IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 1

Generating Event Sequence-Based Test Cases
Using GUI Run-Time State Feedback

Xun Yuan, Member, IEEE, and Atif M Memon, Member, IEEE

Abstract —This paper presents a fully automaticmodel-driven technigue to generate test cases for Graphical user interface-based
applications (GUIs). The technique uses feedback from the execution of a “seed test suite,"which is generated automatically using
an existing structural event-interaction graplmodel of the GUI. During its execution, the run-time effect of each GUI event on all other
events pinpoints event-semantic interactio(ESI) relationships, which are used to automatically generate new test cases. Two studies
on eight applications demonstrate that the feedback-based technique (1) is able to significantly improve existing techniques and help
identify serious problems in the software and (2) the ESI relationships captured via GUI state yield test suites that most often detect
more faults than their code-, event-, and event-interaction-coverage equivalent counterparts.

Index Terms —GUI testing, automated testing, model-based testing, GUITAR testing system.

O

1 INTRODUCTION reasons. First, existing fully automatic model-based Gigt-t

Automated test case generation (ATCG) has become incre&@se generation algorithms produce test cases that exfedyist
ingly popular due to its potential to reduce testing cost arigst onlytwo-way interactionbetween GUI events; these test_
improve software quality [1]. A typical approach used fofases are called smoke tests [4]; they form the seed suite.
ATCG is to create an abstract modeld, state-machine model Systematically generating 3-, 4-, 5-, and above multi-vesy t
[2], [3], event-flow model [4]) of the application under tes€aSes remains an open area of research. Second, existiag too
(AUT) and employ the model to generate test cases. Whi&€ easily adapted to monitor and store the run-time state of
successful at reducing overall testing cost, in practi®C@ the GUI. Finally, GUI testing is extremely important becaus
continues to be resource-intensive, especially to create 3UIs are used as front-ends to most software applicatiods an
maintain the model. A few researchers have recognized tigstitute as much as half of software’s code [16]. A correct
these tasks may be aided by leveraging the execution regult§U! is necessary for trouble-free execution of the appitires
some existing test cases. Consequently, they have dedelopaderlying “business logic” [2], [3], [17]. _
automated feedback-based technigtesugment the models The new feedback-based technique has been used in a
[5]-[14]. These techniques require an initial test case/so fully automatic end-to-end process for a specific type of GUI
be created, either manually or automatically, and execaired (€Sting. The seed test suite (in this case the smoke tests)
the software. Feedback from this execution is used to augméndenerated automatically using an existegent-interaction
a preliminary model of the AUT andutomaticallygenerate 9raph(EIG) model of the GUI, which represeradl possible
additional test cases. The nature of feedback dependdylargi€duencesf events that may be executed on the GUI. The
on the goal of the ATCG algorithm. A common examplémOke suite is executed on the GUI using an automatic test
of feedback is a code coverage report used to autom&@se replayer. During test execution, the run-time sta@\if
cally generate additional test cases that improve oveeatl tWidgets is collected and used to automatically identify an
coverage [8]-[11], [13], [14]. Few techniques use feedba&vent Semant_lc Intergctlo(ESI) relationship between pairs
from the AUT's run-time stateto generate additional testOf events. This relationship captures how a GUI event is
casesg.g, in the form of outcomes of programmer-supplie@'ateq to anoth_er in terms of how it modifies the other’s
predicates in the code to cover all non-isomorphic inpug3,[1 €xecution behavior. Informally, event, is ESl-related ta,
operational abstractions to cover increased program fimfsav iff e influences the run-time behavior of, where “run-time
[6], [7], and non-exception-throwing method-call sequesito behavior” is evaluated in terms of properties of GUI widgets
generate longer sequences [15]. The ESI relationships are used to automatically construct a
This paper presents a new feedback-based technique for 2w model of the GUI, called thEvent Semantic Interaction
tomated testing of graphical user interfaces (GUIs). Geitsll Graph (ESIG). Because the seed suite is generated from the

themselves to the feedback-based approach for a numbeE#¢ (@ structural model) and the ESI relationship is obtdine
in terms of event execution (a dynamic activity), the ESIG

e X. Yuan is currently a Software Engineer in Test at the Gotgiland ~Captures certain structural and dynamic aspects of the GUI.

Office-_l @ ded The ESIG is used to automatically generate new test cases.

E-mail: Xyuan@cs.umd.edu H _

e A M Memon is with the Department of Computer Science, Urityeo$ _These test Cases_ have an |mportar_1t pr_operty each event
Maryland, College Park, MD 20742. is ESl-related to its subsequent evein,, it was shown to
E-mail: atif@cs.umd.edu influence the subsequent event during execution of the seed

suite.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 2

This entire process, including the scripts required to pet u « immersion of the feedback-based technique into a fully
execute, and tear down test cases, has been implemented andautomatic end-to-end GUI testing process and demon-
executes without human intervention. Two independeniesud stration of its effectiveness on fielded and fault-seeded
have been conducted on eight GUI-based Java applications to applications,
evaluate and understand this new approach. In an earliertrep « empirical evidence tying fault characteristics to types of
of this work [5], we described the first study, which used test suites, and
four well-tested and popular applications downloaded from . demonstration that certain faults require well-crafted
SourceForge; the study demonstrated that the feedbaekibas combinations of test cases and oracles.

technique improves existing techniques with little adufill The next section discusses related literature. Section 3
cost. The ESI relationship is successful at identifying px introduces basic GUI concepts and reviews the EIG model that
interactions between GUI event handlers that lead to s&riddrms the basis of the new ESIG model. Section 4 defines the
failures. We presented details of some failures, emphasiziES| relationship and uses it to define an ESIG. Sections 5 and 6
on why they were not detected by the earlier techniquessaluate the new feedback-based technique. Finally, Be¢ti
The failures were reported on the SourceForge bug reportiggncludes with a discussion of future work.

site! in response, the developers fixed some of the bugs. The

developers had never detected our reported failures before Rl ATED WORK

because their own tools and testing processes were unable to . , .
comprehensively and automatically test the applications. ?’0 the best of our knowledge, this is the first work that ugitiz

We now extend the research with the second study, COrH_n—tlme information as feedback for model-based GUI test-

ducted on four fault-seeded Java applications developedcl%Se generation. However, run-time information has pesho

house; this study shows that (1) the automatically ideldtifieIoeen employed for various aspects of test automation, and

ESI relationships between events help to generate tesatssuﬂmdel'based testing has been applied to conventional afiw

that detect more faults than their code-, event-, and eveﬁ?— well asevent-driven softwar€EDS). This section presents

- : : . an overview of related research in the areas of model-based

interaction-coverage equivalent counterparts, (2) cecthar- : : o

acteristics of the seeded faults prevent their detectiothby and_EDS testing, GUI testing, and t_he use of run-time infor-

earlier technique, but not the new technique, (3) several ggtion as feedback for test generation.

our missed faults remain undetected because of limitations .

with our automated GUI-based test oracle (a mechanism tfat Model-based & EDS Testing

determines whether a test case passed or failed), and Ntdel-based testing automates some aspect of software test

several of the remaining undetected faults require longntevéng by employing a model of the software. The model is

sequences. an abstraction of the software’s behavior from a particular
Finally, we note that the use of software models to genergterspective €.g, software states, configuration, values of

sequences of events (commands, method calls, data inpuggjables, etc.); it may be at different levels of abst@gti

for software testing is not new. Numerous researchers hach as abstract states, GUI states, internal variablesstai

developed techniques that employ state machine models [18hth predicates.

[22], grammars [23]-[25], Al planning [26], [27], genetit-a State Machine Models: The most popular models used for

gorithms [28], probabilistic models [29], architecturagiiams software testing aretate machine model§hey model the

[30], and specifications [31] to generate such sequencés. gdftware’s behavior in terms of its abstract or concreteesta

of these techniques are useful, in that they can be usedthey are typically represented as state-transition dragra

generate different types of test cases for different domaiti Several types of state machine models have been used for

of them are based on manually created models. Our reseagoftware testing, such dsnite State Machine Modeld=SM)

presented in this paper is orthogonal to the other modedeba$32]-[35], UML Diagram-based Model436] and Markov

techniques; we focus on enhancing an existing model (in odGhains[37].

case the model is obtained automatically) via test exegutio Various extensions of FSMs have also been used for testing.

feedback. We feel that this approach may be used for thbese extensions use variables to representextin addition

other model-based techniques mentioned above — these othestates; the goal is to reduce the total number of states

models may also be enhanced with software execution and fetusing an orthogonal mechanism, in the form of explicit

execution feedback. variables, to select state transitions. For examplexadended
The main contributions of this work include: finite state machindEFSM) makes use of a data state along

. extension of work on automated, model-based, systemd’ﬁgh the input for state transformation [35]; this EFSM ieds
GUI test-case generation by a tool called TestMaster to generate test cases by tragers

« definition of new relationships among GUI events basedl Paths from the start state to the exit state.
on their execution Because test cases for EDS are sequences of events, many

« utilization of run-time state to explore a larger input wacoractitioners and researchers have found it natural to use
and improve fault-detection state machine models for testing EDS [38]-[40]. The EDS
' is modeled in terms of states; events form transitions betwe

1. For example, https://sourceforge.netitracker/?fdetail&atid=535427&aidStatES. Algorithms traverse these machine models to gmwera
=1536078&groupid=72728. sequences of events. For example, Campiell. have applied

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 3

state machine models to test object-oriented reactivesyst execution feedback is collected and analyzed. The restéts a
[38]. Object states are modeled in terms of instance variahlsed to evaluate the “closeness,” according to some aniteri
values; transitions are obtained from method invocatitest, of the execution to the desired outcome; the model used to
cases are sequences of method calls and are generateddnerate test cases is then modified accordingly; a new test

traversing the model. case is generated and executed. This loop stops when the
“closeness” evaluation is satisfied.
22 GUI Test Case Generation Since then, several researchers have used the same m@incipl

Several automated techniques have been developed for Ildynamlc test generation.

. bject Properties. Xie et al. [7] have developed a frame-
test case generation. All of them use a model of the software .)
. work that uses feedback in the form aperational ab-
algorithms generate test cases from the model. . : . .
. R) stractions(summaries of program run-time state) and object
State-Based Techniques. Finite state machines have been . .
%tates to generate new test cases. This framework intsgrate

used to model GUIs [3], [41]. A GUI's state is representesgeciﬁcation-based test generation and dynamic speaficat

in terms of its windows and widgets; each user event t”gg% erences. Specification-based test generation is based o

a transition in the FSM. A test case is a sequence of user e . .
.) ormal specifications, which express the desired behavior o

events and corresponds to a path in the FSM. As is the case e)
a program. However, because formal specifications are dif-

for conventional software, FSMs for GUIs also have scalinf% . : e
e . ult to obtain, dynamic specification inference attemputs t
problems; this is due to the large number of possible state

and user events in modern GUIs. Several GUI-domain-specf Ter specifications, in the form of operational abstrausio

iC . .
attempts have been made to handle the scalability issue. Eu}omatlcally from software execution. Other researchave
example, Belli [41] converted a GUI FSM into simplified

also used operational abstractions, combined with symboli
regular expressions. The regular expressions were used;\e/]t

xgcution, to guide the generation of test cases [6].
generate event sequences. Shelad). [2] proposed variable €thod-call Sequences: Pacheccet al. [15] have improved
finite state machine (VFSM), which augmented an FSM for

random unit test generation by incorporating feedback ob-
a GUI with global variables that can assume a finite numbisija:rI r:gg]zr?tr;]”exs Clﬁgﬂ%opr:ﬁvgljeif; mfl::]sétgggycglllmtg taBpul
of values during the execution of a test case. The value of y by y 9 PRy

each variable is used to determine the next state and omtpu??d finding arguments from among prewously-con;tructed
inputs. Boyapatet al. employ a feedback-based technique to
response to an event.

Al planning has also been used to manage the state-spoggaln all non-isomorphicinputs (test cases for a metiag |

explosion by eliminating the need for explicit states [24]. ode Coverage Reports: All other techniques in this cate-

description of the GUI is manually created by a tester; thig"Y |nstrumenteleme_nts (lines, branch.es, etc.) .Of thgrpra
RO . . code, execute an initial test case/suite, obtain a coverage
description is in the form oplanning operatorswhich model . ”
- . report that contains the outcomes of conditional statespent
the preconditions and effects (post-conditions) of eachl G .
. and use automated techniques to generate better test cases.
event. Test cases are automatically generated from taaks (p

o . : : The techniques differ in their goal®.§, cover a specific
of initial and goal states) by invoking a planner which sbas: . o S
for a path from the initial to the goal state. program path, satisfy condition-decision coverage, caver

.specific statement) and their test-case generation digusit

Genetic Algorithms. Test cases have been generated usi : .
.) e . r example, Milleret al. [14] use code coverage and decision
genetic algorithms to mimic novice users [28]. The approach . .
tcomes to generate floating-point test data.

o 0
uses an expert to ge_nerate an initial event sequence mnuaHSeveralterative techniguebave been used to generate a test
and then uses genetic techniques to generate longer se&guenc

The assumption is that experts take a direct path when p%?_se that executes a given program path [9], [10], [13]. The

) . : eneration is formulated as a function minimization prahle
forming a task via the GUI, whereas novice users take Iong%gI . . .
indirect paths. e gradient-descent approach is used to gradually adjust a

Directed Graph Models: In order to reduce manual work initial test case so that it executes the given path. Control

. . flow information in the form of branch-predicate outcomes is
several new systematic techniques based on graph models . :
collected during software execution.

the GUI have recently been developed. They are based © -
. he chaining approach [8] has been used to generate test
Event Flow GraphgEFG) [4] andEvent Interaction Graphs . -
cases, each to cover a given program statement. An initial

(EIG). Because of its central role in this paper, we dischss t . .)
EIG model in Section 3. test case is exeputed, the program’s contro!- and data—ﬁew a
used to determine whether the test case will lead to the given

)) statement. If not, the branch function of the problematémioch

2.3 Execution Feedback for Test Case Generation is used to modify the test case. This process continues until

Execution feedback refers to information that is obtainetie given statement is executed.

during test execution and used to guide test case generatiorGenetic algorithmshave also been used to automatically

This is calleddynamic test case generati@nd, to the best generate test suites that satisfy tbendition-decisionade-

of our knowledge, was originally proposed by Miller andjuacy criterion [11], which requires that each conditionha

Spooner [14]. In their technique, the software source cogeogram be true for at least one test case and false for dt leas

is instrumented to obtain execution feedback. The ovegatl t one test case. A fitness function is defined for each branch. An

case generation process starts by executing an initialtast initial test suite is obtained and executed. The fitnesstions

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 4

are used to evaluate the “goodness” of each test case. If a s#xl open modal windows, but are not represented in the EIG
case covers a new condition-decision, it is considered to {fer reasons presented in earlier work [4]). The remaining
“more fit.” The test cases in the gene pool evolve to obtainexvents, called system-interaction events, do not martiptie
new generation of test cases. The process stops until @&desstructure of the GUI. Directed edges between nodes encode
level of fitness is obtained. execution pathsi.e., sequences of events, in the GUI. For
Although the techniques discussed in this section are retample, an edge{, e,) shows that, may be executed after
directly applicable to feedback-directed GUI test caseegene, along someexecution path
ation, many of the underlying concepts have served as theThe basic motivation behind using a graph model to rep-
foundation for this work. For example, execution feedback fesent a GUI is that various types of existing graph-tralers
used to generate GUI test cases, the EIG model is usedaigorithms (with well-known run-time complexities) may be
generate the original seed suite, and traversal technigoes used to “walk” the graph, enumerating the events along the
model-based testing are used to cover nodes and edges invibiged nodes, thereby generating test cases. In eareareh

ESIG. [4], an algorithm calledGenTest Cases was implemented
that returned all possible paths (sequences of events)ein th
3 PRELIMINARIES graph bounded to a specific length (number of EIG events)

of 2. These length-2 sequences are said to testtvedl-

The feedback-based technique utilizes an abstraction @f {jay interactionsbetween the EIG events. This research will
GUTI's run-time statecollected and analyzed during the exegenerate test cases fmulti-way interactionsi.e., longer paths
cution of test cases that covevo-way interactionshetween iy an EIG. Because EIG nodes do not represent events to open
GUI events in order to generate test cases thatnesti-way or close menus, or open windows, the sequences obtained from
interactions This section defines these terms and introducgige EIG may not be executable. At execution time, other event
notations for subsequent sections. needed to reach the EIG events are automatically generated,

This work focuses on the class of GUIs that accept discrgﬁ@ding an executable test case [4]. To allow clean aptitina
events performed by a single user; the events are detetitjnisxit, each test case is also automatically augmented with
i.e, their outcomes are completely predictabl& GUI in aqditional events that close all open modal windows before
this class is composed of a sBt of widgets(e.g, buttons, the test case terminates.
text fields); each widgew < W' has a set?, of properties The function notationS; = e,(S;) denotes that; is the
(e.g, color, size, font). At any time instant, each propertyate resulting from the execution of eventin state S;. If
p € P, has a uniquevalue (e.g, red, bold, 16pt); each value. ande, are two different events in a GUI's EIGey(e2)
is evalgated using a function from the set of the V\{idgetig an edge, and, € S; is the initial state of the GUI, then
properties to the set of valuds,. The GUI stateat any time e1(Sy) is the GUI state after performing , e2(So) is the GUI

instant is a set of triplesu(, p, v), wherew € W,p € P, and state after performing,, andes(e1(So)) is the GUI state after
v €V, i.e, the observable state of the GUI. performing theevent sequence e;; es >.

A set of statesS; is called thevalid initial state setfor a
particular GUI if the GUI may be in any state € S; when
it is first invoked. The state Of a GUI is not StatiC; eVenta EVENT SEMANTIC INTERACTION GRAPH
performed on the GUI change its state and hence are modeled
as functions that transform one state of the GUI to anotherThe new feedback-based technique is based on the identifi-
GUIs contain two types of windows: (Ipodal window® cation of sets of events that need to be tested together in
(e.g, Fi | eOpen, Print) that, once invoked, monopolizemulti-way interactions. We approximate this identificatioy
the GUI interaction, restricting the focus of the user to thanalyzing feedback from the run-time state of the GUI on
range of events within the window until explicitly termieat an initial test suite. Testing all two-way interactionsveeen
(e.g, using &k, Cancel), and (2) modeless windowge.g, all pairs of events is already quite practical with the smoke
Fi nd/ Repl ace) that do not restrict the user’s focus. Iftest suite; we treat this suite as a starting point to colleet
during an execution of the GUI, modal windaw!,, is used feedback. For each smoke test casee;;es >, we collect
to open another modal window1,,, then M, is called the statese;(Sy), e2(So), andez(e1(So)).
parentof M, for that execution. Modal windows create special situations due to the presence
The seed test suite is generated usingeaent-interaction of termination events. This is because user actions in modal
graph (EIG) model of the GUI, which is obtained automatiwindows do not cause immediate state changes; they typicall
cally using a standard GUI-reverse-engineering algoriiin take effect after a termination eventRM has been executed.
The EIG abstraction of the GUI represents only two types éfence, each of the states(.Sy), e2(So), andez(e1(Sp)) must
GUI eventsterminationandsystem-interactioevents. Termi- be collected after the execution of the termination e&ERM.
nation events close modal windows. Othstructural events Similarly, problems arise whesy ande; are in twodifferent
are used to open and close menus and modeless windowsdal windows;e; is in a modal window bute; is in a
modeless windowg; is in a modal window whereas is in its

2. Testing GUIs that react to temporal and non-determinietients and parent window. All these situations require special hargjli
those generated by other applications is beyond the scotiésofesearch. P B f ih dt isel dqf' ﬁ th ituati
3. Standard GUI terminology, e.g, see ecause o € need 10 precisely aetine a ese siwations

http://java.sun.com/products/jlf/ed2/book/HIG.Digéohtml. and for special handling of modal windows, we use formal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 5

predicates. We first define dixcases—as predicates—in onet.3 Event Availability

contexf e, Where €1 and_ 62_are_sys_tem-interaction eventsp common occurrence of event interaction in GUIs is en-
in modeless Wlndpws; this situation is call&bntext 1 We abling/disabling widgets, thereby effecting event avaiiy.

will use the notation,,) (e1,) to represent a predicatecags 6: there exists at least one widgetthat was disabled

for casen in contextm. We then define two additional So but enabled by:,. Evente, is performed onw; hence
contexts; together, the six cases and three contexts yiglldmakeSeg available for execution.

6 x 3 = 18 situations for computing run-time relationships

between events. We note that all these situations are raggess .

because they capture distinct cases of how an event niaff Additional Contexts

influence another’s execution. As mentioned earlier, all the six cases were described using

Context 1. We now present contexts 2 and 3 and discuss their
. L impact on the cases.

4.1 Widget Modification Context 2: If both e; ande, are associated with widgets that

We first describe the cases in which an eveninfluencese, are contained in one modal window with termination event

by altering the waye, modifies a widget’s properties. TERM, then the definitions of;(Sy) , e2(Sy), andea(e1(So))

Case 1: There is at least one widget with propertyp with are modified as followse; (Sp) is the state of the GUI after

initial value v (hence the triplgw, p,v) is in Sp), which is the execution of the event sequencee;; TERM >, e2(Sp) is

not affected by the individual events or e; (the triple is the state of the GUI after the execution of the event sequence

also ine;(Sp) andez(Sy)); however, it is modified when the < ey; TERM >, and ex(e1(Sp)) is the state of the GUI after

sequences er; es > is executedi.e, the value ofw’s property the execution of the event sequencee;; eo; TERM >. Note

p changes fromv to v’. that we can maintain independence between states because th
This can be formally written ag>(;)(e1,e2) = Jw € sequences: ei; TERM >, < ep; TERM >, and< ey; ep; TERM >

W,p € Py,v € V,,,v" € Vp,s.t. (v # v') A ((w,p,v) € are executed as separate smoke tests. Cases 1 through 6 apply

{So Ne1(So) Nea(So)}) A ((w,p,v") € ea(e1(Sh)))). It is using these modified definitions, fer andes in the same

quite straightforward to encode such a predicate in a higimodal window. The notation used for the predicates when

level programming language. The implementation would loapplied in Context 2 isP,) (e1,e2), wheren is the case

through the state triples and stop when one widget satigfyinumber.

the predicate is detected. Context 3: If e; is associated with a widget contained in

Case 2: There is at least one widget with propertyp that a modal window with termination everitERM, and e; is

has an initial valuey, which is not modified by the evemt; associated with a widget contained in the modal window’s

it is modified bye;; however, it is modified differently by the parentwindow (.e., the window that was used to open the

Sequences eg; es >. modal window) thene;(Sy) is the state of the GUI after

Case 3: there is at least one widget with propertyp that the execution of the event sequencee;; TERM >, ex(So)

has an initial valuey, which is not modified by the evenrt; is the state of the GUI after the execution of the eventand

it is modified by es; however, it is modified differently by e2(e1(So)) is the state of the GUI after the execution of the

the sequence: e;; e; >. Note that this case is different fromevent sequence e;; TERM; e; >. The notation used for the

Case 2 because the event sequence remains the same, predicates when applied in Context 37%,3)(e1, e2), where

is executed before,. n is the case number.

Case 4: there is at least one widget with propertyp that

has an initial value, which is modified by individual events 4 5 Eyent-Semantic Interaction (ESI) Relationship

e; andes; however, it is modified differently by the sequenc%\/e are

<epien > now ready to formally define the ESI

relationship. There is anEvent Semantic Interaction
relationship between two eventse; and ep iff
4.2 Wldget Creation 7)1(1) (61, 62)\/7)2(1) (61, 62)\/. .. Pg(l) (61, 62)VP1(2) (61, 62)\/

The above four cases all handle widgets that persist acrdgse) (€1, €2)V. .. Poa)(e1, €2)VPys) (€1, €2)V Paz) (€1, e2)V
the four states being considerég., So, e1(So), e2(So), and ... Pesy(e1,e2). That is, at least one of the predicates in
ea(e1(So)). In many cases, event execution “creates” nefyases 1 through 6 evaluates'lt?ll(JE)ln at least one context;
widgets,e.g, by opening menus; the next case handles newtlyis relationship is written as; — e2, where the number
created widgets. n is one of the case numbers 1 throughnb;is the context
Case 5: there is at least oneewwidgetw with propertyp and number. If multiple cases apply, then one of the case numbers
valuew in e, (Sp), i.e, it was created by event, (eithere; or is used. Due to the specific ordering of the events in the
e2) but did not exist in staté); it was created by the sequencéequence< ei; ez >, the ESI relationship is not symmetric.
< eq;eg > but with a different value for some property. Once all of the cases have been implemented, the feedback-
based process execution is straightforward. The stepseof th

4. We have chosen to present only these six cases becausewmtmed execution are as follows.
them numerous times in our work on GUI testing. These casesnat 1) Th d . A fall 2 . .
exhaustive and we will continue to add new cases, as and wheded,) e seed suite consisting of a -way Interactions

in the future. ex; €y > between GUI events is executed on the software

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 6

in state Sy; these test cases are simple enumeratio@Jl. The only unavailable part is tliest oracle a mechanism
of all EIG edges. All events, are also executed in that determines whether an AUT executed correctly for a test
So. The state information, (Sy), e,(So), ey (ex(So)) is case. In this first study, an AUT is considered to hpassed
collected and stored. a test case if it did not “crash” (terminate unexpectedly or
2) The above predicates are evaluated for each pair tbfow an uncaught exception) during the test case’s exatuti
system-interaction events in the EIG that are either (bjherwise itfailed. Such crashes may be detected automatically
directly connected by an edge (Context 1) or (2) corpy the script used to execute the test cases. The EIG and ESIG,
nected by a path that does not contain any intermediated their respective test cases may also be obtained automat
system-interaction events (contexts 2 andi®), there cally. Hence, the entire end-to-end feedback-based Giihtes
is at least one termination event that closes a modaiocess for “crash testing” could be executed without human
window on this path. If one of the predicates evaluatéstervention. Note that, in the next section (Study 2), thdsk
to TRUE, the two events are ESl-related. is extended by employing a more “powerful” test oracle to
Once all the ESlIs in a GUI have been identified, a gragtetect additional failures.
model called the ESI graph (ESIG) is created. The ESIG Implementation of the crash testing process includedggtti
contains nodes that represent events; a directed edge frden nup a database for text-field values. Since the overall psoces
n, to n, shows that there is an ESI relationship from the eveneeded to be fully automatic, a database containing one

represented by, to the event represented ly;. instance for each of the text types in the Se¢gative number,
) real number, long file name, empty string, special charagter
4.6 Test-Case Generation zero, existing file name, non-existent file nanveas used.

The ESIG may be traversed using a modified version of tiNote that if a text field is encountered in the GUI, one
GenTest Cases algorithm discussed in Section 3. The difinstance for each text type is tried in succession. The dlvera
ferences are that (1) an ESIG may contain multiple connectedcess was implemented in the GUITAR GUI testing system
components in which case the event sequences are genergttg:/guitar.sourceforge.net).

for each component separately, and (2) the length of theThis process provided a starting point for a feasibility
obtained sequences is now a tunable parameter instead ctuly to evaluate the ESIG-generated test cases. The fojow
fixed number 2. Study 1 in the next section uses values 3,qliestions needed to be answered to determine the usefulness
and 5 for this parameter. of the overall feedback-based process:

Our new implementation of théenTest Cases algorithm S1Q1: In how many ESI relationships does a given event
is based on the adjacency matrix representation of directeatticipate? How many test cases are required to test two-
graphs. The key idea used in the implementation is that if weay interactions in an ESIG? How does this number grow for
start with a 0/1 adjacency matrix representation of the ESIG-, 4-, ..., n-way interactions?
and take that matrix to theV — 1)** power, the(i, j) entry S1Q2: How do the ESIG- and EIG-generated test suites
in the resulting matrix is the number of paths of length compare in terms of fault-detection effectiveness? Do the
from nodes to node; (recall that the length is measured irformer detect faults that were not detected by the latter?
number of nodes encountered along the path). In the trivialTo answer the above questions while minimizing threats
case,N = 2 will return the input matrix — thé4, j) entry is to external validity, this study was conducted using four
either 0 or 1,.e, the number of length 2 paths from node extremely popular GUI-based open-source software (OSS) ap
to nodej. For N = 3, the (i, 5) entry in the result matrix is plications downloaded from SourceForge. The fully-autbena
the number of all length 3 paths from nodé¢o ;. crash testing process was executed on them and the dase (

Because we want to output actual test cases, not just coth# fault) of each crash in the source code was determined.
them, we use a variation of the above approach. The or8fEP 1: Selection of subject applications. Four popu-
difference is that instead of just counting the paths, olir GUI-based OSS (CrosswordSage 0.3.5, FreeMind 0.8.0,
implementation keeps track of all the actual paths theneselvGanttProject 2.0.1, JMSN 0.9.9b2) were downloaded from
For this we had to modify the matrix multiplication algorth SourceForge. These applications have been used in our pre-
and the adjacency matrix representation. The adjacenayxmavious experiments [5]; details of why they were chosen have
is modified so that instead of 0/1, th@,j) entry of the been presented therein. In summary, all the applications ha
matrix is a list of paths froni to j. The matrix multiplication an active community of developers and a high all-time-égtiv
algorithm is modified so that instead of multiplying and amdi percentile on SourceForge. Due to their popularity, these
entries, we concatenate pairs of paths together and unigsplications have undergone quality assurance beforasele
all of them (respectively) to eliminate duplicates. The ffinalo further eliminate “obvious” bugs, a static analysis tool
matrix entries are paths.€., test cases) of specific lengthscalled FindBugs[42] was executed on all the applications;
We implemented the matrix-based test-case generator usif@r the study, we verified that none of our reported bugs
the Mathematicapackage. were detected by FindBugs.

) STEP 2. Generation of EIGs & seed test suites. The
5 STuDY 1 EVALUATING THE FEEDBACK- ElIGs of all subject applications were obtained using rexvers
BASED TECHNIQUE ON FIELDED APPLICATIONS engineering. In this study, only two-way interactions were
The test cases obtained from the modifeehTest Cases tested by the seed test suites. The seed test suites cahtaine
algorithm can be generated and executed automaticallyen #20; 51,316; 29,033; and 4634 test cases for CrosswordSage,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 7

FreeMind, GanttProject, and JMSN, respectively. the ESIG-based test cases help to detect faults not detegted
STEP 3: Execution of the seed test suite. The entire seed earlier techniques.
suite executed without any human intervention. It execiried
O._39, 30.83, 22..89, and 2.68 hours on _CrosswordSage, Frge- STUDY 2° DIGGING DEEPER VIA SEEDED
Mind, GanttProject, and JMSN, respectively. In all, 163, 6
14, and 34 test cases caused crashes; these crashes werk c G&/LTS AND IN-HOUSE APPLICATIONS
by 5, 4, 3, and 3aults (as defined earlier) for CrosswordSageAlthough the previous study demonstrated the usefulness of
FreeMind, GanttProject, and JMSN, respectively. The GUIthe ESIG-based technique, it also raised some importaist que
run-time state was recorded during test execution. Alltfaultions. One fundamental question that comes to mind pertains
were fixed in the applications. to the cause(s) of the added effectiveness, “Is the added

Note that debugging and fault-fixing was necessary deffectiveness an incidental side-effect of the eventsnteve
to two reasons. First, had we not done so, the longer tésteractions, and lines-of-code that the ESI test case®rcov
cases that we will generate in the next few steps may containd their length; or is it really due to targeted testing oeth
these short test cases as subsequences; the longer testsiteayified ESI relationships?The empirical study presented
hence also crash due to the faults previously detected by thehis section is designed specifically to address the gprest
seed suite, yielding no new useful results. Second, this déhow the fault-detection effectiveness of the suite olmdli
what would happen in a real situation; a fault will be fixedby the feedback-based technique compare to that of other
after it was detected. However, this is a threat to intern&imilar” suites, where similarity is quantified in terms of
validity because an obvious fix in one place may lead tostatement coverage, event coverage, edge coverage, and siz
new fault at another place in the application. To minimize th(number of test cases).
threat, we reran the seed test suite to ensure the quality ofhis question will be answered by selecting four pre-tested
the fixes. Of course, this does not preclude the possibifity GUI-based applications, and generating and executingy2-wa
introducing faults that are exposed by longer event seqagenEIG-based and 3-way ESIG-based test suites on them. We will
To completely eliminate this threat, we later verified tha t generate additional test suites that are similar to the ESIG
faults detected by our longer ESIG suites were not caused ltgsed suite in terms of the aforementioned characterestids
these fixes. are at least 3-way interacting, and compare their faukct&in
STEP 4: Generation of the ESIG. The above feedback effectiveness. Fault detection effectiveness will be mes$
was used to obtain the ESlIs for each application. To addressa per-test-suite basis in terms of number of faults detect
S1Q1, the number of ESI relationships in which each eveme will also study the faults, pinpointing reasons for why
participates is shown in Figure 1. Each event in the GUI hasme of them remain undetected by our technique. Because
been assigned a unique integer ID; all event IDs are shown ainspace constraints, only select results are presentelisn t
the x-axis. The y-axis shows the number of ESI relationshigection; the interested reader can find complete results in a
in which the event participates. technical report [43].

The result shows that certain events dominate (around 25%)
Ehe ESI r%Iationship in GUIs. Manual examination of thesg ; Preparing the Subject Applications & Test Ora-
dominant” events revealed that the nature of the subje&ES

applicationsj.e., most of them have a single dominant object o])
(crossword puzzle, mind map, project schedule, messenﬁ@#r open-source applications, called the TerpOffice suite

window) that are the focus of most events, is such thPnsisting of Paint, Present, SpreadSheet and Word, have
several key events influence a large number of other everR§en selected for the stullyTable 1 shows key metrics
In the future, we will create a classification of these domtnafor TerpOffice. These applications are selected very céyefu
events. Moreover, several events participate in very few & @ number of reasons. In particular, to minimize threats
no ESI relations. These events include parts of Hed p © external validity, the selected applications are nonatl;
menu that has no interaction with other application eveartd, CONsisting of several GUI windows and widgets. For reasons
windowing events such as scrolling for which no develope?l-escr'bed later, artificial faults were seeded in the appbos
written code exists. — this required access to source code, bug reports, and a CVS

The ESIs were used to obtain the ESIGs and, subsequerfi§v€lopment history. To avoid (the often difficult) distion
additional test cases. The number of test cases was 359tween GUI code and underlying “business logic,” GUI-
160,629, 199,127, and 18,144 for CrosswordSage, FreeMiHgensive applications were selecte@,, most of the source-
GanttProject, and JMSN, respectively. code implemented the GUI. Finally, the tools implemented fo
STEP 5: Execution of the test cases. To addressS1Q2, all this research, in particular for reverse engineering, agé-w
the newly-generated test cases were executed. The execufiiied for the Java Swing widget library — the applications ha
lasted for several days. In all, 68, 157, 109, and 20 té& be implemented in Java with a GUI front-end based on
cases caused crashes; they were caused by 3, 3, 3, aneving components. As is the case with all empirical studies,
faults for CrosswordSage, FreeMind, GanttProject, andNMSthe choice of subject applications introduces some sigmific
respectively. These faults had not been detected by the two-) -)

test cases. We manuallv verified that the faults were r@? DeFalIed specifications, requirements documents, eounrpde

Way : . y S history, bug reports, and developers’ names are alailaht
introduced by our bug fixes of STEP 4. The result shows thitt p: / / www. cs. und. edu/ user s/ atif/ TerpOificel .

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 8

14}
12}
10

60

|) L%_‘
° # 0 : o #

0 5 10 15 20 61 0 50 100 1dd 255 0 50 100 271 0 10 20 30 96
Event Event Event Event

(a) CrosswordSage-0.3.5 (b) FreeMind-0.8.0 (c) Gantdete?.0.1 (d) IMSN-0.9.9b2

Number of ESls
>

Fig. 1. ESI Distribution in OSS

threats to external validity of the results; these (and mthdaults were identified, and several instances of each féasisc
threats have been noted in Section 7. were artificially introduced into the subject program code
in source code statements that were covered by the smoke
TABLE 1 ;
test cases, thereby ensuring that these statements were par

TerpOffice Applications of executable code. Care was taken so that the artificially

Subjects | Windows | Widgets | LOC | Classes | Methods | geeded faults were similar to faults that naturally occur in
Paint 16 301 11,803| 330 1,253 . .
Present 11 322 [10.847] 292 2.057 real programs due to mistakes made by developers; the faults
SpreadSheet 9 176 5,381 135 746 were seeded “fairly,i.e., an adequate number of instances
Word 26 61/ 9917 | 197 1,380 of each fault type were seeded. Several graduate students
TOTAL 62 1,416 | 38,398 954 5,436 were employed to seed faults in each subject application;

they created 263, 265, 234, and 244 faulty versions for Paint

For the purpose of this study, a GUI fault is a mismatciresent, SpreadSheet, and Word, respectively.
detected by a test oracle, between the “ideal” (or expected)
and actual GUI states. Hence, to detect faults, a desamipfio 6.2 Generating and Executing the ESIG-Based Test
ideal GUI execution state is needed. This description isl usguite

by test oracles to detect fault; in the s_ub_ject a_pplif:atiﬁhere The reverse engineering process was used to obtain the EIGs
are several ways to create this description. First s to @inu ¢ ¢ original versions of each application. The sizeshef t
create a formal GUI specification and use it to automaticallé/I s, in terms of nodes and edges, are shown in Table 2

create test oracles. Second is to use a capture/replay ¥Rtse numbers are important as they determine the number of

to manually develop assertions corresponding to test mac&}enerated test cases and their growth in number as test-case

and use_ the as_sert?ons as _ora_cles to test other version§e%th increases.
the subject applications. Third is to develop the test eracl

from a “golden” version of the subject application and use TABLE 2

the oracle to test fault-seeded versions of the applicafibe ESIG vs. EIG Sizes

first two approaches are extremely labor intensive since the Paint | Present| SpreadShee] Word

require either the development of a formal specificatiorher t #EIG Nodes 300 321 175 616

use of manual capture/replay tools; the third approach ean b | #EIG Edges | 21,391 | 32,299 6,782 | 28,538
erformed automatically and has been used in this stud #E51G Nodes 102 >0 45 5

P y Y- #ESIA Edges 233 233 197 | 204

Several faults were seeded in each application. In order
to avoid fault interaction and to simplify the mapping of
application failure to underlying fault, multiple vers®rof The EIGs were then used to generate all possible 2-way
each application were created; each version was seeded Wit casesi.e., the smoke tests. The numbers generated were
exactly one fault. Hence, a test case detects a faifilthere exactly equal to the number of edges in the EIGs — it was
is a mismatch between versian(i.e., the version that was quite feasible to execute such numbers of test cases ia littl
created by seeding faut) and the original. A mismatch is more than a day on our 50 machines in parallel. The test cases
detected by comparing, between the golden and fault seedegte executed on their corresponding “correct” applicegio
version, the values of all the properties of all the GUI witdgethe GUI state was collected and stored. The reader shoutd not
being displayed, after each event. that it is impractical to generate and execute all posséigth

The process used for fault seeding was similar to the oBdest cases for these EIGs.
used in earlier work [4], [44]. Details will not be replicate = While new software versions were being obtained (via fault
here. In summary, during fault seeding, 12 classes of knoweeding as discussed in Section 6.1), the 2-way EIG-bastd te

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 9

TABLE 3

ESIG vs. EIG Fault Detection the ESIG-based suites needed to be repeated several times.

In this study, we generated 700 “similar” test suites per

Paint | Present| SpreadSheef Word i~ati ; _ ; ;
ol Falls 53 e >34 >0d application apd compared their fault-detection effectess to
2-way EIG-detected Faults| 147 139 139 183 the ESIG suite. .
3-way ESIG-detected Faults 47 52 39 36 GUI test cases are expensive to execute — each test case
(only new faults) can take up to 2 minutes to execute (on average, each requires

30 seconds). Our 700 suites each for Paint, Present, Spread-
Sheet, and Word, contained 1,054,064; 860,324; 850,8@B; an

suites and GUI state were used to obtain all possible 3-way4:235 test cases, respectively; in all 3,739,431 testscas
ESIG covering test cases. The sizes of the ESIGs are showf#fh test case needed to be run on each fault-seeded version;
Table 2. The table shows that the ESIGs are much smaller ti8i§ t@sk would have taken several years on our 50-machine
the corresponding EIGs. Due to the small number of nodes fHiSter — clearly impractical. Other researchers, who ladse
edges, the number of 3-way covering test cases was 25grl_1<’:ountered similar issues of pract|callty,_ h_ave circumee
2080, 2069, and 2345 for Paint, Present, SpreadSheet, §}g Problem by creating @est pool consisting of a large
Word, respectively. As noted earlier, there is a unique §et BUmber of test cases that can be executed in a reasonable
length 3 test cases for an ESIG; hence, there is a single EGi@ount of time [45]. Each test case in the pool is executed
test suite per application. only once and it's execution attnbut(_asg, time to execute and

The 2-way EIG- and 3-way ESIG-based test cases were t{eHlts detected are recorded. Multiple test suites aretetdea
executed on the fault-seeded versions of the applicatitins. PY carefully selecting test cases from this pool. The exenut
number of faults detected is shown in Table 3. Note that ti9é these suites is “simulated” by combining the attributés o
last row reports the number of “new” faults detected by ESIEONStituent test cases using appropriate functiang, (set

This table shows that ESIG-based suites are able to detedin for faults detected). This research will also employ the
large number of faults missed by the EIG. test pool approach to create a large number of test suites.

The test-pool-based approach will introduce some threats t
) o) validity, which we will note in Section 7.

6.3 Developing “Similar” Suites Finally, we did not want to introduce any human bias when
As mentioned earlier, this study required the developmént generating these test cases. We used a randomized guided
several new test suites. To minimize threats to validitg thmechanical process. A related approach was employed by
suites needed to satisfy a number of requirements, distusB®thermelet al. [46] to create sequences of commands to test
next. command-based software. In their approach, each command

From previous studies, we know that statement, event, awds executed in isolation and test cases were “assembled” by
EIG-edge coverage, and size (number of test cases) playcancatenating commands together in different permutstion
important role in the fault-detection effectiveness ofst siite Since GUI events (commands) enable/disable each other,
[44]. For example, a small test suite that covers few lines ofost arbitrary permutations result in unexecutable secpgen
code will most likely detect fewer faults than another largeHence, we used the EIG model to obtain only executable
suite that covers many more lines. To allow fair comparis@equences.
of fault-detection effectiveness, we needed test suites th We generated test cases in batches of increasing lengths,
have thesame statement, event, and edge coverage, and gix@asured in terms of the number of EIG events. We required
(number of test cases)s that of ESIG-based test suites. that each EIG edge be covered by at ledstest cases of a

Previous studies have also shown that long test cageticular batch. Moreover, we required that each faudtise
(number of EIG events) fare better than short ones in tersk@tement be covered by at ledst test cases of the overall
of the number of faults that they detect [5]. Because we ditbol. The test-case generation process started by gemgrati
not want the new suites to have any disadvantage, we ensui¢ging a process described in the next paragraph) the batch
that all their test cases had at least 3 EIG events (note thatef length-3 test cases until each EIG edge was covered by at
our ESIG test cases have exactly 3 ESIG/EIG events). least/V test cases; they were all executed and their statement

It is non-trivial to generate these test suites. For exampkoverage was evaluated; the next (and all subsequent) batch
consider the problem of generating a GUI test suite thags generated ONLY IF each fault-seeded statement was not
covers specific lines of code. Because of the different &eg€l yet covered by at least/ test cases.
abstraction between GUI events and code, one would need td he process of generating each batch of lengbst cases
manually examine the source code, the relationship betwetges the following algorithm:
events and underlying code, and carefully tailor each ewvent 1) Initialize af r equency variable for each EIG edge to
every test case to ensure that it covers a specific line. Becau zero.
there are no automated techniques to do this task, the groces?) For each event, in the EIG, do

will be very resource intensive. a) Add the single event, to a new empty test case
Moreover, because the above criteria (same statement, even t.

and edge coverage, and size) may be met by a large number b) Form a list of all outgoing edges from..

of test suites (with varying fault-detection effectivesigghe c) Select the edgeef, e,) that has the lowest

process of generating different suites and comparing theem t frequency, breaking ties via random selection.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 10

35000 TABLE 4

oo | D Test Pool and Average-Suite Sizes
3 55000 Test Pool Tg Ty Ts TR, TR+E
8 Event | Edge | Stmt. | Try1, Trys
% o0 | Paint 119,583 | 103 | 190 | 123.64 2531
3 Present | 231,680 | 50 | 264 | 18.24 2080
g5 SpreadShee] 191,966 | 45 | 173 | 14.08 2069
£ 10 Word 192,042 | 84 | 248 | 3035 2345

5000

0
’ L HGrahLemn * 100 times to yield 100 suites. The average size of the suites

is shown in Columns 3-5 of Table 4.

Finally, Tr was constructed using random selection without
replacement ensuring that the final sizeTgf was the same
as that of the ESIG suite. A total of 100 such suites per

Fig. 2. Histogram of Test Case Lengths in Pool (Paint)

Add e, to the test case. application were obtained. Similarly, each of the suilgs
d) Follow the selected edge to its destination evefft, Ts were augmented with additional test cases, selected
ey- without replacement at random from the pool to yiélg, g,

e) Starting at,, recurse thd r equency-based se- Tr+1, Tr+s, respectively. The sizes of all these suites was
lection and follow-the-edge process (described igqual to the size of the ESIG suite. Finally, 100 more suites
Steps 2b through 2d and this recursive step) unthat sharedll the characteristics of interest in this studly
the desired length is obtained, adding events ingvent, edge, statement, and size) with the ESIG suite were
the test case. constructed; the symbdl'r;r+r4+s Will be used for these
3) Add the test caseto the suite. suites. _ _ _
4) If all EIG events have been covered and all NOt€ that the faullt-detecnon effectiveness of.each teist su
frequency > N, stop; otherwise go to the next EIGCaN be_ obtained d!rectly from the fault matrix of the test
event (via the iteration of Step 2 above). pool without rerunning the test cases. The results are shown

_ in Figure 3 as distributions. The box-plots provide a coacis
The above algorithm was guaranteed to stop because@gg P P

faults had been seeded in lines that were executable by lay of each distribution, each consisting of 100 datatso

ke tests: th tf h stat t ld ultimaten line inside each box marks the median value. The edges of
smoke tests, the count for each statement would ulima e[h'e box mark the first and third quartiles. The whiskers exten

redadch(j\/{ atid StOpi Finally, all the ESIG-based test cases WE[Bm the quartiles and cover 90% of the distribution; outlie

added fo the pool. , . are shown as points beyond the whiskers. Visual inspection
In this study, we §eN n 10 andM = 15. This ChQ'Ce_WaS of the plots shows that the fault-detection effectiveneks o

dictated by the availability of resources. As describedierar the ESIG-generated test suite (shown as an asterisk) isrbett

all the tes; Ea;es need_ed to t;e e_xecuted on_t:e faP't'Seet‘ﬂ%ﬁ% that of most individual similar-coverage and simgared
versions of their respective application. Ev_en with 50 maed ¢ a5 Some suites that lie in the whiskers and outliers do
running the test cases in parallel, the entire process ek Oetect more faults than the ESIG suite. However, we remind

four months. S the reader that unlike the ESIG suite, there is no systematic
The total number of test cases per application is showp 4 automatic way to generate these suites.

in Column 2 of Table 4. The length distribution of Paift's As demonstrated above, box-plots are useful to get an

test cases is shown as a histogram in Figure 2. As expecigghriew of data distributions. However, valuable infottoa
longer tests were able to cover more EIG edges than the shorfyg; in creating the abstraction. For example, it is nefcl

ones; hence fewer long test cases were needed to satisfy |y, manytest suites detect specific numbers of faults; we
coverage requirements. ~ are especially interested in the number of suites that dembet
After all the runs had completed, we had several matricg@s;n the ESIG suites. This is important to partially underst
per application: (1) the fault matrix, which summariz.ed_thgur EIG and ESIG suites. We now show the number of test
faults detected per test case and (2) for each coverageanite g ites that detected specific numbers of faults. Figure #wsho
(event, edge, statement), a coverage matrix, which sumew@rigignt histograms for Pairftpne for each box in the box-plot.
the coverage elements covered per test case. The x-axis represents the number of faults; the y-axis shows
This test pool was then used to obtain coverage-adequ@f€ number of test suites that detected the particular numbe
suites. For example, event-adequate suites were obtayiedopfaults. To allow easy visual comparison, we have used the
maintaining sets of test cases that covered each ESIG evegime x-axis and y-axis scales for all eight plots. The \airtic
Test cases were selected randomly without replacement frggtted line represents the number of faults detected by the
each set and duplicates eliminated, ensuring that eacht eveg|G suites.
was covered by the resulting suite. A similar process wad use gqor g]| applications T, T;, Ts, Tk, Tr.r consistently
for edge and statement coverage. The process was repegigdyorse than the ESIG suites. For a small percentage of

6. Similar histograms are presented in [43]. 7. Plots for other applications are shown in [43].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 11

O 1 :
50 . 1 1
o .
* Ok * ¥ x ¥ * ¥ Lk ok ox ox ox ¥ ¥ &
451 - H g H EA - T
H H ! . H T ' H !
12} ° ° .
= 401 . o 1 1 2]
2 T T ! E = H H i k3 E
% 35 1 1 : : A L‘E aor T 1 . + 1
Q 1 kel |
8 *I E E -:- + i % M : :
g 3) . S 4 + 1
O 25 ! ' Q£ . 7 a M ! + H 4 H
2 » . + + * k] H - . i H .
© 20F - e : B Pl b 1
-E 1 H o) D b 1 . ; 1 ' B
S 15F : + B £ : 1 + .
z . H 2 ' ! .
o 1 T H
- ol . s i
] +
e T |
: H
[] , i i i i i i
0
T T T, T T T T T 1 L L L L L L L
E T s R . R+E TR+1 TR4+s TR+E+1+5S R . Ts Tr Tr+5 TRiI TR+S TRYELI+S
Paint Present
.
H . a0- ‘ i
K I T * : I
AR . . X % % x ¥ X%
T T ! 1 v 35F Q) B
35+ 1 7 =
2 . B = N S]
3 L 30 1
LrE 30+ . T i 4 : 1 1 1 ' +
- 1 a1 Lo H]] i \
3 ' - - - - H 2 25 - : : ! :
H L |
g 251 . o . N § . 1 : : ! :
- 1 1
8 200 o E . B 8 201 : : :)
G B 7 . u— i " i
] H ! . =} 1 - ° -~
-g T + : 1 a-) Bl ! 1 1] ® : b
1 (] o .
S . c - . ' ' + .
z o L] i 10F 1 . 4
10 = 1 <4 <4 .
+ 1 ! . . (3
M : s v P
+
5 + ==]
1 : . :
o+ ; ; i i i i i o+ . i
Tg Tr Ts Tr Tr+E TR4+1 TR+S TR+E+I1+S Tg Tr Ts Tr TR+E TR+1 TR+S TR+E+I+S
SpreadSheet Word

Fig. 3. Fault Detection Distribution

TABLE 5

. For illustration, the solid line superimposed on the his-
Percentage of Suites that Outperformed ESIG P ”

tograms (Figure 4) shows the normal distribution approx-

Test Suite | Paint | Present| SpreadShee{ Word imation; informally, the data seems to follow the normal
;R“ j 8 g ﬁ distribution quite well. We also confirmed normality by ugin
TR+IZ‘1§+S 15 > 8 9 QQ-plots [43]. Based on normality, we usesimgle sample

t-testto test for the significance of the difference between the
observed fault-detection of the ESIG suite and the mean of
each distribution. The null hypothesis is that the two value

test suites (shown in Table 5Fr. 7, Tris, andTrypirrs &€ equal; the alternate hy_pothesis is that they are unequal
did better than the ESIG suites. It should be noted that thiote that a separate test is needed per pair (mean of each
ESIG approach does better than most test suites considefigifibution, fault-detection of the ESIG suite value).eTh

in this study. And that the ESIG-based approach is the orfgsulting p-values were all more than 0.99. Hence we reject
fully automatic approach to generate the GUI test suitds; 1€ null hypothesis and accept the alternate hypothesise th
other suites were obtained from the test pafier they had IS @ significant difference between fault-detection of &
been executed and statement coverage obtained. MoreowerStite and the mean fault-detection of each of the “similar”
performance of thd'; test suites indicates that the size of guites. The ESIG suites are better at detecting faults credpa
suite plays a very important role in fault-detection. Wedstu t0 same-sized test suites that cover essentially the saemtsev
edges, and statements. This result helps to answer thergrima

this issue in the next section. > iced in thi d
The results discussed thus far have been based on vis%%?snon raised in this study.

examination of the data. We now want to determine whether .)

the differences in the number of faults across coverageriit 6-4 Discussion

are statistically significant. In particular, we want todsttthe We now present details of why the ESIG-based test suites were
differences between the ESIG suite (a single value “numberable to detect more faults than other test suites. We spalbjfic
faults detected”) and all the other “similar” suites (100ues looked at three related issues: reachability, manifestatnd

per distribution). number of test cases. We note that the first two issues are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 12

30

|
Te .
|
20 | |
|
|
10 1 |
. X
i) I
=
5 X
€ |
7 X
& o TR0 I
%5 30 : : : :
g
@
'8 Tree l Tra l Trss l T reg+i+s |
5 I | | I
20 - | | | |
I I I		
13 26 39 5 0 13 26 39 52

Number of Detected Faults

Fig. 4. Histogram for Paint

related to the RELAY model [47] of how a fault causes émarked with an oval), of which 11 detected it; the fault was
failure on the execution of some test. We defirachability detected by at least one ESI test case. On the other hand,
as the coverage of the statement in which a fault was seededult 127 of Paint was not detected by any ESI test case; it
and manifestationas the fault leading to a failure so thatwas however detected by 42 of the total 42+267 test cases.
our GUI-based test oracle could detect it. As observed litence, a statement-coverage adequate test suite would have
[47], both are necessary conditions for fault detectione Tha probability ofﬁ of detecting this fault (assuming that
data in Figure 3 indicates that the ESIG-based test suifeslts are independent). The data in Figure 5 is in fact dorte
were able to outperform their coverage-adequate equivaléy this probability, giving us a sense of the “hardness” of
counterparts. Hence, they must have been more successhd,fault for statement-coverage adequate test suites.dEta
than their counterparts, at the combination of reachghalitd helps us to better interpret the results of Figure 3. Fitst, t
manifestation of several faults. We feel that this behaigor ESIG test suites did detect many of the seeded faults. Second
due to the nature of the ESI relationship, which is basedey did better tharfs because they detected many of the
on observed GUI state, and hence the software’s outptitard” faults (this was most apparent in Paint and Sprea€She
Executing tests that focus only on ESI events increases {#8]). Third, some faults were detected by many of the test
likelihood that a fault will be revealed on the GUI, and henceases that executed the statement. For example, Fault 136 in
detected by our GUI-based test oracle. Although we will n@&aint was detected by 747 of the total 747+446 test cases
attempt to analyze this behavior in great detail here (iddethat executed the statement in which it was seeded. The fault
this is a direction for future research), we will provide ssomwas seeded in the handler of a termination event that closes
guantitative data to show evidence of this phenomenon the Att ri but es window and applies the attributes (if any
studying the test cases in the pool. have changed) to the current image on the main canvas. The

Figure 5 shows two tables, one for Paint and the othg?eded fault caused the image size to be computed incgrrectl

for Word. Each table has three columns (to save space, fy l_JIting _in an incorr_ectly sized_image_whene_v_er at_least on
columns are wrapped): Column 119) is the fault ID; Column attrllbuée n the,tArt] tributes Wlndd_f(;w 'St mod|f|edf via é.r;e.

2 (f) is the number of test cases that detected the fault §J ecause there are many difterent ways of modilying
well as executed the statement in which the fault was seed attributes, a large number of test cases are able totdetec
Column 3 (f) is the number of test cases that did not dete 1S fault (12 in the ESIG test suite and 735 in the rest of the
the fault even though each executed the statement in whigt pool). In general, statement coverage adequate msu
the fault was seeded; the fault ID is shaded if at least one really yvell for these types of faults that can be triggered
test case detected it. For example, the statement thaticedta'™ Many different ways.

Fault 21 of Paint was executed by a total of 845+11 test case$-ourth, several faults were detected by very few test cases.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 13

l

~f || ID ~f D | f
1247# 703| R 126
1173 77| 9 744) L] 68
339 131
180}| 158|130
15|EE 4
220] IS 4
122] 74
109 74
216 70
107 167
314]| 159[175
337] 5
207]| 30 7
— 494 6
26 67 6
g 6
oo| KN 6
o8| s 6
==2| 10 6
44, 9 7
g 7
0 7

Fig. 5. Test Cases Covered Faulty Statements and Their Fault Detection.

Word
p [Dlp

Paint
pDlpfD]p[ID]p
b21Y 0.06(77]0.18|| 71]0.27| 93]0.36
bZEY 0.06| 0.18[41]|0.27| 98[0.36
255 [Xg 0.19] 44[0.27|| 68]0.36
piste] 0.06[42 0.19[120]0.27|[102[0.39] [0.07] 28|™™

Fault 34 of Paint is an example. This fault flips the condiaion [-
statement in an event handler of a type of curve tool. TIgEgo.07]
condition is to check whether the curve tool is current!fgad -2

. . . jyge] 0.02
selected; if yes, then the curve stroke is set accordingdo 'I.EE

selected line type for the curve tool. Due to the fault, th 0.06 74 ggg 181 gig
curve stroke is incorrectly set, resulting in an incorrecage [Ero.07) 80/ 0.29|Ji%d 0.40}

to be drawn on the main canvas only when the event seque ;ii £4.0.08; >4 IR pOr
< SelectCurveT ool; Select LineType; DrawOnCanvas > 02l 30 o:oaﬁ 021l 81l0.29 73l 0.25
is executed. If the first two events are not executed, thms| 31 823 lgg g;g g; ggg% g-jg
DrawOnCanvas does not trigger the fault even if the state g o/l 10| 45[0.23] 84[0.30] 72]0.48
ment containing the seeded fault is executed. Hence, atho 0.04] 56[o0.10] 43[0.23| 82] 0.30] 59]0.51
there are many test cases that cover the faulty statem [ooiign 100 024 gter 030 58.0-51
y _ y P 0.0 ES) 0.2t 0.24]
(843+7=850), only 7 test cases in the test pool detected fhes[o.04] 90[0.12]gg] 0.26]
H . : H w5 0.04) 55[0.12| 76)0.26
fault. One of them is the ESI test case; ESl-relationshipgwe B2 0.0/ 0.14] 65[0.26
found between the three events. In general, statementage el 0.04] 89[0.14] 66[0.27
H pisyA 0.04) 85(0.16f 75| 0.27|
adequate test suites do not do weII.for faults Fhat are erdcu o> DX 2> DEIRLEL * DEG
by many event sequences but manifest as failures in very few
cases.

>0.25

Fig. 6. Probability of Detecting Faults by Random Test

The size of a suite seems to play a very important rofeases.
in fault-detection. Indeed, th&x test suites, which were the
same size as the ESIG-based suites, did better (in most) cases) . -
than their coverage-adequate counterparts. We feel tigt tRSIG suite. This data shows that many of these dlfflcglt iﬁult_
behavior is an artifact of the density of our fault matricas. are detected by at least one ESIG-based test case, improving
large number of test cases are successful at detecting miHjr fault-detection effectiveness. Moreover, 16 fauttarked
“easy” faults. Even if test cases are selected at randorengiyn the figure, in Word have a detection probability of more
adequate numbers, they will be able to detect a large nunfibef#n 0.25. This number is much larger for the other three
these easy faults. For example, given 192,042 test cashe indPplications, helping to understand why; and the other
pool for Word and the size dfz being 2345, the probability suites that included randomly selected test cases did do wel
that Fault 24, which is executed by 84 test cases, is detectefrinally, we wanted to examine why some of the faults were
by at least one test case i is 0.49 — this is quite high. In NOt detected. We manually examined each fault and tried to
Figure 6, we show the probability that a random suite of ifanually devise ways of manifesting the fault as a failure. W
corresponding ESlI-suite size would detect a particulalt.faydetermined that:
The figure shows two tables for Word and Paint. Each tablel) several of the faults were in fact manifested as failures
has two (wrapped) columns. Column 1I§) is the fault ID; on the GUI but our automated test oracle was not capable
Column 2 p) is the probability that the fault is detected by of examining these parts of the GUI,
at least one test case ifig, which is the same size as the 2) few faults caused failures in non-GUI output, which we

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010 14

TABLE 6

N obtain the ESI relationship via GUI state; moreover, faales
Undetected Faults Classification

reported for mismatches between these 12 properties.;ourt

fgnored we used one technique to generate test cases — based on event-
Widget Non-GUI Longer Masked Crash Total
properties | Faire | Sequence | Error interaction graphs. Other techniquesy, using capture/replay
Paint 0 0 1 6 0 7 tools and programming the test cases manually may produce
Present 13 0 4 0 0 | 17 different types of test cases, which may show different exe-
Spreadsheel 5 | 2 | 8 | 5 13 2 tion behavior. Fifth, in Study 2, a threat is related t
Word 5 o 7 1 0T 20 cution behavior. Fifth, in Study 2, a threat is related to our
measurement of fault detection effectiveness; each faat w
seeded and activated individually. Note that multiple t&ul
present simultaneously can lead to more complex scenarios
could not detect, _ that include fault masking. Finally, several threats atateel
3) several of the undetected faults require even longgy fault seeding in Study 2. Threats from issues such as
sequences, human decision-making are minimized by using an objective

4) the effect of several faults was masked by the evegichnique for uniformly distributing faults based on fiinngl
handler code even before our test oracle could detegits.

It, . _ This research has presented several exciting opportsinitie
5) some faults crashed their corresponding fault-seedgf future work. In the immediate future, the three contdats
version. the cases will be simplified and, if possible, combined. The

We show the numbers of these faults in Table 6. The largarrent special treatment of termination events, whichdeahn
number of “Ignored Widget Properties” faults has prompteadditional two contexts, will be revised. One possibiligythe
us to improve our test oracles for future work. revision of the EIG model; the elimination of all terminatio

This controlled study showed that the automatically idemvents from this model will be explored. This revision wia
tified ESI relationships between events generate testssuilgad to the definition of new, fundamentally different cafses
that detect more faults than their code-, event-, and evetite ESI relationship.
interaction-coverage equivalent counterparts. Moreower The results showed that certain events in the GUI dominate
saw that several of our missed faults remained undetectbe ESI relationship. These events will be studied and ielass
because of limitations with our automated GUI-based teféed. In the future, additional GUI applications and softevar
oracle, and others required even longer sequences. problems will be studied. The run-time state information
was collected using the Java Swing API for standard Swing
7 C E W widgets. Future work involves incorporating customized AP

ONCLUSIONS AND FUTURE VWORK for application-specific widgets into feedback collectiand

This paper presented a new fully automatic technique &malysis.
test multi-way interactions among GUI events. The techaiqu The analysis summarized in Section 5 led to a deeper
is based on analysis of feedback obtained from the ruonderstanding of the relationship between real GUI evamds a
time state of GUI widgets. A seed test suite is used fdhe underlying code in fielded GUI applications. This maylea
feedback collection. The technique was demonstrated \da téo new techniques that combine dynamic analysis of the GUI
independent studies on eight software applications. Thdte and static analysis of the event handler code. For exanie, t
of the first study showed that the test cases generated U#ngdode for related events may be given to a static-analysimeng
feedback were useful at detecting serious and relevantsfauhat could examine the code for possible interactions that a
in the applications. The second study compared the ESIGnly apparent at the code level,g, data-flow relationships.
based test suite to similar EIG-based suites. It showedlieat The feedback currently obtained at run time is in the form
added effectiveness is due to targeted testing of the fihti of GUI widgets. Mechanisms, such as reflection, in modern
ESI relationships, not an incidental side-effect of theesif programming languages may be used to obtain additional feed
the suite, nor the additional events and code that it coversback from non-GUI objects. The definition of state, in terms

As is the case with all research involving empirical studiesf a set of objects with properties and values, is general; it
these results are subject to threats to validity. First is tlmay be applied to any executing object. Some of the six cases
selection of subject applications and their charactessffThe may be adapted for non-GUI objects. Another straightfodwar
results may vary for applications that have a complex backay to enhance the feedback is to instrument the software for
end, are not developed using the object-oriented paradigrode coverage and run-time invariant collection. This et
or have non-deterministic behavior. Second, in study 2, theay be used to generate new types of test cases. Another
test pool approach was used due to practical limitations.ltgical extension of this work is to examine the redundancy
is expected that the repetition of the same test case acrimssur ESIG suites via existing test minimization technigjue
multiple test suites will have an impact on some of the rasultdeveloped for user interfaces [48].
The algorithm used to create the test pool ensures that eacBome of the challenges of GUI testing are also relevant
event (the first event in the test case) is executed in a knovwen testing of event-driven softwares.g, web applications
initial state; the choice of this state may have an effectren tand object-oriented software. One way to test these classes
results. Third, the Java API allow the extraction of only 1Bf software is to generate test cases that are sequences of
properties of each widget; only these properties were usedewvents €.g, web user actions or method calls). Some of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010

techniques developed in this research have already been ysg
by other researchers to prune the space of all possible event
interactions to be tested for web applications [49]; simila

extensions will be explored for object-oriented software. [20]

ACKNOWLEDGMENTS [21]

We thank the anonymous reviewers whose comments and
suggestions helped to extend the second empirical stugy
reshape its results, and improve the flow of the text. This
work was partially supported by the US National Scien

Foundation under NSF grant CCF-0447864 and the Office of

Naval Research grant NO0014-05-1-0421. 24

REFERENCES [25]

[1] E. Dustin, J. Rashka, and J. Paflljtomated software testing: introduc-
tion, management, and performance Addison-Wesley Professional,
1999. [26]

[2] R.K.Shehady and D. P. Siewiorek, “A method to automate usgerface
testing using variable finite state machines,FIRCS '97: Proceedings of
the 27th International Symposium on Fault -Tolerant Cormgu{FTCS [27]
'97). Washington, DC, USA: IEEE Computer Society, 1997, p. 80.

[3] L. White and H. Almezen, “Generating test cases for GUpansibili-
ties using complete interaction sequences/S8RE '00: Proceedings of [28]
the 11th International Symposium on Soft ware ReliabilibgiBeering
Washington, DC, USA: IEEE Computer Society, 2000, p. 110.

[4] A. M. Memon and Q. Xie, “Studying the fault-detection ettiveness of
GUI test cases for rapidly evolving softwaréZEE Trans. Softw. Eng. [29]
vol. 31, no. 10, pp. 884—-896, 2005.

[5] X. Yuan and A. M. Memon, “Using GUI run-time state as feadk to
generate test cases,” IBSE '07: Proceedings of the 29th International
Conference on Software EngineeringMinneapolis, MN, USA: IEEE [30]
Computer Society, May 23-25, 2007, pp. 396—405.

[6] M. dAmorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Etn8An em- [31]
pirical comparison of automated generation and classificdaéchniques
for object-oriented unit testing,” iProceedings of the 21st IEEE/ACM
International Conference on Automated Software Engimeg2006.

[7] T. Xie and D. Notkin, “Tool-assisted unit-test geneoatiand selection
based on operational abstractionAfitom. Softw. Engvol. 13, no. 3,
pp. 345-371, 2006.

[8] R. Ferguson and B. Korel, “The chaining approach for wafe test
data generation.ACM Trans. Softw. Eng. Methodolol. 5, no. 1, pp.
63-86, 1996. (34]

[9] M. J. Gallagher and V. L. Narasimhan, “Adtest: A test dg&neration
suite for Ada software systemslEEE Trans. Software Engvol. 23,

[32]

(33]

no. 8, pp. 473-484, 1997. [35]
[10] B. Korel, “Automated software test data generatioffEE Trans.
Software Eng.vol. 16, no. 8, pp. 870-879, 1990. (36]

[11] C. C. Michael, G. McGraw, and M. Schatz, “Generatingtwafe test
data by evolution.”IEEE Trans. Software Engvol. 27, no. 12, pp.
1085-1110, 2001. [37]
[12] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: autated testing
based on java predicates.” IBSTA '02: Proceedings of the 2002 ACMm[38]
SIGSOFT international symposium on Software testing armlyais
2002, pp. 123-133.
[13] N.Gupta, A. P. Mathur, and M. L. Soffa, “Automated testalgeneration [39]
using an iterative relaxation method.” 8IGSOFT FSE1998, pp. 231-
244, [40]
[14] W. Miller and D. L. Spooner, “Automatic generation of dking-point
test data.IEEE Trans. Software Engvol. 2, no. 3, pp. 223-226, 1976. [41]
[15] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feadk-
directed random test generation,” li@SE '07: Proceedings of the 29th [42]
International Conference on Software Engineeringlinneapolis, MN,
USA: IEEE Computer Society, May 23-25, 2007, pp. 396—405. [43]
[16] B. A. Myers and M. B. Rosson, “Survey on user interfacegpamming.”
in CHI, 1992, pp. 195-202.
[17] F. Belli, C. J. Budnik, and L. White, “Event-based mdute, analysis
and testing of user interactions: approach and case studgedRch [44]
articles,” Softw. Test. Verif. Reliabvol. 16, no. 1, pp. 3-32, 2006.
[18] J. M. Clarke, “Automated test generation from a behelianodel,” in
Proceedings of Pacific Northwest Software Quality Confegen Port- [45]
land, OR: Pnsqc/Pacific Agenda, May 1998.

15

S. Esmelioglu and L. Apfelbaum, “Automated test getiera execution,
and reporting,” inProceedings of Pacific Northwest Software Quality
Conference Portland, OR: Pnsqc/Pacific Agenda, Oct 1997, pp. 127-
142.

P. J. Bernhard, “A reduced test suite for protocol comfance testing,”
ACM Transactions on Software Engineering and Methodqlogy. 3,
no. 3, pp. 201-220, Jul. 1994.

W.-H. Chen, C.-S. Lu, E. R. Brozovsky, and J.-T. Wangn“Apti-
mization technique for protocol conformance testing usimgtiple uio
sequences,Inf. Process. Lett.vol. 36, no. 1, pp. 7-11, 1990.

T. S. Chow, “Testing software design modeled by finit@e machines,”
IEEE Trans. Softw. Engvol. 4, no. 3, pp. 178-187, 1978.

A. von Mayrhauser, R. T. Mraz, and J. Walls, “Domain lmhsegression
testing,” in Proceedings of The International Conference on Software
Maintenance Washington, DC, USA: IEEE Computer Society, 1994,
pp. 26-35.

P. M. Maurer, “Generating test data with enhanced cdfftee gram-
mars,” |[EEE Softwarevol. 7, no. 4, pp. 50-55, Jul. 1990.

M. Auguston, J. B. Michael, and M.-T. Shing, “Environntebehavior
models for scenario generation and testing automatiolX-MOST '05:
Proceedings of the 1st international workshop on Advanoesddel-
based testing New York, NY, USA: ACM Press, 2005, pp. 1-6.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchic&UI test
case generation using automated planningEE Trans. Softw. Eng.
vol. 27, no. 2, pp. 144-155, 2001.

A. Howe, A. von Mayrhauser, and R. T. Mraz, “Test caseggation as
an Al planning problem,’Automated Software Engineeringol. 4, pp.
77-106, 1997.

D. J. Kasik and H. G. George, “Toward automatic generatf novice
user test scripts,” ifProceedings of the Conference on Human Factors
in Computing Systems : Common GroundNew York: ACM Press,
13-18 Apr. 1996, pp. 244-251.

D. M. Woit, “Specifying operational profiles for modglg in ISSTA
'93: Proceedings of the 1993 ACM SIGSOFT international sysipm
on Software testing and analysisNew York, NY, USA: ACM Press,
1993, pp. 2-10.

B. Sarikaya, “Conformance testing: architectures #ewt sequences,”
Comput. Netw. ISDN Systol. 17, no. 2, pp. 111-126, 1989.

F. Ipate and M. Holcombe, “Complete testing from a stieamachine
specification,”Fundam. Inf, vol. 64, no. 1-4, pp. 205-216, 2004.

M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte,TNimann,
and M. Veanes, “Towards a tool environment for model-basssting
with AsmL.” in FATES 2003, pp. 252-266.

E. Farchi, A. Hartman, and S. S. Pinter, “Using a modeddd test
generator to test for standard conformanclBM Systems Journal
vol. 41, no. 1, pp. 89-110, 2002.

H. S. Hong, Y. R. Kwon, and S. D. Cha, “Testing of objecieated
programs based on finite state machines ARSEC |IEEE Computer
Society, 1995, pp. 234—.

L. Apfelbaum, “Automated functional test generatfom Autotestcon
'95 Conference IEEE, 1995.

L. Lucio, L. Pedro, and D. Buchs, “A methodology and anfiework for
model-based testing.” iIRISE ser. Lecture Notes in Computer Science,
N. Guelfi, Ed., vol. 3475. Springer, 2004, pp. 57-70.

J. A. Whittaker, “Stochastic software testing\hn. Software Engvol. 4,
pp. 115-131, 1997.

C. Campbell, W. Grieskamp, L. Nachmanson, W. SchulteTiNmann,
and M. Veanes, “Model-based testing of object-orientedtiea systems
with spec explorer.” May 2005.

P. W. M. Koopman, R. Plasmeijer, and P. Achten, “Modaséd testing
of thin-client web applications.” iIFATES/RY 2006, pp. 115-132.

N. H. Lee and S. D. Cha, “Generating test sequences frosetaof
mscs.”Computer Networksvol. 42, no. 3, pp. 405-417, 2003.

F. Belli, “Finite-state testing and analysis of gragliuser interfaces,”
in ISSRE IEEE Computer Society, 2001, pp. 34—43.

D. Hovemeyer and W. Pugh, “Finding bugs is easyiGPLAN Not.
vol. 39, no. 12, pp. 92-106, 2004.

X. Yuan and A. M. Memon, “Using GUI run-time state as fbadk
for test automation,” University of Maryland, College PalD USA,
Technical Report, Aug. 2009, http://hdl.handle.net/19836. [Online].
Available: http://hdl.handle.net/1903/9416

Q. Xie and A. M. Memon, “Designing and comparing autoetatest
oracles for GUI-based software application®yCM Transactions on
Software Engineering and Methodologxol. 16, no. 1, p. 4, 2007.

L. C. Briand, Y. Labiche, and Y. Wang, “Using simulatitmempirically
investigate test coverage criteria based on statechatC$E '04: Pro-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2010

ceedings of the 26th International Conference on Softwaigirieering
IEEE Computer Society, 2004, pp. 86-95.

[46] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakand X. Qiu,
“On test suite composition and cost-effective regressestirig,” ACM
Trans. Softw. Eng. Methodplvol. 13, no. 3, pp. 277-331, 2004.

[47] D.J. Richardson and M. C. Thompson, “An analysis of tisga selection
criteria using the relay model of fault detectiodEEE Trans. Softw.
Eng, vol. 19, no. 6, pp. 533-553, 1993.

[48] F. Belli and C. J. Budnik, “Test minimization for humaoemputer
interaction,” Applied Intelligence vol. 26, no. 2, pp. 161-174, 2007.

[49] P. T. Alessandro Marchetto and F. Ricca, “State-bassting of Ajax
web applications,” inProceedings of the 1st International Conference
on Software Testing, Verification, and Valicatiohpril 9-11, 2008, pp.
121-130.

Xun Yuan is a Software Engineer in Test (SET)
at Google Kirkland where she is in charge of en-
suring the quality of a web-based software prod-
uct called Website Optimizer. She completed her
PhD from the Department of Computer Science
at the University of Maryland in 2008 and MS
in Computer Science from the Institute of Soft-
ware Chinese Academy of Sciences in 2001.
Her research interests include software testing,
quality assurance, web application design, and
model-based design. In addition to her interests
in Computer Science, she also likes mathematics and literature.

Atif M Memon is an Associate Professor at the
Department of Computer Science, University of
Maryland. His research interests include pro-
gram testing, software engineering, artificial in-
telligence, plan generation, reverse engineering,
and program structures. He is the inventor of the
GUITAR system (http://guitar.sourceforge.net/)
for automated model-based GUI testing. He is
the founder of the International Workshop on
TESTing Techniques & Experimentation Bench-
marks for Event-Driven Software (TESTBEDS).
He serves on various editorial boards, including that of the Journal of
Software Testing, Verification, and Reliability. He has served on nu-
merous National Science Foundation panels and program committees,
including the International Conference on Software Engineering (ICSE),
International Symposium on the Foundations of Software Engineering
(FSE), International Conference on Software Testing Verification and
Validation (ICST), Web Engineering Track of The International World
Wide Web Conference (WWW), the Working Conference on Reverse
Engineering (WCRE), International Conference on Automated Software
Engineering (ASE), and the International Conference on Software Main-
tenance (ICSM). He is currently serving on a National Academy of
Sciences panel as an expert in the area of Computer Science and
Information Technology, for the Pakistan-U.S. Science and Technology
Cooperative Program, sponsored by United States Agency for Interna-
tional Development (USAID). In addition to his research and academic
interests, he handcrafts fine wood furniture.

