Liberalizing Dependency

Avik Chaudhuri

University of Maryland at College Park
avik@cs.umd.edu

Abstract. The dependency core calculus (DCC), a simple extensioreafdm-
putational lambda calculus, captures a common notion cémfggncy that arises
in many programming language settings. This notion of ddeecy is closely
related to the notion of information flow in security; it isnsitive not only to
data dependencies that cause explicit flows, but also teaatependencies that
cause implicit flows. In this paper, we study variants of D@@hich the data and
control dependencies are decoupled. This allows us to densettings where a
weaker notion of dependency—one that restricts only eikglaws—may use-
fully coexist with DCC'’s stronger notion of dependency. krticular, we show
how strong, noninterference-based security may be releshaiith weak, trace-
based security within the same system, enhancing sounaiehle latter and
completeness of the former.

1 Introduction

The dependency core calculus (DCC) [2] is a simple extensidhe computational
lambda calculus [20], where each leveln a lattice is associated with a type con-
structor7, that behaves as a monad. DCC was designed to capture a cevticad

of dependency common to many programming language setiimgading security.
This notion of dependency is closely related to the concepparametricity [22, 29]
and noninterference [2, 16]. Roughly, DCC's type systenragutzes that the computa-
tional effects of a program protected by some levehn only be observed by programs
protected by levelg or higher in the lattice. Of course, such effects may inclode
only explicit effects due to data flow, but also implicit effe due to control flow. For
example, consider the following functions.

f=Xx:Ty(s1+ s2). bindy=ziny
g =Xz : Ty(s1 + s2). bind y = z in case y of inj;(2). (inj; () || injo(2). (injs ()

The type of the argumentis an/-protected sum typés; + s2), denotedly(s1 + s2).

A value of this type is of the forn, (inj; e;)), i € {1, 2}, wheree; is an expression of
types;, inj; is a case constructor, and denotes somé-protection mechanism (which
can be undone withind). The functionf undoes the protection an and returns it.
The functiong also undoes the protection ahbut returns only its case constructor. Of
course, neither function is typable in DCC, sinftandg return unprotected results that
depend ont—in other words,f andg leak information onz. Still, intuitively ¢ may
seem “safer” tharf—while f explicitly reveals all information on through data flow,

g implicitly reveals only one bit of information om through control flow.

Traditionally, security experts have dismissed this notib “safety” as unsound,
since the attacker might be able to amplify the one-bit Ifakformation ing to leak
all information onz, thereby making it as dangerous fasHowever, for non-malicious
code, such attacks are often complex and seem rare in @dad®¢. Indeed, in the
past few years several static analyses for security haugséaton restricting effects
due to data flow, while ignoring other effects [5, 7-13,19;2%, 30, 32, 33, 35]. From
a theoretical perspective, one may simply consider theaskyses unsound, and assume
that they provide no guarantee. Alternatively, one may ¢ryimderstand the precise
guarantee that these analyses provide, and evaluate wisetttea guarantee is at all
important for security. This is the stance we take in thisguap

Previous work on downgrading and robustness [21, 34] ishassimilar concerns.
Roughly, downgrading allows some specific information ie fystem to be released,
and robustness guarantees that this does not cause funtivgentional leak of infor-
mation in the system. For example, a functiothat checks whether a given password
is correct releases information on the correct passwordheses it returns the result of
the check. A system usingmay still be robust, in the sense that the attacker cannot
exploit the information released yto leak further information in the system.

However, downgrading as a mechanism of information relezee be too coarse.
For example, it blurs the qualitative distinction betweensaial password-checking
function that releases partial information on the correxdspvord, and a function that
releases the correct password itself. (This distinctiainslar to the one between func-
tionsg andf above.) In this paper, we explore a finer mechanism of inftionaelease,
calledweakeningIn particular, weakening the protection on the correcspasd al-
lows information on it to be released implicitly through ¢ah flow, but not explicitly
through data flow. As usual, robustness may still requiresbieh weakening does not
trigger further weakening in the system.

We study weakening and its properties by considering vegiahDCC in which
explicit and implicit effects are decoupled. The implicfeets arise entirely out of
case analysis, so the main differences with DCC lie in thellirag of sum types. For
instance, consider the following typing rule in DCC:

I'te:Ty(s) Fax:ske :t t is protected at
't (bindz=cine):t

The variabler binds the result of upon undoing its protection. Sinaeis in the scope
of ¢/, the computational effects ef should only be observable to programs that are
protected by levelé or higher. This is ensured by the side condition, which retstt to
be only of certain forms. (We will review the formal defintti@f this condition later.)
In particular,t cannot be a sum type, because informatiorzanay be leaked through
the case constructor of a value of such type. Indeed, thisistly why f andg are not
typable in DCC; their results have, respectively, typas+ s) and(unit + unit).

In contrast, we study the following typing rule in DGCa variant of DCC:

I'be:Tys) @ax:s'ke:t tisweakly protected at
'k (bindz=eine) :t

The type constructaf’, provides weaker protection thdn; it focuses on restricting
effects due to data flow, while ignoring other effects. Intjgatar, the side condition in
the rule above allows to be a sum type. At the same timeis adequately restricted
to ensure that itself is not released without protection. We introdugeen typegor
this purpose; roughly, an open typgis given to a value of type that requires weak
protection by level. We assume such a type for and prevent from being an open
type. In the resulting system,is typable (after weakening the type of the argument)
but f is not. We show that if a program is typable in DCC, then it remadypable
in DCC? by weakening types. Furthermore, we formalize the precissantee en-
forced by DCC. This guarantee is related to Volpano’s definitiomafak securityas a
safety property [31], and it eliminates (at least) Dennind Benning’sxplicit flowat-
tacks [14]. For non-malicious codeg., code that the attacker cannot fully control, such
attacks are far more dangerous than implicit flow attack} [g8s DCC!’s guarantee
is important for security of such code, at least from a pcatterspective.

While the typing rules of DC& have an interesting flavor of their own, mixing them
with DCC'’s typing rules can yield surprisingly pleasantkiads. \We explore a couple
of such recipes in this paper; they highlight the symbiotitune of these systems.

— We study a dynamiaeaken primitive that allows values of typ&; to be cast as
values of typ€el’,. This weakening may invalidate strong protection guaest
levels? and lower. However, weak protection guarantees shoulchslill at these
levels, and strong protection guarantees should hold atladir levels. We show
how these guarantees can be enforced by recycling DCC's tiypearryblames
for weakening. Specifically, we include the rule

I'e:Ty(s)
I'+ weaken e : T (Te(s))

whereg is some isomorphism from the lattice of levels to some latGtblames.
The behavior of the resulting system, D&Crests on the definition o.

e If J preserves joins and meets, then a program’s type carriesree(¢) such
that/ upper-boundshe levels of weakening on which its results may depend;
thus, strong protection guarantees continue to hold ad\adi$ not’ or lower.

e If § exchangesjoins and meets, then a program’s type carriesreeB(¢) such
that/ lower-boundghe levels of weakening on which its results may depend;
thus, weak protection guarantees are robust against elsleet? or higher.

— Conversely, we show how a DC&tyle analysis can make DCC's dependency
analysis more precise. Consider the following functionisiclv are clearly secure
yet rejected by DCC because sum types are never considerediad:

Az. bind y =z in (inj; () i1e{1,2}

To typecheck such functions, we observe that any informégiak is ultimately due
to either an explicit leak through data flow or an implicitkearough control flow.
Specifically, evaluating an expression of sum type may feénéarmation about
sensitive data only if that expression either does a cadgsaman sensitive data, or
releases the sensitive data itself. We can prevent the fgrassibility by including

a side condition in the rule farase, and the latter by delegating to DG typing
rules. We show that the resulting system, D€ds sound and more liberal than
DCC; in particular, it admits some new type-preservingrojations.

In the context of security, these results suggest someestiag ways in which strong,
noninterference-based security may be reconciled wittkytesce-based security within
the same system, enhancing soundness of the latter and etemgds of the former.
Specifically, in a system where protection may have beerngfignveakened, a strong
blame analysis can be used to provide strong protectioragtees for those parts of
the system that are not affected by such weakening. Codyeaseeak flow analysis
can be used to increase the coverage of such guarantees.
To summarize, we make the following contributions in thipga

— We deconstruct DCC, which captures standard information fido a weaker sys-
tem DCC! that is instead focused on explicit information flow. We ardloat this
system provides the foundations for several recent statityaes for security that
do not restrict implicit information flow (Section 3).

— We study a language primitiwgeaken that switches from DCC-style protection to
DCC¢-style protection of programs at run time. Such weakening beaviewed as
a milder form of downgrading that preserves data-flow guaesifor the resulting
programs. Furthermore, we show how such weakening can lieotied by reusing
DCC mechanisms to associate blames for weakening (Sedtion 4

— Going in the other direction, we study how DEE€ typing rules can enhance the
precision of DCC'’s typing rules. This technique (once ayjeties on deconstruct-
ing information flow into explicit and implicit informatiofiow (Section 5).

We review DCC next (Section 2), deferring further discussia related work and
conclusions until the end (Section 6).

2 Background on DCC

Recall that the computational lambda calculus [20] extehdssimply typed lambda
calculus with a type constructor that is interpreted as aadoihe monad is used
to systematically control effects in the language. DCC [@fies this idea further by
distinguishing computations at various “levels”, and coling effects across levels.
Specifically, DCC includes a monadic type constructor fahdavel in a lattice, and has
a special typing rule that restricts how computations abuetrlevels may be composed
based on the lattice. Létdenote levels in such a lattice with orderingjoin LI, meet

M, bottom L, and topT. We focus on the following syntax for types and terms in
DCC. (For brevity, we omit any discussion of pointed typed agcursive programs;
see Section 6 for further comments.)

typess, ¢ = unit| (s — t) | (s x t) | (s + 1) | Tu(s)
valuesv ::= () | Az. e | {e,e’) | (inj,) | (ne €)
termse ::= v | (e ¢’) | (proj;) | (case e of inj; (). e1 || injy(x). e2) | (bind z = e ine’)

Types include unit, product, sum, and function types, ad aeltypesly(s) for
each levell in the lattice. Terms include the introduction and elimioatforms for
these types; the introduction forms are considered valogzrticular,(r, ¢) has type
Ty(s) whenevek has types, and(bind z = (1 €) in ¢’) reduces te'[e/z].

In practice,n, may represent any mechanism that provides “protectiorg\al¥,
broadly construed. In the context of secrecy, for instatfgeg) may be viewed as an
encryption ofe with a key secret to level. The typing rule fobind should then ensure
that the secrecy af is preserved in the above reduction. In particular, this negyire
that the result be similarly encrypted. This intuition igptiared by a predicaté < ¢,
read as t is protected at”, meaning that terms of typecannot leak any information at
level /—in other words, terms of typeare indistinguishable to any levé€lthat is not
at least in the lattice. The following rules define this predicates unit; ¢ < (s — t)
iff ¢ <t;0=<(sxt)iff { <sandl <t;andl < Ty (s)iff L C ¢ ord < s.

Significantly, this definition does not consider sum typesdgrotected. The broad
reason is that any information in terms is ultimately coraayy case constructors.
(The other constructors—unit, tupling, function absti@ttand/-protection—cannot
convey any information since they are completely deterchinethe associated types.)
For instance, a boolean may be encoded as ihigr()) or (inj, ()), thereby conveying
one bit of information; so the sum tygenit + unit) can serve as an encoding of the
datatypeboolean. In general, complex datatypes can be encoded using surs, ype
the only way of distinguishing terms of such types is by anialg the case constructors
used in those terms. Thus, it makes sense to require expiatiction on any term of a
sum type. (However, we will show in Section 5 that this resion can be relaxed.)

The typing rules for DCC derive judgments of the fodfmil + e : t, wherel”
contains type hypotheses for free variables &hé a protection contexf29], which
indicates the maximum level of protection promised by thatext. If ¢ is closed,l” is
empty andl7 is L, and we use the simpler notatiere : ¢ for the typing judgment. In
addition to standard rules for the simply typed lambda dakwith sum and product
types (see the appendix), we have:

(T-ret) IsIIUullkEe:s
-re
It (nee):Ty(s)
;e T, Ix:s;IIEe :t =T (t
(T-bind) e:Ty(s) x:s e < Tr(t)

I''IT-bindx=ecine : ¢t

(T-ret) states thatrn, ¢) has typeT;(s) whenever has types, assuming-protection
by the context (as promised by joinifgwith the protection context).T-bind) states
that(bind 2 = e in ¢’) has typef whenever has a type of the forriy(s), ¢’ has type
t assuming that has types, and the typd';(¢t) is protected at. The latter condition
means that eitheris protected at, or IT is at least; this ensures that the result &f
cannot leak any information &f including any information or, which is bound to the
result ofe upon undoing it€-protection at run time.

The key property of this type system—ensuring a form of pataicity [22, 29] or
noninterference [2,16]—can be formalized using a typealad indistinguishability
relation over terms; ~; ¢’ : s, meaning that termsande’ of types are indistinguish-
able to level. In addition to standard rules for logical equivalence (heeappendix),

we have thain, e) and(ny ¢’) are indistinguishable té unless¢ is at least!’. In
other words, we have that the encryptions:@nde’ with a secret key at leve! are
indistinguishable to an observer at le¥els long ag does not know any secrets/at

For example, lek; = (n (inj; ())) andes = (ne (inj, ())), and suppose that
1L 0. Theney ~¢ ey : Tp(unit + unit). Now recall the functiong andg defined in
Section 1 (and assume that= s, = unit for simplicity). Thenf %, f, since(f e1)
reduces tdinj; ()), (f e2) reduces tdinj, ()), and(inj; ()) % (injy (). Similarly, we
can show thay £, g. Fortunately, neither function is typable in DCC. Next ddes
1= Xx. (g (f x)) andg’ = Ax. (e (¢ z)). Then we can show that’ ~, f’
Ty(unit+unit) — Ty(unit+unit) andg’ ~¢ ¢’ : T¢(unit+unit) — Ty (unit+unit), and
both functions are typable in DCC. Indeed, the type systearantees that whenever
a typed function is applied té-protected inputs, it always produces outputs that are
indistinguishable to levels that are not at le@st

Theorem 1 (DCC soundnesssf. [29]).1f Fe:Ty(s) — ¢, Fep:s,and Fes:s,
then for any?’ such that! IZ ¢/, (e (ng e1)) ~e (e (e e2)) : t.

3 Explicit flows and DCC?

While DCC can adequately encode various analyses, the lyimdgnotion of depen-

dency can be overly sensitive in certain settings. In thisise, we design a variant of
DCC with the aim of capturing a weaker notion of dependencye-tbat is sensitive to
data dependencies but insensitive to control dependentesed through the lens of
information flow, this system restricts ongxplicit flows of information. We make this
guarantee precise, and argue why it may be useful for sgénitractice.

3.1 Explicit flows

In their seminal paper on information-flow security, Dergnand Denning provided an
intriguing characterization of explicit flows [14]: . an explicit flow [of some infor-
mationz] occurs whenever the operations generating it are independf the value
of x.” Unfortunately, this definition has been largely ignoredhe literature. The only
related work seems to be Volpano's [31], which definesk securityas a trace-based
(safety) property: a program is weakly secure if its tracelice secure “branch-free”
programs. We observe that weak security implies the absaneeplicit flow attacks,
since information flows in a branch-free program cannot beeggted by operations
that depend on specific values. (It seems that this conmeb&bveen Volpano’s and
Denning and Denning’s definitions has not been articulatedipusly.)

These definitions deserve more attention, since they stiggastly why explicit
flow attacks are so interesting in practice. Explicit flownerabilities are attractive to
attackers, since they can be exploited parametricallyv@wsely, such vulnerabilities
often pointto logical errors rather than implementationtifacts”, since the information-
flow channels are abstract. Finally, various dynamic cheelsch as those for excep-
tion handling and access control—routinely cause impfioit/s in practice. Ignoring
these channels not only focuses our attention on other ‘itefininerabilities”, but also
liberates dynamic checks to serve as mechanisms for plgglgose vulnerabilities.

This may explain why several recent analyses for security g design ignored
implicit flow attacks and focused on eliminating explicitfl@ttacks [5, 7-13,19, 25—
28, 30, 32, 33, 35]. Some of these analyses aim to verify thergg of web applications
[13,26, 28, 30]. Many attacks in this context are ultimatglye to code injection, and
a common defense against such attacks is to sanitize vélaesay flow from inputs
to outputs. The sanitization mechanisms merely restrigli@kflows—they may well
introduce implicit flows, but such flows are considered bernigthis context. Some
other analyses aim to formalize security guarantees peoMig low-level systems such
as file and operating systems [4, 8, 9], which are usuallyggtet! by dynamic access
control mechanisms. Preventing explicit flow attacks witase mechanisms already
requires some care, and it seems difficult and perhaps uabksto expect stronger
guarantees from such systems.

3.2 Dccd

Our system, DCE€, is a simple variant of DCC where the type constructrare re-
placed byT';, and the protection mechanismsare replaced by,. These replacements
are intended to provide weaker guarantees than their oquamte in DCC, as discussed
above; we enforce them with a slightly different set of rulgkich require a new form
of type s*, called anopen typelntuitively, the types’ is given to terms of type that
need to be (weakly) protected at levelOpen types do not have any special intro-
duction or elimination forms. Instead thgyalify existing types [15], according to the
following equations.

— (Y)Y = s ands = s (protection requirements can be joined withand any
type can be viewed as an open type with no protection reqeiném

—unit® = unit, (s =) =5 — ¢, (s x t)* = (s' x t*), andTy (s)! = Tp(s)
(protection requirements are redundant for the unit type, @an be structurally
propagated for other non-sum types);

— Ty (s)" = Tu(s)iff £ C ¢ (protection requirements can be dropped if there is
adequate protection).

Note that there is no equation for sum types. In particutarauld be unsafe to
equate the open sum tyge + ¢)¢ with the sum type(s® + t¢), for reasons similar
to those discussed in Section 2. It suffices to see that sud@gaation would imply
(unit 4 unit)® = (unit’ + unit’) = (unit + unit). But recall that the typéunit +
unit) can serve as an encodingi®folean; so the equation in question would allow
protection requirements on booleans to be dropped as nekdgdneral, this would
make protection requirements on any data redundant, anpletaety defeat the purpose
of open types. Furthermore, note that by viewing the equatabove as rewrite rules
from left to right, it is possible to “normalize” types, effiédvely pushing the protection
requirements that occur in those types as inwards as pesSibbth normalization helps
maintain syntax-directed types for most terms, excep@liost have (open) sum types.
For the latter terms, we assume that they always have opetyp@s

Our enforcement strategy with open types is rather simgleniindoing protection
of a term of typeT(s), we give it a types’. We then demand that such a term be

protected back with a levél that is at least. The resulting term has tyf&, (s*), which
can be equated t6,/ (s), thereby dropping the protection requirement. To enfdné t
strategy, we define (as in DCC) a predicéte ¢, read ast is weakly protected at’,
with the following rules:¢ < unit; £ < (s — ¢)iff £ < ;0 < (s x t)iff £ < sand
(<t < (s+t)iff £<sandl <t;andl < Ty(s)iff LT ¢ ord < s.

Note that there is no rule for open types, since such typeseatrgrotected by
definition. On the other hand, we include a rule for sum ty®&h a rule is sound
in this context because we are only interested in tracking dapendencies and not
control dependencies. Indeed, terms of type t)—which evaluate to valugsnj; e)—
cannot leak any data not already leakealfyhich has type eitheror¢). In particular,
the constructorsnj; cannot leak any data, unless the val(ie$; ¢) already require
protection and thus have a non-trivial open type (where tiadifier is not_L)—which
is impossible since by the equations abdvet ¢) cannot be equal to such a type.

Following DCC, the typing rules for DCCderive judgments of the forn; 1T +
e : t, wherel” contains type hypotheses for free variables &hi$ a (weak) protection
context. We show only the interesting rules. (The remainings are in the appendix.)

F;ﬁl_e:(81+82)é ﬂx:sf;ﬁl—ei:s
;11 + case e of inj (). ey || injy(z). €2 : s
I'ITuflte:s
T (7 0) To(s)

LI e :To(s) LNaw:sTFe it L<TH()
I:IT+bindz=eine : t

(TP-case)

(TP-ret)

(TP-bind)

(TP-case) assumes that the case construction; ¢) has an open sum type, and
propagates its protection requirement to the variabl®und toe at run time. This
allows sensitive data to be safely destructed, withouhtpsiack of its protection re-
quirements. All other rules are syntax-directed (thankedamalization of types as
mentioned above) and are analogous to those in DCC. In platicTP-ret) states that
(7, e) has typeT,(s) whenevek has types, assuming (weak)-protection by the con-
text. (TP-bind) states thatbind = = e in ¢’) has type only if e has a type of the form
T(s), ¢’ has typel assuming that has open typa’, and the typ&'7(t) is (weakly)
protected at. The latter condition means that eithtes protected af, or IT is at least
£. This ensures that the result gfcannot leak any data &t including any data in,
which is bound to the result @fupon undoing it€-protection at run time.

We formalize the key property of this type system using a {gjppectedsafetyre-
lation over termse >, : s, meaning that terne of type s is safe at level. Our
safety relation relies on a semantics with “taint propaggti Thus, we extend the
internal syntax with terms of the forf, meaninge tainted with /—intuitively, e’
is similar to (bind 2 = (7, e) in z) for freshz. We define equations over tainted
terms, closely following the equations over open types.stla have(e!)! = ¢
e=eb () = 0O e)f = haefs {eren) = (eh,eb)i (M e)f = (T €
and (7, e)* = ([, e) iff £ C ¢'. As usual, these equations let us normalize terms
so that only terms of sum types carry taints. Finally, we mdtéhe local reduction
rules forbind andcase as follows: (bind * = (7, e) in ¢) reduces te’[¢?/x], and

(case (inj; e)' of inj; (). e1 || injy(). e2) reduces ta;[e’/z]. Thus, we taint a term
upon undoing its protection, and propagate the taint on m terits subterm upon
pattern matching. Note that such taint propagation ignimngdicit flows. We use this
semantics in the derivation rules of our safety relatiorfpiews.

— ey siff ereducesta andv >y : s

— () ¢ unit

— vy (s—t)iffforall e if e, : sthen(ve) >yt
— {e1,ea) >y : (81 X 82) iff €1 >y : 51 andes >y : s9

— (inj; €;) > 2_(81 +s0)iff ;>p s

— M e)>e:Tp(s)iff ' ZLLorer,:s

Thus, safety is analogous to indistinguishability as defineSection 2, except that
we are concerned with properties of a single term rather ¢hpair of terms. As ex-
pected, tainted terms are unsafe, &nd e) is safe at’ unless/ is at least’.

For example, let = (7, (inj; ())) for somei € {1,2} and suppose thatZ ¢'.
Thene >4 : Ty(unit + unit). Now recall the functiong andg defined in Section 1
(and assume thay = so = unit for simplicity). Clearly f /., since(f ¢) reduces to
(inj;)" and(inj; ()) /. Fortunately,f is not typable in DC@. In contrast, we can
show thatg > : T¢(unit + unit) — (unit + unit), andyg is typable in DCC. Next
considerf’ = \z. (7, (f z)). It is easy to check that’ >, : Ty(unit + unit) —

T (unit + unit), and f’ is typable in DCC. Indeed, the type system guarantees that
whenever a typed function is applied to (weakiyprotected inputs, it always produces
outputs that are safe at levels that are not at léast

Theorem 2 (DCC? soundness)Iif e : Ty(s) — tand F ¢ : s, then for any”
suchthat! Z ¢/, (e (7j, €')) >¢ : t.

Furthermore, we show that DCG type system is at least as liberal than DCC's, by
defining an appropriate encoding between the two systemé$agt, it is strictly more
liberal by the example above.)

Theorem 3 (DCC to_DCCd). Let[-] translate terms and types by replacifrg -) with
(7,), andTy(-) with T (-). If - e : s in DCC then [e] : [s] in DCCY.

3.3 Remarks

Before we move on, let us try to carefully understand the gutae provided by DCE

DCC%'s semantics, based on taint propagation, is closely @kat&/olpano’s exe-
cution monitor for weak security [31]. In fact, results obéwation in DCC can be in-
terpreted as branch-free DCC programs “induced by traeesl'typing in DCC guar-
antees security of such programs in DCC.

Theorem 4 (DCC? soundnessa la Volpano [31]).Let { -} translate terms and types
by replacing(7j, -) with (1 -), T¢(-) with Ty(-), and(-“) with (bind 2 = (n -) in) for

freshz. If Fe:Ty(s) —t, ke :s and(e (7, ¢)) evaluates ta in DCC?, and if
no protection type occurs negativelydrthen- {v} : {¢} in DCC.

For example, consider the following function of type(unit + s) — (unit + T(s)):

k = Az. bind y = x in case y of inj; (). (inj; () || injy(2). (injy (7, 2))

Let e be any term of type; we have thatk (7, (inj, ¢))) reduces tq(inj, (77, €*)),
which translates vig - } to (inj, (7, bind w = (n¢ €) in w)). The latter is a branch-free,
typed, DCC program. In fact, by the theorem above, all brefned programs induced
by traces of; are typed, and thusis weakly secure. In contrast, if the protection -)
in the body ofk is dropped, the induced branch-free program does not retyyzéile.
Furthermore, DCC's type system eliminates explicit flovaels as characterized
by Denning and Denning [14], since we have already arguddibak security implies
the absence of such attacks. Note that an explicit flow attaokbe camouflaged as an
implicit flow attack by “deep copying’,e., by destructing a sensitive term all the way
down with elimination forms and constructing it back fromratch with introduction
forms. Formally, lekrase be a function on types that erases the label qualifiers in open
types. Thus, for any, we havel < erase(s) for all ¢; in other words, the side condition
in (TP-bind) is redundant for erased types. Now we can define a family odtfons
leak,(t) : Ty(t) — erase(t) that behave just likez : Ty(t). bind y = x in y, such
that the former are typable in DCCbut the latter are not (see the appendix). Thus,
in the limit we may be assured nothing even if DE@eems our program “secure”—
while DCC? guarantees that all explicit leaks are eliminated, theakslenay remain
hidden in the guise of implicit leaks (which remain unreg&d). However, we argue
that DCC! still provides “pretty good protection”, at least for codwt the attacker
cannot fully control. Indeed, for such non-malicious cade,may assume that the pro-
grammer does not try to intentionally circumvent our aniglyldnder this assumption,
prioritizing explicit flows over implicit flows is arguablgasonable, for several reasons:

— No sane programmer would copy all bits of some value indiyeone at a time,
instead of copying the value directly.

— As argued in [23], implicit leaks are largely harmless fonsalicious code, since
such leaks cannot be exploited efficiently by the attacker.

— As shown in [18], checking for implicit flows can be costly teetprogrammer—
typically lots of false alarms arise in systems that chechrfgplicit flows.

4 Dynamic weakening in DCC¢

While DCC?-style protection is sufficient in some settings, DCC stiliag's better the-
oretical foundations and promises many desirable pragsattiat DCC cannot. In prac-
tice, we should be able to mix DCGstyle protection carefully with DCC-style protec-
tion as needed, and still be able to reason precisely abegttarantees of the resulting
systems, short of weakening all the guarantees provided®g-Btyle protection. We
investigate these issues in the setting of a hybrid langDaz@’.

4.1 DCC*

DCCd’s syntax and typing rules are obtained by merging those o€ 2@d DCC.
The merge is mostly straightforward; we make a few adjustaienencourage the two

10

subsystems to interact. (The full system is available féerence in the appendix.)
First, we carry both kinds of protection contexts in typinggments, and modify the
DCC rule(T-ret) as follows.

oueIIullFe:s
LI IT - (nge) = To(s)

Thus, any DCC-style protection provided by the context islenavident not only in
its usual protection context, but also in the weak protectiontext. Next, we add the
following protection rules and open type equatiohss Ty (s) if £ < s; £ < Ty (s)

if £ < Ty(s);,andTy(s)t = Tu(s) if Tp(s)® = Tw(s"). These rules internalize
the fact that DCC's protection types subsume D@Grotection types, as shown in
Theorem 3. In particular, these rules admit functions sisckeabind y = = in (1, y)
of typeT,(s) — Ty(s), that can be used ttrengtherprotection on terms. Finally, we
unify the rules for non-protection types; in particular wavé:

[T e (s + s2)° Da:s& I T Fe;:s

(TPC-case) — — —
I';IT; IT = case e of inj; (x). eq || injy(x). ez : s

The definitions of indistinguishability and safety are sarly extended, and we can
show that the respective guarantees of DCC and D&E€ preserved in DCE.

Theorem 5 (DCC? soundness, preliminary) Theorems 1 and 2 also hold in DGC

4.2 A weakening primitive

Next we include aveaken primitive in DCC?, which acts as a further bridge between
the two subsystems (going in the opposite direction as ttemgthening functions
above). Our intention is that such a primitive should all@nmis of typeT;(s) to be
viewed as terms of typ&,(s), possibly with some caution.

Unsurprisingly, usingveaken may invalidate the protection guarantees provided by
DCC's types. As a simple example, consider the followingction:

h = Az. bind y = (weaken x) in case y of inj;(z). (inj; ()) || injo(2). (injs ()

Assuming a typing rule that allowgveaken ¢) to have typeT,(s) whenevere has
type Ty (s), this function can be typed;(unit + unit) — (unit + unit). However,h
clearly has an information flow violation; formally, we hatr&t (h (1, (inj; ()))) ¢

(h (ne (inj5 ()))), which contradicts Theorem 5. Wordecan be used as an oracle to
generate more complex counterexamples. Consider thevialiofunctions:

m = Az. (g (bind y = z in case y of inj, (2). (injy ()) || injs(=). (injs ())))

n = Ax. (h (mx))
The functionm can be typed (s+t) — Ty (unit+unit) in DCC aslong ag’ C ¢, and
does not leak information an per se; it derives a bit of information anand protects

that bit before returning it. Still, the functionwith type 7 (s +t) — (unit + unit) is
able to usen in combination withh to leak that bit.

11

As this example suggests, usigaken at levell in a program may invalidate DCC-
style guarantees for all types protected by levedsd lower. However, weaker DCE
style guarantees should still hold for such types (becéhese is no way to get around
DCC%s typing rules). Moreover, assuming that there are no otises ofweaken in
the program, we expect that stronger DCC-style guarantemsic remain valid for
all other types. The reason is that such types, which aregtexd by levels higher or
incomparable td, will never delegate the responsibility of protection te theakened
types. In summary, we can precisely reason about proteictithis system as long as
we carefully track the uses @feaken in the program.

Curiously enough, such an analysis can be viewed as a spasialof DCC's de-
pendency analysis, just like many other applications of Dia@eed, the original moti-
vation for studying DCC was its ability to express variousgram analyses—including
call tracking, slicing, partial evaluation, as well as infation-flow control—in a uni-
form setting. Our analysis is similar in spirit, and can bpressed by recycling DCC’s
types to carnplamesfor weakening.

Specifically, we consider a lattice of blames that is isorharfo the lattice of levels,
i.e, for each level we have a blamg(¢), whereg is some lattice isomorphism. Then,
instead of the naive typing rule faraken above, we include the following rule:

LI I F e : Ty(s)

(TPC-weaken) — —
I'; IT; 1T = (weaken e) = Tigep)(Te(s))

Intuitively, this means that whenever we useaken to view terms of typel;(s) as
terms of typel,(s) in a program, we simultaneously blamér) for facilitating such
a view. While this allows us to get away with weaker protettiequirements on such
terms, it also forces some caution: the blame must be caarmehd whenever a result
depends on those terms. Fortunately, DCC's typing rulesoéarce this for free.

Areassuring interpretation of blames may be obtained titidlie lens of the Curry-
Howard isomorphism, following a recent reading of DCC aswharization logic [1].
Specifically, we can interpret the blan#/¢) as a principal that controls protection
requirements at levél and rewrite the type dfweaken e) asg3(¢) says (T(s)). Using
the logic, we can now pinpoint the principals whose statdmaray have influenced
protection requirements in a program, resting assuredltlegbrotection guarantees at
other levels will not be influenced by these statements.

4.3 Blame orderings

Note that we have not yet specified how the ordering in the blattice should be
related toC. One interesting scenario is where the ordering is the samthats pre-
serves joins and meets. In this scenario, the type of a prograst carry a blamg(¢)
such that upper-bounds the levels of weakening on which its resulisaeaend. (This
is because DCC's rules guarantee théat) will upper-bound the levels of weakening
on which the results of the program may depend.) In other sy@€C-style protection
guarantees must hold at all levels ratr lower.

Formally, we define the blam@(¢) carried by a program of typeeas the join of all
blames that appear in We then prove the following theorem.

12

Theorem 6 (DCC? soundness: strong protection)lf e : Ty(s) — ¢, ey : s,
- es : s, and/ is any label such that iZ 371(B(t)), then for any?’ such that/ iZ ¢',
(e (nee1)) ~e (e (ne e2)) : t. Moreover, Theorem 2 holds as is in this system.

As a simple example, consider the following well-typed peog of typeT) (unit +
unit) (wherei € {1,2}):

bind 2 = (weaken (1, (inj; ()))) in (ng())

We haveB (T (unit + unit)) = $(¢), so we can be sure that this program does not
(and cannot be used to) weaken DCC-style protection gueeasit!’ unless!’ C /.

An equally interesting scenario is where we flip the ordenmiipe blame lattice, so
that 5 exchanges joins and meets. In this scenario, the type ofgrgmromust carry a
blamef(¢) such that’ lower-bounds the levels of weakening on which its resulty ma
depend. (Again, this is because DCC's rules guaranteesiitatwill upper-bound the
levels of weakening on which the results of the program maedd.) In other words,
DCC¢-style protection guarantees must be robust against @lldewot/ or higher.

Formally we prove the following theorem, whes¢t) is defined as earlier.

Theorem 7 (DCC¥ soundness: weak protection)Suppose that- e : Ty(s), ¢’ :
T(s) — t, and/ is any label such that = (B(t)) Z £. Then it is impossible to derive
F (¢’ (bind z = (weaken e) in x)) : .

Continuing the previous example, we can be sure that B&@le guarantees for the
program are not influenced by weakening at lé¥einless/ C ¢'.

5 Precise dependency analysis in DC€

Just as a DCC-style analysis can strengthen protectioragtess in a hybrid system,

in turns out that a DCG-style analysis can improve the coverage of such guarantees
In this section, we deconstruct information flow control i@O into two separate prob-
lems: one of restricting explicit flows, and the other of riesing implicit flows. The
former is already handled by DCCthe latter, which is entirely due to case analysis,
can be handled by reworking some of the rules for sum typesG@ Drhe resulting
system, DCC?, becomes more liberal than DCC without compromising it gniees.

We discuss the benefits of such an enhancement towards thué redsection.

5.1 Dcc

DCC conservatively assumes that case constructors maysabteavey sensitive infor-
mation; thus, it restricts both explicit and implicit flows éne shot by requiring that
sum types can never be considered protected (see the distossDCC's protection
rules in Section 2). Unfortunately this restriction causegeral benign programs to be
rejected by DCC simply because they use case construct®neMk this restriction by
observing that any information leak is ultimately due tdvefitan explicit leak through
data flow or an implicit leak through control flow. Specifigalevaluating a term of

13

sum type may reveal information about sensitive data ontiaat term either does a
case analysis on sensitive data, or releases the sensitv@self.

Technically, this separation of concerns is already sona¢welident in DCC,
where we weaken DCC'’s protection rules to allow sum typeset@dnsidered pro-
tected (see Section 3). But by itself this is unsound, ginerdangerous nature of case
constructors—it admits both explicit and implicit flows. d$) we also require open
types—types with qualifiers to precisely track data flow tlgio programs—and we
use these qualifiers to restrict explicit flows in DE@n particular, the typing rule for
case analysis needs to accommodate terms with qualifiedyges, tbecause the qual-
ifiers can be eliminated on all types other than sum typesy-tteck” to sum types
exactly because of the dangerous nature of case conssiMtbile in DCC! we choose
to ignore implicit flows caused by such case analysis, in BIG@: do not.

Note that in order to adjust the rule for case analysis toatidor implicit flows, we
must have some idea of the level of information that we arrésted in protecting—
otherwise, we would have to conservatively ban any casesisaFor this purpose, we
need to carry ampen context¥ in typing judgments, which indicates the minimum
level of protection required by the context. For closed grhis T.

The developments of Section 4 are orthogonal to our presepbpes, so we drop
terms of the form(weaken ¢) and (7, ¢) in the language; indeed, on the surface we do
not care about DCGstyle protection at all, although DCG type system is an im-
portant component of the system internally. Accordinglg,also drop weak protection
contexts. The remaining system mostly inherits from DXGQve make a few adjust-
ments, discussed below. (The full system is available fiaremce in the appendix.)

We now have two typing rules fdsind, both offering DCC-style protection. The
first rule is similar to that in DCC.

IEYEe:Ty(s) Da:osI; YbFe it £=Tr(t)
(TP-bind-old) I X Fbindz=cine : ¢

The other rule is new, and captures the interaction of thestixsystems.

DY Re:Ty(s) Lao:sSIEYN0Re t £<Tr(t)
(TP-bind-new) ;X Fbindr =eine @t

Curiously, this rule looks similar t¢TP-bind) in DCC?, although functionally it is
intended to be closer teT-bind) in DCC. Like (T-bind), (TP-bind-new) applies to
terms of typeT;(s) instead ofT(s). On the other hand, likéTP-bind), we use the
weak protection predicatg instead of=<, while assuming an open type far This
takes care of explicit flows, but not implicit flows. In additi, to handle implicit flows,
we meet’ with the open context, deferring their actual restrictiimte encounter case
analysis at leved.
The new rule for case analysis is as follows.

DY be:(si+s2) YYZ0 La:st:II;Xbe:s
(TP-case) I'; IT; X 1 case e of injy (). e1 || injy(2). ezt s

As in (TP-case), this rule requires—without loss of generality—thahave an open
sum type, with some protection requireménin addition, it requires that the open

14

contextX’ be no lower thaft—so that any implicit flows at that may occur through
the case analysis are irrelevant t@(cannot compromise)’. With these rules, we
show that DCC? provides the same guarantees as DCC, and is at least as.libera

Theorem 8 (DCC*? soundness and completenessj. e : Ty(s) — t, e : s,
and F ey : s, then for any?’ such that? Z ¢, (e (77, e1)) ~o (e (7, €2)) : t.
Furthermore, if- ¢’ : s’ in DCC then- ¢’ : s’ in DCC®.

Infact, DCC? accepts more programs than DCC. For example, the followingtions—
rejected by DCC (see Section 1)—have tfpés) — (unit + unit) in DCC*?:

Az. bind y = z in (inj; ()) ie{1,2}

As a more interesting example, consider the funcsieiichbelow—rejected by DCC—
which has typé€l(boolean) — boolean — option(7y(boolean)) in DCC. (We
use the encodingsoolean = (unit 4 unit), option(c) = (unit + «), false =
(inj; (), true = (injy (), (if e thenes elseey) = (caseeof inj; (_). ey || injy(L). e2),
none = (inj; ()), and(some e) = (inj, €).

switch= Az. Ab. bind b’ = z in ((matchb) b')
match= \b. \b'. if b then none else (some (1, (Notd’)))
not= \v'. if b’ then false else true

In general, undoing protection of terms early in the conti@mv graph seems to cause
problems in DCC, but notin DC@.

5.2 Remarks

One may, of course, wonder whether our enhancement of D@@ésdystem is at all
necessary. Indeed, DCC is designed to be a target languagedh (type-based) pro-
gram analyses can be encoded to prove their soundnesgy tignivations in the source
language are translated to typing derivations in DCC, aacgtundness of the latter is
used to reason about the soundness of the former. In thig senfact it is possible

to encode DCC! in DCC: we compile DCC? programs to the SLam calculus [17]
by erasingbinds, and then use the well-known encoding of SLam in DCC [2].sThu
DCC's status as a core calculus of dependency is not chaiterrdpwever, as in most
such encodings, the translated DCC programs are not siatctequivalent to the
source programs. In particuldsinds may be pushed inwards and duplicated across
branches. Reasoning about the soundness of this tramstatiaires exactly those ob-
servations that underlie the design of DECFurthermore, the translated programs are
inefficient. Indeed, in implementations of DCC in the polympitic lambda calculus
[29], binds are implemented as applications of secret keys (decngtio protection
abstractions (encryptions)—and it makes sense to pull applications as outwards as
possible for efficiency. For source languages with DCCHikienitives, it is reasonable
to expect that programs will be already be optimized; and aveIlshown that DCC-like
typing rules do not preserve typability for such optimiaas. In summary, we believe

15

that deconstructing information-flow analysis into exipdftow and implicit-flow anal-
ysis, as in DCC, provides a better guideline for designing type system®&fo€-like
source languages, than placing an overall restriction omtypes, as in DCC. Other
enhancements along such lines have been suggested pheya8])s

6 Discussion

For brevity, in this paper we have omitted any discussionaiffed types and recur-
sive programs, although they do appear in DCC [2]. Howeverhave checked that
including these elements does not cause any problems iresults—which is hardly
surprising since nontermination does not play an intargstle for weak security.

We have tried to remain close in spirit to Volpano’s definitmf weak security and
Denning and Denning’s characterization of explicit flowsour formal definition of
DCC?. However, inherent differences in the underlying langsageke it difficult to
establish a formal correspondence.

There is a huge body of research on noninterference-basedtgdor languages;
see [24] for a survey. However, there seems to be a discobeseten this research
and most security tools implemented in practice, which igrimplicit flows. Some
interesting previous studies have tried to explain why, ander what circumstances,
it may make sense to ignore implicit flows in practical segfi8, 23]. Unfortunately,
we do not know of any work on formalizing the resulting safgtyarantees of such
tools, although [31] provides some valuable insights anerse security type systems
for process calculi have been designed around similar iBs&s8, 9].

The idea of mixing strong and weak dependency analysis inatlytbenefitial
ways appears to be new. Indeed, our results suggest somestirtg ways in which
noninterference-based security may be reconciled wittettzased security within the
same system, enhancing soundness of the latter and comgsstef the former. Specif-
ically, in a system where protection may have been partvedigkened, a strong blame
analysis can be used to provide strong protection guarafe¢hose parts of the sys-
tem that are not affected by such weakening. Converselyak Wew analysis can be
used to increase the coverage of such guarantees.

We hope that these results will spur further interest indirig the gap between
these two views of security.

References

1. M. Abadi. Access control in a core calculus of dependefitgctronic Notes in Theoretical
Computer Science 72:5-31, 2007.

2. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A corewdals of dependency. In
POPL’99: Principles of Programming Languaggmges 147-160. ACM, 1999.

3. M. Abadi and B. Blanchet. Analyzing security protocolghwsecrecy types and logic pro-
grams. INPOP’02: Principles of Programming Languaggsmges 33-44. ACM, 2002.

4. B. Blanchet and A. Chaudhuri. Automated formal analydis @rotocol for secure file
sharing on untrusted storage. IEEE Symposium on Security and Privapgges 417-431.
IEEE, 2008.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Broadwell, M. Harren, and N. Sastry. Scrash: a systenydoerating secure crash in-
formation. INSSYM’03: USENIX Security Symposjuyages 19-30. USENIX Association,
2003.

. L. Cardelli, G. Ghelli, and A. Gordon. Secrecy and grougation. Information and Com-

putation 196(2):127-155, 2005.

. M. Castro, M. Costa, and T. Harris. Securing software Hgreing data-flow integrity. In

OSDI'06: Operating Systems Design and Implementapages 147-160. USENIX, 2006.

. A. Chaudhuri. Language-based security on AndroidPllAS’09: Programming Languages

and Analysis for Securifypages 1-7. ACM, 2009.

. A. Chaudhuri, P. Naldurg, and S. Rajamani. A type systand#ta-flow integrity on Win-

dows Vista.ACM SIGPLAN Noticest3(12):9-20, 2009.

K. Chen and D. Wagner. Large-scale analysis of formigsttulnerabilities in debian linux.
In PLAS’07: Programming languages and analysis for secupages 75-84. ACM, 2007.
J. Clause, W. Li, and A. Orso. Dytan: a generic dynamiat nalysis framework. IhS-
STA'07: International Symposium on Software Testing aralysis pages 196-206. ACM,
2007.

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. ZhouZhang, and P. Barham. Vig-
ilante: end-to-end containment of internet worms. S@SP’05: Symposium on Operating
Systems Principlepages 133-147. ACM, 2005.

M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexibfermation flow architecture
for software securitySIGARCH Comput. Archit. New35(2):482-493, 2007.

D. Denning and P. Denning. Certification of programs émuse information flowCommu-
nications of the ACM20(7), 1977.

J. Foster, M. Fahndrich, and A. Aiken. A theory of typalifiers. ACM SIGPLAN Notices
34(5):192-203, 1999.

J. Goguen and J. Meseguer. Security policies and sgoooitlels. INIEEE Symposium on
Security and privacyvolume 12, 1982.

N. Heintze and J. G. Riecke. The SLam calculus: programgmith secrecy and integrity.
In POPL'98: Principles of Programming Languaggsages 365-377. ACM, 1998.

D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flonGan't live with 'em, can't live
without 'em. InlInternational Conference on Information Systems Secupidges 56—70.
Springer, 2008.

M. Martin, B. Livshits, and M. S. Lam. Finding applicatierrors and security flaws using
pgl: a program query language. ®OPSLA'05: Object-oriented programming, systems,
languages, and applicationpages 365-383. ACM, 2005.

E. Moggi. Notions of computation and monatf§ormation and computatiqrd3(1):55-92,
1991.

A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing siluleclassification. I€SFW'04:
IEEE Computer Security Foundations Workshpages 172-186. IEEE, 2004.

J. Reynolds. Types, abstraction and parametric polghiem. Information processing
83(513-523):1, 1983.

A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicis and nonmalicious codslark-
toberdorf Lecture Notes2009. Seéehttp://www.cse.chalmers.se/ ~andrei/
mod09.pdf .

A. Sabelfeld and A. Myers. Language-based informatlion-security. IEEE Journal on
selected areas in communicatior2d (1):5-19, 2003.

U. Shankar, T. Jaeger, and R. Sailer. Toward automatedriation-flow integrity verifica-
tion for security-critical applications. INDSS’06: Network and Distributed System Security
SymposiumlSOC, 2006.

U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detgétirmat string vulnerabilities with
type qaualifiers. INSENIX Security Symposiupage 16. USENIX Association, 2001.

17

27

28.

29.

30.

31.

32.

33.

34.

35.

. G.E.Suh, J. W. Lee, D. Zhang, and S. Devadas. Securespnagtecution via dynamic in-
formation flow tracking. IMSPLOS’04: Architectural Support for Programming Langesg
and Operating Systempages 85-96. ACM, 2004.

O. Tripp, S. Fink, and O. Weisman. TAJ: effective tainalgis of web applications. In
PLDI'09: Programming Languages Design and Implementatfmages 87-97. ACM, 2009.
S. Tse and S. Zdancewic. Translating dependency intomgricity. ACM SIGPLAN No-
tices 39(9):115-125, 2004.

P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirdad G. Vigna. Cross site script-
ing prevention with dynamic data tainting and static arialysn NDSS'07: Network and
Distributed System Security Symposil&0C, 2007.

D. M. Wolpano. Safety versus secrecy. 3AS’99: Static Analysis Symposiupages 303—
311. Springer-Verlag, 1999.

Y. Xie and A. Aiken. Saturn: A scalable framework for erdetection using boolean satis-
fiability. ACM Trans. Program. Lang. Sys29(3):16, 2007.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panmaacapturing system-wide
information flow for malware detection and analysis.d@S’07: Computer and Communi-
cations Securitypages 116-127. ACM, 2007.

S. Zdancewic and A. Myers. Robust declassificatio€ $fF\W'01: IEEE Computer Security
Foundations Workshqmpages 15-23. IEEE, 2001.

X. Zhang, A. Edwards, and T. Jaeger. Using cqual forcstatalysis of authorization hook
placement. IUSENIX Security Symposiupages 33—-48. USENIX Association, 2002.

Appendix

We include full definitions of various systems describecdis paper. (See next page.)

18

Typing rules (DCC)
(T-var) Ia:s, I;II+x:s
(T-unit) I I () ounit
Ix:s;llFe:t

T-ab
(T-abs) T hre: (s — 1)
T) IIEe:s—t IiIlke s
-a
PP Tl F(ed) 1
. F;H|—61:31 F;H"@gZSQ
(T-pair)
;I F (eq,e2) : (s1 X 82)
) e (s1 %X 82)
(T-proj) : ——
I'; ITE (proj; e) = s;
(T-inj) Il -e:s;
" I ITE (inj; e) : (s1+ s2)
I'sITEe: (s1+ s2) I'x:s;Ille;:s
(T-case) = —
I'; IT F case e of injy (). e1 || injy(z). e2 @ s
IIUlEe: s
(T-ret)

;I E (nee): Te(s)

Il -e: T, Ix:s;IIFe :t
(T-bind) c:Tels) S bl

L= Tr(t)

I''IT+=bindx=cine :t

Indistinguishability relation (DCC)

(I-unit) () ~e () : unit

Ve,e'. e~pe is = (ve)~p (v €) it

(I-function) PP p—

’ /
€1 ~y €1 181 €2 ~yp €yl S
|-product
() (e1,e2) ~p (€], €b) = (51 X s2)
!
€; ~pe; S
I-sum — —
() (inj; €;) ~¢ (inj; €}) : (s1 + s2)
0Ze
(I-monad-1) Z .
(ner €) ~¢ (ner €)= Tor(s)
e~pe s
(I-monad-2)
(e €) ~e (e €) : T (5)
(| |) e —* v e — 'Ul U~y y : 8
-eva

en~ype s

19

Typing rules (DCC%)

(TP-var)
(TP-unit)

(TP-abs)
(TP-app)
(TP-pair)
(TP-proj)
(TP-inj)
(TP-case)

(TP-ret)

Fa:s, I ITFx:s
't () : unit
Ie:s;HFe:t
LI FAz.e: (s —t)
IiIllThFe:s—t IiIlTke s
I (eé):t
Il e sy I:ITF ey so
[T+ (e, e2) : (51 X 82)
I e (s % s9)
;I F (proj;) : si)
I'illFe:s;

T ITF (inj; e) : (s1 + s2)

DI ¢e: (51 +s9)f Fa:siTTFe;:s

I, IT = case e of inj; (z). eq || injy (). €2 : s

ITulke:s
I E (7€) To(s)

LI e:Ty(s) Da:s“ITFe :t L <TH(t)

(TP-bind)

I:IT+bindz=ecine : ¢

Leaking explicit flows via implicit flows: DCC ¢

leak, (unit) = Az : T(unit). ()
leak,(s x t) = Az : Ty(s x t). bind y = z in

(leak (s) (7, (proj; y)), leak(t)(7, (projs y)))

leaky((s + 1)) = Az : Ty((s + t)*). bind y = 2 in

case y of
injy (21). (inj; (leake () (Mever 21)))
|| injz(22)- (injy (leakwe (t) (Moer 22)))

leak (s — t) = Az : Ty(s — t).

Az :s.bind f =z inleak(t)(m, (f 2))

leak (T¢(s)) = Az : To(Ty(s)). bindy = zin

(7, (leake (s)y))

20

Syntax: DCC%

typess, t = unit | (s x t) | (s + 1) | (s = t) | Tu(s) | Te(s) | s*

|
termse,v == () | (e, €’) | (proj; €) | (inj; e) | case e of inj; (x). e1 || injy (). ea
[Ax.e|(ee)]|(nee)| (M, e)|bindx=ceine|(weaken e)

Typing rules: DCC %

(TPC-var) Fa:s, I I;IT+Fx:s
(TPC-unit) [I 1T+ () : unit
Fze:s;I;IIFe:t
(TPC-abs) T ‘
I E . e (s—t)
bC I Fe:s—t IIGIT e s
(T°%-app) = ;
IGITE (ee)
I ey I es
(TDC-pair))) 6_1 S1)) €2 1 52
I ITF (eq,ea) (81X 82)
) LI IT e (s1 % 82)
(TP-proj) — :
I IT; 11+ (proj; e) : s
I I Fe:s;
(TP-inj) O
I IT; 1T+ (inj;):(31+32)
7 TT) ¢
(TOCcase) F,H,Hie.(sl—i—sQ). ' I'z: s I I e s
I';IT; IT = case e of inj; (). eq || injy(x). ez : s
oueIiiulke:
(TPC-ret-1) — cs
LI (nee):To(s)
I ITul e
(TPC-ret-2) — s
I3 I T (7 e) < To(s)
DI Ee:Ty(s) a:s;IIFe ot £=Tr(t)
(TPC-bind-1) [;I1;IT-bindz =eine i t
DI e :Ty(s) Da:sSILITRE :t < Tr(t)
(TPC-bind-2) I IIFbindz=eine ot

LI I e Ty(s)

(TPC-weaken) — —
I 115 1T = (weaken e) = Tiger)(Te(s))

Protection rules: DCC%

(P-unit) ¢ < unit
(P-product) £ <s A L=<t = L= (sx1)
(P-function) ¢ <t = (=< (s —1)
(P-monad-l 2) TV = (< Tg/() , s = (= Tg/(S)
EI;I—DefFect; ﬁ% s = £=<Tu(s)
-unit) £ < unit
(PP-product) £ <s A £ <t = (< (sxt)
(PP-function) ¢ <t = (< (s — t)
(PP-effect) LTV = £ <Tu(s) , £<s = L<Tu(s)
(PP-sum) £ <s A U<t = (< (s+1)
(PP-monad) £ <Ty(s) = €< Tu(s)

Open type equations: DCC/*

(E-open-1,2) (s£)¢ = st | 5=s"
(E-unit) unit® = unit
(E-product) (s x)¢ = (s x t*)
(E-function) (s — t)f =5 — t*
(E-efFect-l, 2) Tg/(s)g = T@/(SE) , LC U = Tg/(s)z = Tg/(s)
(E-monad) Tg/(s)é = T@/(Sé) = Tg/(s)g = Tg/(Sé)

Syntax: DCC*?

typess,t = unit | (s x t) | (s +1) | (s = t) | Tye(s) | Te(s) | s*
termse, v := () | (e, €’) | (proj; €) | (inj; e) | case e of inj, (x). e1 || injy (). ea
| Ax.e|(ee) | (nee)|bindz=-eine

Typing rules: DCC ¢

(T<P-var) Fa:s, I I[; X Fx:s
(TP-unit) Iy I 5+ () - unit
Fx:s;I1; X et
(TP-abs) TS ©
I YR dx.e: (s —t)
(T<D) ;i XkFe:s—t ;Y Ee cs
-a
PP LS F (ed) o
(TCD ir) I X ey o8y I X Fes s
-pair
P I IT; 5 F (eq,ea) @ (s1 X 82)
I e X
(T-proj) ¢ (51 X 52)
I'; 11 X F (proj; e) : s;
I Y e s;
(TCD-inj) e:s

I 32 (inj; e) : (s1+ s2)
DY e (s1480)" (Z1L=>XZl0 Da:sh I NFe;:

(TP-case) [I1; X 1 case e of injy (z). eq || injy (). €2 : s
;Iul;Yke:s

(T-ret) I Y E (nee) : To(s)
LI YRe:Ts) Da:ssIGEXEe ot =Tr(t)
(TP-bind-1) I Y Fbindz=eine @t
DI Y Re:Ty(s) Ta:sSI NNt £ <Tr(t)
(TP-bind-2) I Y Fbindz=eine @t

Protection rules and Open type equations: DCC?

Same as those for DCE.

22

