO may be implemented manipulating some specific methods
or functions provided by the GUI library. For instance, the mu-
tant operator REW, which removes an existing widget, could
be implemented through the omission of the method public
Component add(Component comp), which adds a wid-
get in a pre-defined component. We have implemented this
omission through a script that is able to identify and comment
all of the “add” commands in the original code. Similarly,
the mutation operator SWI is associated with the method
public void setVisible(boolean aFlag) imple-
mented by the Swing class called JComponent. In this par-
ticular case, we have implemented a script to add a command
setVisible(false) in all of the pre-defined components
in the source code. Despite our well-succeed usage of this
framework, we predict that the use of variate Layouts may
bring defective mutants.

Regarding the nine GUI-based MOs involved in our
study, we consider the automation of two of them
(EWWAR/RWWAR and RWHW) as a non-trivial task. Due
to this, we created their mutants manually. This is due to the
complexity associated with the task of automatically identify-
ing visual content on the current GUI of the application. These
hard-to-automate MOs are directly associated with cognitive
tasks of human beings such as, resizing a GUI until hiding
a component. Then, these two MOs are intimately associated
to the size of the screen, fonts, and the sizes of the widgets
inside the GUI. In addition, their complete automation requires
the association of computer vision techniques. Furthermore,
the complexity of the automation of these operators come
from dependencies from different places in the source code
that must all be changed to get the desired GUI level defect.
Further, because these changes need to be done on variables
with potentially unknown variable names it is difficult to create
a generic script that implements these MOs. We conclude that
a more sophisticated automation strategy is necessary such as,
a strategy using the resources of Java Virtual Machine.

Through our study it is possible to affirm that the automatic
generation of GUI-based mutants is feasible for most of the
defined MOs. However, different strategies must be followed
for different GUI libraries. To support this, after studying
particular characteristics of the Swing library, we followed
a simple work-flow we developed, enabling the automation
of generation of mutants for seven MOs. Our efforts on
developing and testing all of these scripts were about three
hours of coding. Once the tester knows the GUI library, this
cost of implementation tends to decrease.

3) RQ3: The GUI-based MOs behaved properly in a real-
world complex GUI-based application. Manually and through
the previously implemented scripts, 87 mutants were generated
for a single GUI of subject application.

We had no previous contact with WEKA and after quickly
analyzing its source code, we selected an aleatory screen and
started applying the scripts right away. WEKA has a highly
documented source-code and its GUI code is well organized
through packages with suggestive names.

Regarding this research question, we highlight some cases

TABLE V: Java Calculator – Traditional vs GUI-based mutation operators

Statistics on using traditional mutation operators

trad. MO # mut. # dead/invalid # alive # alive + no GUI eff. # alive + GUI eff. # equiv. “Good” Mut. efficiency
(%)

AOIS 183 17 166 17 149 135 14 7.65
AOIU 33 6 27 0 27 22 5 15.15
AORS 6 5 1 0 1 1 0 0.00
COI 25 1 24 0 24 19 5 20.00
LOI 44 11 33 0 33 26 7 15.91
ROR 92 5 87 0 87 72 15 16.30
AORB 16 0 16 0 16 16 0 0.00
COD 3 0 3 0 3 3 0 0.00
COR 6 0 6 0 6 6 0 0.00
total 408 45 363 17 346 300 (73%) 46 11.27

Statistics on using GUI-based mutation operators

trad. MO # mut. # dead/invalid # alive # alive + no GUI eff. # alive + GUI eff. # equiv. “Good” Mut. efficiency
(%)

REW 13 0 13 0 13 0 13 100
SWI 11 0 11 0 11 0 11 100
REL 13 0 13 0 13 13 0 0.00
AIW 11 0 11 0 11 0 11 100
ASW 11 0 11 0 11 0 11 100
ADW 11 0 11 0 11 0 11 100
MWS 10 0 10 0 10 0 10 100
RWHW 5 0 4 0 4 0 4 80
EWWAR /
RWWAR 2 0 2 0 2 0 2 100

total 87 0 86 0 86 13 (14.94%) 73 83.90

in which several equivalent mutants were generated. In per-
centage, equivalent mutants were more representative than in
the pilot study. Analyzing the WEKA’s GUI source code, we
noticed this is due to several secondary GUI screens such as
confirmation dialog were implemented inside the listener of
widgets of the mutated GUI.

To find support for the applicability of the GUI-based MOs
in real-world applications, Table VI presents an analysis of
five important properties for GUI-testing collected from the
yes/no questionnaire previously detailed in Table IV. These
question are important in the context of they may influence
on the testing activities depending on the generation of the
GUI-testing tool being used. Table VI is divided into two
different perspectives: pilot study and real-world applications.
The goals of the table is to show if the properties are the
same pilot study and the proof-of-concept study. Then, we
highlight that the properties were kept in more than 90% of
the cases, providing support of the applicability of the GUI-
based mutants in complex scenarios. In some special cases,
the property can be different, depending on the generation of
the GUI-testing tool used, in these particular cases, the cell in
the table was set as “y/n”.

B. Benefits on using GUI-based MOs

The main benefit of using GUI-based MOs, according to
the empirical data produced from this study, is the fact that
they generate mutants that reflect directly on the GUI-level
of the SUT. Additionally, traditional MOs tend to generate
several visual equivalent mutants, making the testing activities
on the GUI-level costly. Equally, traditional MOs generate a
good amount of mutants that throw unpredictable exceptions,
precluding the mutation analysis. Finally, we have empirically
demonstrated that mutants from traditional MOs are able to

reproduce only few types of GUI-level faults. In this sense,
using GUI-based MOs assures testers are dealing with a more
complete and representative set of faulty GUIs.

Despite our results, we highlight that system testing at the
GUI level is equally important and valuable as functional
testing, and the GUI mutants we propose here are useful at this
level and outperforms traditional mutants. However, regarding
the system as a whole, we consider both type of mutants
helpful for testing activities, increasing the SUT realizability.

C. Mutation analysis and GUI testing: Future directions

The application of mutation analysis concepts, in the context
of GUI testing, is an open research field. As soon as the GUI-
level testing has been drawing the attention of researchers and
practitioners, its association with a powerful test strategy like
mutation testing can be seen as a predictable course. All open
research fields suffer from the lack of automation support and
the need for standardization of approaches and strategies. In
this context, it is necessary to implement effective tools to
support the GUI-level mutation analysis. Most of this paper
contributes towards the definition of a tool to this purpose.
Then, regardless the GUI library, the main future direction we
see for this area is the development of a complete tool aiming
to alleviate human costs on selecting MOs, generating mutants,
loading testing data, taking screenshots, marking equivalent
mutants, etc.

VI. THREATS TO VALIDITY

Below we present present the threats of this study on five
different perspectives:

Internal validity: The presented, multi-step, empirical study
was exploratory in nature but also focused with a narrow
scope, driven by a set of well defined research questions and

TABLE VI: Properties’ analysis: Pilot (Java Calculator) VS Real-World application (WEKA)

Remove Duplicate/Instantiate Modify
REW SWI REL AIW ASW ADW MAWS EWWAR/

RWWAR RWHW
Pil. R.W Pil. R.W Pil. R.W Pil. R.W Pil. R.W Pil. R.W Pil. R.W Pil. R.W Pil. R.W
P1 yes y/n yes yes no no yes yes yes yes yes yes yes yes yes yes yes yes
P2 yes yes no no no no yes yes yes yes yes yes yes yes no no no no
P3 yes yes yes yes no no no no yes yes no no yes yes yes yes y/n y/n
P4 yes yes yes yes yes yes no no no no no no no no no no y/n y/n
P5 no yes yes yes yes yes no yes no yes no y/n yes yes yes yes yes yes
P5.1 no yes no yes no no – no – yes – – yes yes yes yes yes yes
P5.2 yes yes yes yes yes yes – yes – yes – – yes yes yes yes yes yes
Pn – Property n, see Table IV
Pil. – Result collected from the experiment involving the pilot
R.W – Result collected from the experiment involving the Real-World application

properties. The results of the study provide support to answer
the research questions and the results between steps were
comprehensively consistent. As such the internal validity of
this study is considered high.

External validity: The study evaluates the effectiveness of
the GUI-based and traditional MOs on both a small calculator
application and a larger OOS application. However, as the
OOS application was still small compared to industrial soft-
ware, we can only claim moderate external validity and pose
that further research is required to validate our results on more
systems and platforms. Further work is also required since our
study was restricted to Java Swing based applications.

Construct validity: As the concept of mutation is general
to all applications, the construct validity in this case is con-
sidered high. Hence, the size, and complexity, of the chosen
applications are suitable to show the operators effectiveness
for Java based applications.

Conclusion validity: We have presented the methodology in
full and posted all study results, i.e. screenshots, online for the
reader to view. These results support our conclusions and we
therefore claim that we have high conclusion validity.

VII. CONCLUSION

This paper presents an empirical analysis of the fault
seeding-effectiveness of generic GUI-based MOs. These MOs
are useful to measure the efficiency of new GUI-based testing
strategies, once the mutants generated from them reflects
on the GUI-level, simulating faulty GUIs. Based on three
research questions, we conducted empirical analysis on two
different applications: (1) a regular Java Calculator, and (2)
a real-world complex application. Aiming to help GUI-based
testers, our findings showed the efficiency of using GUI-based
MOs to generate faulty GUIs, even if the tester is dealing
with a real-world complex GUI-based application. In addition,
empirical data demonstrates that traditional mutation operators
tend to be useless for GUI testing. However, we highlight
that for the SUT as whole, regarding underline code testing
activities, traditional MOs are fundamental and their efficiency
is unchallengeable.

Through a deep analysis on the number of useful mutants for
GUI testing, our study reveals that the GUI MOs had almost
84% of effectiveness, in contrast to only 12% of the traditional

method-level approaches. Finally, our study demonstrates that
is possible to implement supporting tools to automate the GUI-
based MOs fault-seeding process, being in many cases a non-
trivial task. A supporting framework to automate GUI-based
MOs for Swing application is provided. However, in some
cases, due to widget dependencies in the code it is challenging
to create an automated script. For future work, we propose
the creation a generic framework of activities to automate the
MOs for different GUI libraries and platforms. In addition to
our findings, this framework opens channels for technology
transfer, alleviating human efforts and completing the set of
contribution of the research reported in this paper.

REFERENCES

[1] A. Memon, M. Pollack, and M. Soffa, “Hierarchical gui test case
generation using automated planning,” IEEE Trans. on Sof. Eng., vol. 27,
no. 2, pp. 144–155, Feb 2001.

[2] X. Yuan, M. Cohen, and A. Memon, “Gui interaction testing: Incor-
porating event context,” IEEE Trans. on Sof. Eng., vol. 37, no. 4, pp.
559–574, July 2011.

[3] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user
interface (gui) testing: Systematic mapping and repository,” Inf. and Soft.
Techn., vol. 55, no. 10, pp. 1679–1694, 2013.

[4] E. Alégroth, “On the industrial applicability of visual gui testing,” De-
partment of Computer Science and Engineering, Software Engineering
(Chalmers), Chalmers University of Technology, Goteborg, Tech. Rep.,
2013.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test
Data Selection: Help for the Practicing Programmer,” IEEE Computer,
vol. 11, no. 4, pp. 34–43, 1978.

[6] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. on Sof. Eng., vol. 37, no. 5, pp. 649–678,
Sept 2011.

[7] Q. Xie and A. M. Memon, “Using a pilot study to derive a gui model for
automated testing,” ACM Trans. Softw. Eng. Methodol., vol. 18, no. 2,
pp. 7:1–7:35, Nov. 2008.

[8] E. Alégroth, Z. Gao, R. A. Oliveira, and A. Memon, “Conceptualization
and evaluation of component-based testing unified with visual gui
testing: an empirical study,” in ICST 2015, 2015, pp. n/a–n/a, to appear.

[9] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated class
mutation system: Research articles,” Softw. Test. Verif. Reliab., vol. 15,
no. 2, pp. 97–133, Jun. 2005.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[11] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “An experimental mutation system
for java,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 5, pp. 1–4, 2004.

[12] C. Wright, G. Kapfhammer, and P. McMinn, “The impact of equivalent,
redundant and quasi mutants on database schema mutation analysis,” in
QSIC 2014, Oct 2014, pp. 57–66.

