
Liberalizing Dependency

Avik Chaudhuri

University of Maryland at College Park
avik@cs.umd.edu

Abstract. The dependency core calculus (DCC), a simple extension of the com-
putational lambda calculus, captures a common notion of dependency that arises
in many programming language settings. This notion of dependency is closely
related to the notion of information flow in security; it is sensitive not only to
data dependencies that cause explicit flows, but also to control dependencies that
cause implicit flows. In this paper, we study variants of DCC in which the data and
control dependencies are decoupled. This allows us to consider settings where a
weaker notion of dependency—one that restricts only explicit flows—may use-
fully coexist with DCC’s stronger notion of dependency. In particular, we show
how strong, noninterference-based security may be reconciled with weak, trace-
based security within the same system, enhancing soundnessof the latter and
completeness of the former.

1 Introduction

The dependency core calculus (DCC) [2] is a simple extensionof the computational
lambda calculus [20], where each levelℓ in a lattice is associated with a type con-
structorTℓ that behaves as a monad. DCC was designed to capture a centralnotion
of dependency common to many programming language settings, including security.
This notion of dependency is closely related to the conceptsof parametricity [22, 29]
and noninterference [2, 16]. Roughly, DCC’s type system guarantees that the computa-
tional effects of a program protected by some levelℓ can only be observed by programs
protected by levelsℓ or higher in the lattice. Of course, such effects may includenot
only explicit effects due to data flow, but also implicit effects due to control flow. For
example, consider the following functions.

f = λx : Tℓ(s1 + s2). bind y = x in y

g = λx : Tℓ(s1 + s2). bind y = x in case y of inj1(z). (inj1 ()) ‖ inj2(z). (inj2 ())

The type of the argumentx is anℓ-protected sum type(s1 + s2), denotedTℓ(s1 + s2).
A value of this type is of the form(ηℓ (inji ei)), i ∈ {1, 2}, whereei is an expression of
typesi, inji is a case constructor, andηℓ denotes someℓ-protection mechanism (which
can be undone withbind). The functionf undoes the protection onx and returns it.
The functiong also undoes the protection onx, but returns only its case constructor. Of
course, neither function is typable in DCC, sincef andg return unprotected results that
depend onx—in other words,f andg leak information onx. Still, intuitively g may
seem “safer” thanf—while f explicitly reveals all information onx through data flow,
g implicitly reveals only one bit of information onx through control flow.

1

Traditionally, security experts have dismissed this notion of “safety” as unsound,
since the attacker might be able to amplify the one-bit leak of information ing to leak
all information onx, thereby making it as dangerous asf . However, for non-malicious
code, such attacks are often complex and seem rare in practice [18]. Indeed, in the
past few years several static analyses for security have focused on restricting effects
due to data flow, while ignoring other effects [5, 7–13,19, 25–28,30, 32, 33, 35]. From
a theoretical perspective, one may simply consider these analyses unsound, and assume
that they provide no guarantee. Alternatively, one may try to understand the precise
guarantee that these analyses provide, and evaluate whether such a guarantee is at all
important for security. This is the stance we take in this paper.

Previous work on downgrading and robustness [21, 34] is based on similar concerns.
Roughly, downgrading allows some specific information in the system to be released,
and robustness guarantees that this does not cause further,unintentional leak of infor-
mation in the system. For example, a functionp that checks whether a given password
is correct releases information on the correct password whenever it returns the result of
the check. A system usingp may still be robust, in the sense that the attacker cannot
exploit the information released byp to leak further information in the system.

However, downgrading as a mechanism of information releasemay be too coarse.
For example, it blurs the qualitative distinction between ausual password-checking
function that releases partial information on the correct password, and a function that
releases the correct password itself. (This distinction issimilar to the one between func-
tionsg andf above.) In this paper, we explore a finer mechanism of information release,
calledweakening. In particular, weakening the protection on the correct password al-
lows information on it to be released implicitly through control flow, but not explicitly
through data flow. As usual, robustness may still require that such weakening does not
trigger further weakening in the system.

We study weakening and its properties by considering variants of DCC in which
explicit and implicit effects are decoupled. The implicit effects arise entirely out of
case analysis, so the main differences with DCC lie in the handling of sum types. For
instance, consider the following typing rule in DCC:

Γ ⊢ e : Tℓ(s) Γ, x : s ⊢ e′ : t t is protected atℓ

Γ ⊢ (bind x = e in e′) : t

The variablex binds the result ofe upon undoing its protection. Sincex is in the scope
of e′, the computational effects ofe′ should only be observable to programs that are
protected by levelsℓ or higher. This is ensured by the side condition, which restrictst to
be only of certain forms. (We will review the formal definition of this condition later.)
In particular,t cannot be a sum type, because information onx may be leaked through
the case constructor of a value of such type. Indeed, this is exactly whyf andg are not
typable in DCC; their results have, respectively, types(s1 + s2) and(unit + unit).

In contrast, we study the following typing rule in DCCd , a variant of DCC:

Γ ⊢ e : T ℓ(s) Γ, x : sℓ ⊢ e′ : t t is weakly protected atℓ

Γ ⊢ (bind x = e in e′) : t

2

The type constructorT ℓ provides weaker protection thanTℓ; it focuses on restricting
effects due to data flow, while ignoring other effects. In particular, the side condition in
the rule above allowst to be a sum type. At the same time,t is adequately restricted
to ensure thatx itself is not released without protection. We introduceopen typesfor
this purpose; roughly, an open typesℓ is given to a value of types that requires weak
protection by levelℓ. We assume such a type forx, and preventt from being an open
type. In the resulting system,g is typable (after weakening the type of the argument)
but f is not. We show that if a program is typable in DCC, then it remains typable
in DCCd by weakening types. Furthermore, we formalize the precise guarantee en-
forced by DCCd . This guarantee is related to Volpano’s definition ofweak securityas a
safety property [31], and it eliminates (at least) Denning and Denning’sexplicit flowat-
tacks [14]. For non-malicious code,i.e., code that the attacker cannot fully control, such
attacks are far more dangerous than implicit flow attacks [23]; thus DCCd ’s guarantee
is important for security of such code, at least from a practical perspective.

While the typing rules of DCCd have an interesting flavor of their own, mixing them
with DCC’s typing rules can yield surprisingly pleasant cocktails. We explore a couple
of such recipes in this paper; they highlight the symbiotic nature of these systems.

– We study a dynamicweaken primitive that allows values of typeTℓ to be cast as
values of typeT ℓ. This weakening may invalidate strong protection guarantees at
levelsℓ and lower. However, weak protection guarantees should still hold at these
levels, and strong protection guarantees should hold at allother levels. We show
how these guarantees can be enforced by recycling DCC’s types to carryblames
for weakening. Specifically, we include the rule

Γ ⊢ e : Tℓ(s)

Γ ⊢ weaken e : Tβ(ℓ)(T ℓ(s))

whereβ is some isomorphism from the lattice of levels to some lattice of blames.
The behavior of the resulting system, DCCdc , rests on the definition ofβ.
• If β preserves joins and meets, then a program’s type carries a blameβ(ℓ) such

thatℓ upper-boundsthe levels of weakening on which its results may depend;
thus, strong protection guarantees continue to hold at all levels notℓ or lower.

• If β exchanges joins and meets, then a program’s type carries a blameβ(ℓ) such
thatℓ lower-boundsthe levels of weakening on which its results may depend;
thus, weak protection guarantees are robust against all levels notℓ or higher.

– Conversely, we show how a DCCd -style analysis can make DCC’s dependency
analysis more precise. Consider the following functions, which are clearly secure
yet rejected by DCC because sum types are never considered protected:

λx. bind y = x in (inji ()) i ∈ {1, 2}

To typecheck such functions, we observe that any information leak is ultimately due
to either an explicit leak through data flow or an implicit leak through control flow.
Specifically, evaluating an expression of sum type may reveal information about
sensitive data only if that expression either does a case analysis on sensitive data, or
releases the sensitive data itself. We can prevent the former possibility by including

3

a side condition in the rule forcase, and the latter by delegating to DCCd ’s typing
rules. We show that the resulting system, DCCcd , is sound and more liberal than
DCC; in particular, it admits some new type-preserving optimizations.

In the context of security, these results suggest some interesting ways in which strong,
noninterference-basedsecurity may be reconciled with weak, trace-based security within
the same system, enhancing soundness of the latter and completeness of the former.
Specifically, in a system where protection may have been partially weakened, a strong
blame analysis can be used to provide strong protection guarantees for those parts of
the system that are not affected by such weakening. Conversely, a weak flow analysis
can be used to increase the coverage of such guarantees.

To summarize, we make the following contributions in this paper.

– We deconstruct DCC, which captures standard information flow, into a weaker sys-
tem DCCd that is instead focused on explicit information flow. We argue that this
system provides the foundations for several recent static analyses for security that
do not restrict implicit information flow (Section 3).

– We study a language primitiveweaken that switches from DCC-style protection to
DCCd -style protection of programs at run time. Such weakening may be viewed as
a milder form of downgrading that preserves data-flow guarantees for the resulting
programs. Furthermore, we show how such weakening can be controlled by reusing
DCC mechanisms to associate blames for weakening (Section 4).

– Going in the other direction, we study how DCCd ’s typing rules can enhance the
precision of DCC’s typing rules. This technique (once again) relies on deconstruct-
ing information flow into explicit and implicit informationflow (Section 5).

We review DCC next (Section 2), deferring further discussion on related work and
conclusions until the end (Section 6).

2 Background on DCC

Recall that the computational lambda calculus [20] extendsthe simply typed lambda
calculus with a type constructor that is interpreted as a monad. The monad is used
to systematically control effects in the language. DCC [2] carries this idea further by
distinguishing computations at various “levels”, and controlling effects across levels.
Specifically, DCC includes a monadic type constructor for each level in a lattice, and has
a special typing rule that restricts how computations at various levels may be composed
based on the lattice. Letℓ denote levels in such a lattice with ordering⊑, join ⊔, meet
⊓, bottom⊥, and top⊤. We focus on the following syntax for types and terms in
DCC. (For brevity, we omit any discussion of pointed types and recursive programs;
see Section 6 for further comments.)

typess, t ::= unit | (s → t) | (s × t) | (s + t) | Tℓ(s)
valuesv ::= () | λx. e | 〈e, e′〉 | (inji e) | (ηℓ e)
termse ::= v | (e e′) | (proji e) | (case e of inj1(x). e1 ‖ inj2(x). e2) | (bind x = e in e′)

4

Types include unit, product, sum, and function types, as well as typesTℓ(s) for
each levelℓ in the lattice. Terms include the introduction and elimination forms for
these types; the introduction forms are considered values.In particular,(ηℓ e) has type
Tℓ(s) whenevere has types, and(bind x = (ηℓ e) in e′) reduces toe′[e/x].

In practice,ηℓ may represent any mechanism that provides “protection” at levelℓ,
broadly construed. In the context of secrecy, for instance,(ηℓ e) may be viewed as an
encryption ofe with a key secret to levelℓ. The typing rule forbind should then ensure
that the secrecy ofe is preserved in the above reduction. In particular, this mayrequire
that the result be similarly encrypted. This intuition is captured by a predicateℓ � t,
read as “t is protected atℓ”, meaning that terms of typet cannot leak any information at
level ℓ—in other words, terms of typet are indistinguishable to any levelℓ′ that is not
at leastℓ in the lattice. The following rules define this predicate:ℓ � unit; ℓ � (s → t)
iff ℓ � t; ℓ � (s × t) iff ℓ � s andℓ � t; andℓ � Tℓ′(s) iff ℓ ⊑ ℓ′ or ℓ � s.

Significantly, this definition does not consider sum types tobe protected. The broad
reason is that any information in terms is ultimately conveyed by case constructors.
(The other constructors—unit, tupling, function abstraction, andℓ-protection—cannot
convey any information since they are completely determined by the associated types.)
For instance, a boolean may be encoded as either(inj1 ()) or (inj2 ()), thereby conveying
one bit of information; so the sum type(unit + unit) can serve as an encoding of the
datatypeboolean. In general, complex datatypes can be encoded using sum types, and
the only way of distinguishing terms of such types is by analyzing the case constructors
used in those terms. Thus, it makes sense to require explicitprotection on any term of a
sum type. (However, we will show in Section 5 that this restriction can be relaxed.)

The typing rules for DCC derive judgments of the formΓ ; Π ⊢ e : t, whereΓ
contains type hypotheses for free variables andΠ is a protection context[29], which
indicates the maximum level of protection promised by the context. If e is closed,Γ is
empty andΠ is ⊥, and we use the simpler notation⊢ e : t for the typing judgment. In
addition to standard rules for the simply typed lambda calculus with sum and product
types (see the appendix), we have:

(T-ret)
Γ ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ⊢ (ηℓ e) : Tℓ(s)

(T-bind)
Γ ; Π ⊢ e : Tℓ(s) Γ, x : s; Π ⊢ e′ : t ℓ � TΠ(t)

Γ ; Π ⊢ bind x = e in e′ : t

(T-ret) states that(ηℓ e) has typeTℓ(s) whenevere has types, assumingℓ-protection
by the context (as promised by joiningℓ with the protection context).(T-bind) states
that(bind x = e in e′) has typet whenevere has a type of the formTℓ(s), e′ has type
t assuming thatx has types, and the typeTΠ(t) is protected atℓ. The latter condition
means that eithert is protected atℓ, or Π is at leastℓ; this ensures that the result ofe′

cannot leak any information atℓ, including any information onx, which is bound to the
result ofe upon undoing itsℓ-protection at run time.

The key property of this type system—ensuring a form of parametricity [22, 29] or
noninterference [2, 16]—can be formalized using a type-directed indistinguishability
relation over terms,e ∼ℓ e′ : s, meaning that termse ande′ of types are indistinguish-
able to levelℓ. In addition to standard rules for logical equivalence (seethe appendix),

5

we have that(ηℓ′ e) and (ηℓ′ e′) are indistinguishable toℓ unlessℓ is at leastℓ′. In
other words, we have that the encryptions ofe ande′ with a secret key at levelℓ′ are
indistinguishable to an observer at levelℓ as long asℓ does not know any secrets atℓ′.

For example, lete1 = (ηℓ (inj1 ())) and e2 = (ηℓ (inj2 ())), and suppose that
ℓ 6⊑ ℓ′. Thene1 ∼ℓ′ e2 : Tℓ(unit + unit). Now recall the functionsf andg defined in
Section 1 (and assume thats1 = s2 = unit for simplicity). Thenf 6∼ℓ′ f , since(f e1)
reduces to(inj1 ()), (f e2) reduces to(inj2 ()), and(inj1 ()) 6∼ℓ′ (inj2 ()). Similarly, we
can show thatg 6∼ℓ′ g. Fortunately, neither function is typable in DCC. Next consider
f ′ = λx. (ηℓ (f x)) andg′ = λx. (ηℓ (g x)). Then we can show thatf ′ ∼ℓ′ f ′ :
Tℓ(unit+unit) → Tℓ(unit+unit) andg′ ∼ℓ′ g′ : Tℓ(unit+unit) → Tℓ(unit+unit), and
both functions are typable in DCC. Indeed, the type system guarantees that whenever
a typed function is applied toℓ-protected inputs, it always produces outputs that are
indistinguishable to levels that are not at leastℓ.

Theorem 1 (DCC soundness,cf. [29]). If ⊢ e : Tℓ(s) → t, ⊢ e1 : s, and ⊢ e2 : s,
then for anyℓ′ such thatℓ 6⊑ ℓ′, (e (ηℓ e1)) ∼ℓ′ (e (ηℓ e2)) : t.

3 Explicit flows and DCCd

While DCC can adequately encode various analyses, the underlying notion of depen-
dency can be overly sensitive in certain settings. In this section, we design a variant of
DCC with the aim of capturing a weaker notion of dependency—one that is sensitive to
data dependencies but insensitive to control dependencies. Viewed through the lens of
information flow, this system restricts onlyexplicit flows of information. We make this
guarantee precise, and argue why it may be useful for security in practice.

3.1 Explicit flows

In their seminal paper on information-flow security, Denning and Denning provided an
intriguing characterization of explicit flows [14]: “. . . an explicit flow [of some infor-
mationx] occurs whenever the operations generating it are independent of the value
of x.” Unfortunately, this definition has been largely ignored inthe literature. The only
related work seems to be Volpano’s [31], which definesweak securityas a trace-based
(safety) property: a program is weakly secure if its traces induce secure “branch-free”
programs. We observe that weak security implies the absenceof explicit flow attacks,
since information flows in a branch-free program cannot be generated by operations
that depend on specific values. (It seems that this connection between Volpano’s and
Denning and Denning’s definitions has not been articulated previously.)

These definitions deserve more attention, since they suggest exactly why explicit
flow attacks are so interesting in practice. Explicit flow vulnerabilities are attractive to
attackers, since they can be exploited parametrically. Conversely, such vulnerabilities
often point to logical errors rather than implementation “artifacts”, since the information-
flow channels are abstract. Finally, various dynamic checks—such as those for excep-
tion handling and access control—routinely cause implicitflows in practice. Ignoring
these channels not only focuses our attention on other “definite vulnerabilities”, but also
liberates dynamic checks to serve as mechanisms for plugging those vulnerabilities.

6

This may explain why several recent analyses for security have by design ignored
implicit flow attacks and focused on eliminating explicit flow attacks [5, 7–13, 19, 25–
28, 30, 32, 33, 35]. Some of these analyses aim to verify the security of web applications
[13, 26, 28, 30]. Many attacks in this context are ultimatelydue to code injection, and
a common defense against such attacks is to sanitize values that may flow from inputs
to outputs. The sanitization mechanisms merely restrict explicit flows—they may well
introduce implicit flows, but such flows are considered benign in this context. Some
other analyses aim to formalize security guarantees provided by low-level systems such
as file and operating systems [4, 8, 9], which are usually protected by dynamic access
control mechanisms. Preventing explicit flow attacks with these mechanisms already
requires some care, and it seems difficult and perhaps undesirable to expect stronger
guarantees from such systems.

3.2 DCCd

Our system, DCCd , is a simple variant of DCC where the type constructorsTℓ are re-
placed byT ℓ, and the protection mechanismsηℓ are replaced byηℓ. These replacements
are intended to provide weaker guarantees than their counterparts in DCC, as discussed
above; we enforce them with a slightly different set of rules, which require a new form
of typesℓ, called anopen type. Intuitively, the typesℓ is given to terms of types that
need to be (weakly) protected at levelℓ. Open types do not have any special intro-
duction or elimination forms. Instead theyqualify existing types [15], according to the
following equations.

– (sℓ)ℓ′ = sℓ⊔ℓ′ ands = s⊥ (protection requirements can be joined with⊔, and any
type can be viewed as an open type with no protection requirement);

– unitℓ = unit, (s → t)ℓ = s → tℓ, (s × t)ℓ = (sℓ × tℓ), andT ℓ′(s)
ℓ = T ℓ′(s

ℓ)
(protection requirements are redundant for the unit type, and can be structurally
propagated for other non-sum types);

– T ℓ′(s)
ℓ = T ℓ′(s) iff ℓ ⊑ ℓ′ (protection requirements can be dropped if there is

adequate protection).

Note that there is no equation for sum types. In particular, it would be unsafe to
equate the open sum type(s + t)ℓ with the sum type(sℓ + tℓ), for reasons similar
to those discussed in Section 2. It suffices to see that such anequation would imply
(unit + unit)ℓ = (unitℓ + unitℓ) = (unit + unit). But recall that the type(unit +
unit) can serve as an encoding ofboolean; so the equation in question would allow
protection requirements on booleans to be dropped as needed. In general, this would
make protection requirements on any data redundant, and completely defeat the purpose
of open types. Furthermore, note that by viewing the equations above as rewrite rules
from left to right, it is possible to “normalize” types, effectively pushing the protection
requirements that occur in those types as inwards as possible. Such normalization helps
maintain syntax-directed types for most terms, except those that have (open) sum types.
For the latter terms, we assume that they always have open sumtypes.

Our enforcement strategy with open types is rather simple. Upon undoing protection
of a term of typeT ℓ(s), we give it a typesℓ. We then demand that such a term be

7

protected back with a levelℓ′ that is at leastℓ. The resulting term has typeT ℓ′(s
ℓ), which

can be equated toT ℓ′(s), thereby dropping the protection requirement. To enforce this
strategy, we define (as in DCC) a predicateℓ ≤ t, read as “t is weakly protected atℓ”,
with the following rules:ℓ ≤ unit; ℓ ≤ (s → t) iff ℓ ≤ t; ℓ ≤ (s × t) iff ℓ ≤ s and
ℓ ≤ t; ℓ ≤ (s + t) iff ℓ ≤ s andℓ ≤ t; andℓ ≤ T ℓ′(s) iff ℓ ⊑ ℓ′ or ℓ ≤ s.

Note that there is no rule for open types, since such types arenot protected by
definition. On the other hand, we include a rule for sum types.Such a rule is sound
in this context because we are only interested in tracking data dependencies and not
control dependencies. Indeed, terms of type(s+t)—which evaluate to values(inji e)—
cannot leak any data not already leaked bye (which has type eithers or t). In particular,
the constructorsinji cannot leak any data, unless the values(inji e) already require
protection and thus have a non-trivial open type (where the qualifier is not⊥)—which
is impossible since by the equations above,(s + t) cannot be equal to such a type.

Following DCC, the typing rules for DCCd derive judgments of the formΓ ; Π ⊢
e : t, whereΓ contains type hypotheses for free variables andΠ is a (weak) protection
context. We show only the interesting rules. (The remainingrules are in the appendix.)

(TD-case)
Γ ; Π ⊢ e : (s1 + s2)

ℓ Γ, x : sℓ
i ; Π ⊢ ei : s

Γ ; Π ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

(TD-ret)
Γ ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ⊢ (ηℓ e) : T ℓ(s)

(TD-bind)
Γ ; Π ⊢ e : T ℓ(s) Γ, x : sℓ; Π ⊢ e′ : t ℓ ≤ TΠ(t)

Γ ; Π ⊢ bind x = e in e′ : t

(TD-case) assumes that the case construction(inji e) has an open sum type, and
propagates its protection requirement to the variablex bound toe at run time. This
allows sensitive data to be safely destructed, without losing track of its protection re-
quirements. All other rules are syntax-directed (thanks tonormalization of types as
mentioned above) and are analogous to those in DCC. In particular,(TD-ret) states that
(ηℓ e) has typeT ℓ(s) whenevere has types, assuming (weak)ℓ-protection by the con-
text.(TD-bind) states that(bind x = e in e′) has typet only if e has a type of the form
T ℓ(s), e′ has typet assuming thatx has open typesℓ, and the typeTΠ(t) is (weakly)
protected atℓ. The latter condition means that eithert is protected atℓ, or Π is at least
ℓ. This ensures that the result ofe′ cannot leak any data atℓ, including any data inx,
which is bound to the result ofe upon undoing itsℓ-protection at run time.

We formalize the key property of this type system using a type-directedsafetyre-
lation over terms,e ⊲ℓ : s, meaning that terme of type s is safe at levelℓ. Our
safety relation relies on a semantics with “taint propagation”. Thus, we extend the
internal syntax with terms of the formeℓ, meaninge tainted withℓ—intuitively, eℓ

is similar to (bind x = (ηℓ e) in x) for fresh x. We define equations over tainted
terms, closely following the equations over open types. Thus we have:(eℓ)ℓ′ = eℓ⊔ℓ′ ;
e = e⊥; ()ℓ = (); (λx. e)ℓ = λx. eℓ; 〈e1, e2〉

ℓ = 〈eℓ
1, e

ℓ
2〉; (ηℓ′ e)ℓ = (ηℓ′ eℓ);

and (ηℓ′ e)ℓ = (ηℓ′ e) iff ℓ ⊑ ℓ′. As usual, these equations let us normalize terms
so that only terms of sum types carry taints. Finally, we extend the local reduction
rules forbind andcase as follows:(bind x = (ηℓ e) in e′) reduces toe′[eℓ/x], and

8

(case (inji e)ℓ of inj1(x). e1 ‖ inj2(x). e2) reduces toei[e
ℓ/x]. Thus, we taint a term

upon undoing its protection, and propagate the taint on a term to its subterm upon
pattern matching. Note that such taint propagation ignoresimplicit flows. We use this
semantics in the derivation rules of our safety relation, asfollows.

– e ⊲ℓ : s iff e reduces tov andv ⊲ℓ : s
– () ⊲ℓ : unit

– v ⊲ℓ : (s → t) iff for all e, if e ⊲ℓ : s then(v e) ⊲ℓ : t
– 〈e1, e2〉 ⊲ℓ : (s1 × s2) iff e1 ⊲ℓ : s1 ande2 ⊲ℓ : s2

– (inji ei) ⊲ℓ : (s1 + s2) iff ei ⊲ℓ : si

– (ηℓ′ e) ⊲ℓ : T ℓ′(s) iff ℓ′ 6⊑ ℓ or e ⊲ℓ : s

Thus, safety is analogous to indistinguishability as defined in Section 2, except that
we are concerned with properties of a single term rather thana pair of terms. As ex-
pected, tainted terms are unsafe, and(ηℓ′ e) is safe atℓ unlessℓ is at leastℓ′.

For example, lete = (ηℓ (inji ())) for somei ∈ {1, 2} and suppose thatℓ 6⊑ ℓ′.
Thene ⊲ℓ′ : T ℓ(unit + unit). Now recall the functionsf andg defined in Section 1
(and assume thats1 = s2 = unit for simplicity). Clearlyf 6 ⊲ℓ′ , since(f e) reduces to
(inji ())ℓ and(inji ())6 ⊲ℓ′ . Fortunately,f is not typable in DCCd . In contrast, we can
show thatg ⊲ℓ′ : T ℓ(unit + unit) → (unit + unit), andg is typable in DCCd . Next
considerf ′ = λx. (ηℓ (f x)). It is easy to check thatf ′

⊲ℓ′ : T ℓ(unit + unit) →
T ℓ(unit + unit), andf ′ is typable in DCCd . Indeed, the type system guarantees that
whenever a typed function is applied to (weakly)ℓ-protected inputs, it always produces
outputs that are safe at levels that are not at leastℓ.

Theorem 2 (DCCd soundness).If ⊢ e : T ℓ(s) → t and ⊢ e′ : s, then for anyℓ′

such thatℓ 6⊑ ℓ′, (e (ηℓ e′)) ⊲ℓ′ : t.

Furthermore, we show that DCCd ’s type system is at least as liberal than DCC’s, by
defining an appropriate encoding between the two systems. (In fact, it is strictly more
liberal by the example above.)

Theorem 3 (DCC to DCCd). Let [[·]] translate terms and types by replacing(ηℓ ·) with
(ηℓ ·), andTℓ(·) with T ℓ(·). If ⊢ e : s in DCC then⊢ [[e]] : [[s]] in DCCd .

3.3 Remarks

Before we move on, let us try to carefully understand the guarantee provided by DCCd .
DCCd ’s semantics, based on taint propagation, is closely related to Volpano’s exe-

cution monitor for weak security [31]. In fact, results of evaluation in DCCd can be in-
terpreted as branch-free DCC programs “induced by traces”,and typing in DCCd guar-
antees security of such programs in DCC.

Theorem 4 (DCCd soundness,̀a la Volpano [31]).Let{{·}} translate terms and types
by replacing(ηℓ ·) with (ηℓ ·), T ℓ(·) with Tℓ(·), and(·ℓ) with (bind x = (ηℓ ·) in x) for
freshx. If ⊢ e : T ℓ(s) → t, ⊢ e′ : s, and(e (ηℓ e′)) evaluates tov in DCCd , and if
no protection type occurs negatively int, then⊢ {{v}} : {{t}} in DCC.

9

For example, consider the following function of typeT ℓ(unit + s) → (unit + T ℓ(s)):

k = λx. bind y = x in case y of inj1(z). (inj1 ()) ‖ inj2(z). (inj2 (ηℓ z))

Let e be any term of types; we have that(k (ηℓ (inj2 e))) reduces to(inj2 (ηℓ eℓ)),
which translates via{{·}} to (inj2 (ηℓ bind w = (ηℓ e) in w)). The latter is a branch-free,
typed, DCC program. In fact, by the theorem above, all branch-free programs induced
by traces ofk are typed, and thusk is weakly secure. In contrast, if the protection(ηℓ ·)
in the body ofk is dropped, the induced branch-free program does not remaintypable.

Furthermore, DCC’s type system eliminates explicit flow attacks as characterized
by Denning and Denning [14], since we have already argued that weak security implies
the absence of such attacks. Note that an explicit flow attackcan be camouflaged as an
implicit flow attack by “deep copying”,i.e., by destructing a sensitive term all the way
down with elimination forms and constructing it back from scratch with introduction
forms. Formally, leterase be a function on types that erases the label qualifiers in open
types. Thus, for anys, we haveℓ ≤ erase(s) for all ℓ; in other words, the side condition
in (TD-bind) is redundant for erased types. Now we can define a family of functions
leakℓ(t) : T ℓ(t) → erase(t) that behave just likeλx : T ℓ(t). bind y = x in y, such
that the former are typable in DCCd , but the latter are not (see the appendix). Thus,
in the limit we may be assured nothing even if DCCd deems our program “secure”—
while DCCd guarantees that all explicit leaks are eliminated, these leaks may remain
hidden in the guise of implicit leaks (which remain unrestricted). However, we argue
that DCCd still provides “pretty good protection”, at least for code that the attacker
cannot fully control. Indeed, for such non-malicious code,we may assume that the pro-
grammer does not try to intentionally circumvent our analysis. Under this assumption,
prioritizing explicit flows over implicit flows is arguably reasonable, for several reasons:

– No sane programmer would copy all bits of some value indirectly, one at a time,
instead of copying the value directly.

– As argued in [23], implicit leaks are largely harmless for non-malicious code, since
such leaks cannot be exploited efficiently by the attacker.

– As shown in [18], checking for implicit flows can be costly to the programmer—
typically lots of false alarms arise in systems that check for implicit flows.

4 Dynamic weakening in DCCdc

While DCCd -style protection is sufficient in some settings, DCC still enjoys better the-
oretical foundations and promises many desirable properties that DCCd cannot. In prac-
tice, we should be able to mix DCCd -style protection carefully with DCC-style protec-
tion as needed, and still be able to reason precisely about the guarantees of the resulting
systems, short of weakening all the guarantees provided by DCC-style protection. We
investigate these issues in the setting of a hybrid languageDCCdc .

4.1 DCCdc

DCCdc ’s syntax and typing rules are obtained by merging those of DCC and DCCd .
The merge is mostly straightforward; we make a few adjustments to encourage the two

10

subsystems to interact. (The full system is available for reference in the appendix.)
First, we carry both kinds of protection contexts in typing judgments, and modify the
DCC rule(T-ret) as follows.

Γ ; Π ⊔ ℓ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ; Π ⊢ (ηℓ e) : Tℓ(s)

Thus, any DCC-style protection provided by the context is made evident not only in
its usual protection context, but also in the weak protection context. Next, we add the
following protection rules and open type equations:ℓ � T ℓ′(s) if ℓ � s; ℓ ≤ Tℓ′(s)
if ℓ ≤ T ℓ′(s); andTℓ′(s)

ℓ = Tℓ′(s
ℓ) if T ℓ′(s)

ℓ = T ℓ′(s
ℓ). These rules internalize

the fact that DCC’s protection types subsume DCCd ’s protection types, as shown in
Theorem 3. In particular, these rules admit functions such as λx. bind y = x in (ηℓ y)
of typeT ℓ(s) → Tℓ(s), that can be used tostrengthenprotection on terms. Finally, we
unify the rules for non-protection types; in particular we have:

(TDC-case)
Γ ; Π ; Π ⊢ e : (s1 + s2)

ℓ Γ, x : sℓ
i ; Π ; Π ⊢ ei : s

Γ ; Π ; Π ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

The definitions of indistinguishability and safety are similarly extended, and we can
show that the respective guarantees of DCC and DCCd are preserved in DCCdc .

Theorem 5 (DCCdc soundness, preliminary).Theorems 1 and 2 also hold in DCCdc .

4.2 A weakening primitive

Next we include aweaken primitive in DCCdc , which acts as a further bridge between
the two subsystems (going in the opposite direction as the strengthening functions
above). Our intention is that such a primitive should allow terms of typeTℓ(s) to be
viewed as terms of typeT ℓ(s), possibly with some caution.

Unsurprisingly, usingweaken may invalidate the protection guarantees provided by
DCC’s types. As a simple example, consider the following function:

h = λx. bind y = (weaken x) in case y of inj1(z). (inj1 ()) ‖ inj2(z). (inj2 ())

Assuming a typing rule that allows(weaken e) to have typeT ℓ(s) whenevere has
typeTℓ(s), this function can be typedTℓ(unit + unit) → (unit + unit). However,h
clearly has an information flow violation; formally, we havethat(h (ηℓ (inj1 ()))) 6∼ℓ

(h (ηℓ (inj2 ()))), which contradicts Theorem 5. Worse,h can be used as an oracle to
generate more complex counterexamples. Consider the following functions:

m = λx. (ηℓ (bind y = x in case y of inj1(z). (inj1 ()) ‖ inj2(z). (inj2 ())))

n = λx. (h (m x))

The functionm can be typedTℓ′(s+t) → Tℓ(unit+unit) in DCC as long asℓ′ ⊑ ℓ, and
does not leak information onx per se; it derives a bit of information onx and protects
that bit before returning it. Still, the functionn with typeTℓ′(s + t) → (unit + unit) is
able to usem in combination withh to leak that bit.

11

As this example suggests, usingweaken at levelℓ in a program may invalidate DCC-
style guarantees for all types protected by levelsℓ and lower. However, weaker DCCd -
style guarantees should still hold for such types (because there is no way to get around
DCCd ’s typing rules). Moreover, assuming that there are no otheruses ofweaken in
the program, we expect that stronger DCC-style guarantees should remain valid for
all other types. The reason is that such types, which are protected by levels higher or
incomparable toℓ, will never delegate the responsibility of protection to the weakened
types. In summary, we can precisely reason about protectionin this system as long as
we carefully track the uses ofweaken in the program.

Curiously enough, such an analysis can be viewed as a specialcase of DCC’s de-
pendency analysis, just like many other applications of DCC. Indeed, the original moti-
vation for studying DCC was its ability to express various program analyses—including
call tracking, slicing, partial evaluation, as well as information-flow control—in a uni-
form setting. Our analysis is similar in spirit, and can be expressed by recycling DCC’s
types to carryblamesfor weakening.

Specifically, we consider a lattice of blames that is isomorphic to the lattice of levels,
i.e., for each levelℓ we have a blameβ(ℓ), whereβ is some lattice isomorphism. Then,
instead of the naı̈ve typing rule forweaken above, we include the following rule:

(TDC-weaken)
Γ ; Π ; Π ⊢ e : Tℓ(s)

Γ ; Π ; Π ⊢ (weaken e) : Tβ(ℓ)(T ℓ(s))

Intuitively, this means that whenever we useweaken to view terms of typeTℓ(s) as
terms of typeT ℓ(s) in a program, we simultaneously blameβ(ℓ) for facilitating such
a view. While this allows us to get away with weaker protection requirements on such
terms, it also forces some caution: the blame must be carriedaround whenever a result
depends on those terms. Fortunately, DCC’s typing rules canenforce this for free.

A reassuring interpretation of blames may be obtained through the lens of the Curry-
Howard isomorphism, following a recent reading of DCC as an authorization logic [1].
Specifically, we can interpret the blameβ(ℓ) as a principal that controls protection
requirements at levelℓ, and rewrite the type of(weaken e) asβ(ℓ) says (T ℓ(s)). Using
the logic, we can now pinpoint the principals whose statements may have influenced
protection requirements in a program, resting assured thatthe protection guarantees at
other levels will not be influenced by these statements.

4.3 Blame orderings

Note that we have not yet specified how the ordering in the blame lattice should be
related to⊑. One interesting scenario is where the ordering is the same,so thatβ pre-
serves joins and meets. In this scenario, the type of a program must carry a blameβ(ℓ)
such thatℓ upper-bounds the levels of weakening on which its results may depend. (This
is because DCC’s rules guarantee thatβ(ℓ) will upper-bound the levels of weakening
on which the results of the program may depend.) In other words, DCC-style protection
guarantees must hold at all levels notℓ or lower.

Formally, we define the blameB(t) carried by a program of typet as the join of all
blames that appear int. We then prove the following theorem.

12

Theorem 6 (DCCdc soundness: strong protection).If ⊢ e : Tℓ(s) → t, ⊢ e1 : s,
⊢ e2 : s, andℓ is any label such thatℓ 6⊑ β−1(B(t)), then for anyℓ′ such thatℓ 6⊑ ℓ′,
(e (ηℓ e1)) ∼ℓ′ (e (ηℓ e2)) : t. Moreover, Theorem 2 holds as is in this system.

As a simple example, consider the following well-typed program of typeTβ(ℓ)(unit +
unit) (wherei ∈ {1, 2}):

bind x = (weaken (ηℓ (inji ()))) in (ηβ(ℓ) x)

We haveB(Tβ(ℓ)(unit + unit)) = β(ℓ), so we can be sure that this program does not
(and cannot be used to) weaken DCC-style protection guarantees atℓ′ unlessℓ′ ⊑ ℓ.

An equally interesting scenario is where we flip the orderingin the blame lattice, so
thatβ exchanges joins and meets. In this scenario, the type of a program must carry a
blameβ(ℓ) such thatℓ lower-bounds the levels of weakening on which its results may
depend. (Again, this is because DCC’s rules guarantee thatβ(ℓ) will upper-bound the
levels of weakening on which the results of the program may depend.) In other words,
DCCd -style protection guarantees must be robust against all levels notℓ or higher.

Formally we prove the following theorem, whereB(t) is defined as earlier.

Theorem 7 (DCCdc soundness: weak protection).Suppose that⊢ e : Tℓ(s), ⊢ e′ :
T ℓ(s) → t, andℓ is any label such thatβ−1(B(t)) 6⊑ ℓ. Then it is impossible to derive
⊢ (e′ (bind x = (weaken e) in x)) : t.

Continuing the previous example, we can be sure that DCCd -style guarantees for the
program are not influenced by weakening at levelℓ′ unlessℓ ⊑ ℓ′.

5 Precise dependency analysis in DCCcd

Just as a DCC-style analysis can strengthen protection guarantees in a hybrid system,
in turns out that a DCCd -style analysis can improve the coverage of such guarantees.
In this section, we deconstruct information flow control in DCC into two separate prob-
lems: one of restricting explicit flows, and the other of restricting implicit flows. The
former is already handled by DCCd ; the latter, which is entirely due to case analysis,
can be handled by reworking some of the rules for sum types in DCC. The resulting
system, DCCcd , becomes more liberal than DCC without compromising its guarantees.
We discuss the benefits of such an enhancement towards the endof the section.

5.1 DCCcd

DCC conservatively assumes that case constructors may always convey sensitive infor-
mation; thus, it restricts both explicit and implicit flows in one shot by requiring that
sum types can never be considered protected (see the discussion on DCC’s protection
rules in Section 2). Unfortunately this restriction causesseveral benign programs to be
rejected by DCC simply because they use case construction. We relax this restriction by
observing that any information leak is ultimately due to either an explicit leak through
data flow or an implicit leak through control flow. Specifically, evaluating a term of

13

sum type may reveal information about sensitive data only ifthat term either does a
case analysis on sensitive data, or releases the sensitive data itself.

Technically, this separation of concerns is already somewhat evident in DCCd ,
where we weaken DCC’s protection rules to allow sum types to be considered pro-
tected (see Section 3). But by itself this is unsound, given the dangerous nature of case
constructors—it admits both explicit and implicit flows. Thus, we also require open
types—types with qualifiers to precisely track data flow through programs—and we
use these qualifiers to restrict explicit flows in DCCd . In particular, the typing rule for
case analysis needs to accommodate terms with qualified sum types, because the qual-
ifiers can be eliminated on all types other than sum types—they “stick” to sum types
exactly because of the dangerous nature of case constructors. While in DCCd we choose
to ignore implicit flows caused by such case analysis, in DCCcd we do not.

Note that in order to adjust the rule for case analysis to account for implicit flows, we
must have some idea of the level of information that we are interested in protecting—
otherwise, we would have to conservatively ban any case analysis. For this purpose, we
need to carry anopen contextΣ in typing judgments, which indicates the minimum
level of protection required by the context. For closed terms,Σ is⊤.

The developments of Section 4 are orthogonal to our present purposes, so we drop
terms of the form(weaken e) and(ηℓ e) in the language; indeed, on the surface we do
not care about DCCd -style protection at all, although DCCd ’s type system is an im-
portant component of the system internally. Accordingly, we also drop weak protection
contexts. The remaining system mostly inherits from DCCdc ; we make a few adjust-
ments, discussed below. (The full system is available for reference in the appendix.)

We now have two typing rules forbind, both offering DCC-style protection. The
first rule is similar to that in DCC.

(TCD-bind-old)

Γ ; Π ; Σ ⊢ e : Tℓ(s) Γ, x : s; Π ; Σ ⊢ e′ : t ℓ � TΠ(t)

Γ ; Π ; Σ ⊢ bind x = e in e′ : t

The other rule is new, and captures the interaction of the twosubsystems.

(TCD-bind-new)

Γ ; Π ; Σ ⊢ e : Tℓ(s) Γ, x : sℓ; Π ; Σ ⊓ ℓ ⊢ e′ : t ℓ ≤ TΠ(t)

Γ ; Π ; Σ ⊢ bind x = e in e′ : t

Curiously, this rule looks similar to(TD-bind) in DCCd , although functionally it is
intended to be closer to(T-bind) in DCC. Like (T-bind), (TCD-bind-new) applies to
terms of typeTℓ(s) instead ofT ℓ(s). On the other hand, like(TD-bind), we use the
weak protection predicate≤ instead of�, while assuming an open type forx. This
takes care of explicit flows, but not implicit flows. In addition, to handle implicit flows,
we meetℓ with the open context, deferring their actual restriction till we encounter case
analysis at levelℓ.

The new rule for case analysis is as follows.

(TCD-case)

Γ ; Π ; Σ ⊢ e : (s1 + s2)
ℓ Σ 6⊑ ℓ Γ, x : sℓ

i ; Π ; Σ ⊢ ei : s

Γ ; Π ; Σ ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

As in (TD-case), this rule requires—without loss of generality—thate have an open
sum type, with some protection requirementℓ. In addition, it requires that the open

14

contextΣ be no lower thanℓ—so that any implicit flows atℓ that may occur through
the case analysis are irrelevant to (i.e., cannot compromise)Σ. With these rules, we
show that DCCcd provides the same guarantees as DCC, and is at least as liberal.

Theorem 8 (DCCcd soundness and completeness).If ⊢ e : Tℓ(s) → t, ⊢ e1 : s,
and ⊢ e2 : s, then for anyℓ′ such thatℓ 6⊑ ℓ′, (e (ηℓ e1)) ∼ℓ′ (e (ηℓ e2)) : t.
Furthermore, if⊢ e′ : s′ in DCC then⊢ e′ : s′ in DCCcd .

In fact, DCCcd accepts more programs than DCC. For example, the following functions—
rejected by DCC (see Section 1)—have typeTℓ(s) → (unit + unit) in DCCcd :

λx. bind y = x in (inji ()) i ∈ {1, 2}

As a more interesting example, consider the functionswitchbelow—rejected by DCC—
which has typeTℓ(boolean) → boolean → option(Tℓ(boolean)) in DCCcd . (We
use the encodingsboolean = (unit + unit), option(α) = (unit + α), false =
(inj1 ()), true = (inj2 ()), (if e then e2 else e1) = (case e of inj1(). e1 ‖ inj2(). e2),
none = (inj1 ()), and(some e) = (inj2 e).

switch= λx. λb. bind b′ = x in ((matchb) b′)

match= λb. λb′. if b then none else (some (ηℓ (notb′)))

not = λb′. if b′ then false else true

In general, undoing protection of terms early in the control-flow graph seems to cause
problems in DCC, but not in DCCcd .

5.2 Remarks

One may, of course, wonder whether our enhancement of DCC’s type system is at all
necessary. Indeed, DCC is designed to be a target language inwhich (type-based) pro-
gram analyses can be encoded to prove their soundness: typing derivations in the source
language are translated to typing derivations in DCC, and the soundness of the latter is
used to reason about the soundness of the former. In this sense, in fact it is possible
to encode DCCcd in DCC: we compile DCCcd programs to the SLam calculus [17]
by erasingbinds, and then use the well-known encoding of SLam in DCC [2]. Thus,
DCC’s status as a core calculus of dependency is not challenged. However, as in most
such encodings, the translated DCC programs are not syntactically equivalent to the
source programs. In particular,binds may be pushed inwards and duplicated across
branches. Reasoning about the soundness of this translation requires exactly those ob-
servations that underlie the design of DCCcd . Furthermore, the translated programs are
inefficient. Indeed, in implementations of DCC in the polymorphic lambda calculus
[29], binds are implemented as applications of secret keys (decryptions) to protection
abstractions (encryptions)—and it makes sense to pull suchapplications as outwards as
possible for efficiency. For source languages with DCC-likeprimitives, it is reasonable
to expect that programs will be already be optimized; and we have shown that DCC-like
typing rules do not preserve typability for such optimizations. In summary, we believe

15

that deconstructing information-flow analysis into explicit-flow and implicit-flow anal-
ysis, as in DCCcd , provides a better guideline for designing type systems forDCC-like
source languages, than placing an overall restriction on sum types, as in DCC. Other
enhancements along such lines have been suggested previously [29].

6 Discussion

For brevity, in this paper we have omitted any discussion of pointed types and recur-
sive programs, although they do appear in DCC [2]. However, we have checked that
including these elements does not cause any problems in our results—which is hardly
surprising since nontermination does not play an interesting role for weak security.

We have tried to remain close in spirit to Volpano’s definition of weak security and
Denning and Denning’s characterization of explicit flows inour formal definition of
DCCd . However, inherent differences in the underlying languages make it difficult to
establish a formal correspondence.

There is a huge body of research on noninterference-based security for languages;
see [24] for a survey. However, there seems to be a disconnectbetween this research
and most security tools implemented in practice, which ignore implicit flows. Some
interesting previous studies have tried to explain why, andunder what circumstances,
it may make sense to ignore implicit flows in practical security [18, 23]. Unfortunately,
we do not know of any work on formalizing the resulting safetyguarantees of such
tools, although [31] provides some valuable insights and several security type systems
for process calculi have been designed around similar ideas[3, 6, 8, 9].

The idea of mixing strong and weak dependency analysis in mutually benefitial
ways appears to be new. Indeed, our results suggest some interesting ways in which
noninterference-based security may be reconciled with trace-based security within the
same system, enhancing soundness of the latter and completeness of the former. Specif-
ically, in a system where protection may have been partiallyweakened, a strong blame
analysis can be used to provide strong protection guarantees for those parts of the sys-
tem that are not affected by such weakening. Conversely, a weak flow analysis can be
used to increase the coverage of such guarantees.

We hope that these results will spur further interest in bridging the gap between
these two views of security.

References

1. M. Abadi. Access control in a core calculus of dependency.Electronic Notes in Theoretical
Computer Science, 172:5–31, 2007.

2. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In
POPL’99: Principles of Programming Languages, pages 147–160. ACM, 1999.

3. M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic pro-
grams. InPOP’02: Principles of Programming Languages, pages 33–44. ACM, 2002.

4. B. Blanchet and A. Chaudhuri. Automated formal analysis of a protocol for secure file
sharing on untrusted storage. InIEEE Symposium on Security and Privacy, pages 417–431.
IEEE, 2008.

16

5. P. Broadwell, M. Harren, and N. Sastry. Scrash: a system for generating secure crash in-
formation. InSSYM’03: USENIX Security Symposium, pages 19–30. USENIX Association,
2003.

6. L. Cardelli, G. Ghelli, and A. Gordon. Secrecy and group creation. Information and Com-
putation, 196(2):127–155, 2005.

7. M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow integrity. In
OSDI’06: Operating Systems Design and Implementation, pages 147–160. USENIX, 2006.

8. A. Chaudhuri. Language-based security on Android. InPLAS’09: Programming Languages
and Analysis for Security, pages 1–7. ACM, 2009.

9. A. Chaudhuri, P. Naldurg, and S. Rajamani. A type system for data-flow integrity on Win-
dows Vista.ACM SIGPLAN Notices, 43(12):9–20, 2009.

10. K. Chen and D. Wagner. Large-scale analysis of format string vulnerabilities in debian linux.
In PLAS’07: Programming languages and analysis for security, pages 75–84. ACM, 2007.

11. J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis framework. InIS-
STA’07: International Symposium on Software Testing and Analysis, pages 196–206. ACM,
2007.

12. M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. Vig-
ilante: end-to-end containment of internet worms. InSOSP’05: Symposium on Operating
Systems Principles, pages 133–147. ACM, 2005.

13. M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexibleinformation flow architecture
for software security.SIGARCH Comput. Archit. News, 35(2):482–493, 2007.

14. D. Denning and P. Denning. Certification of programs for secure information flow.Commu-
nications of the ACM, 20(7), 1977.

15. J. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. ACM SIGPLAN Notices,
34(5):192–203, 1999.

16. J. Goguen and J. Meseguer. Security policies and security models. InIEEE Symposium on
Security and privacy, volume 12, 1982.

17. N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and integrity.
In POPL’98: Principles of Programming Languages, pages 365–377. ACM, 1998.

18. D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows:Can’t live with ’em, can’t live
without ’em. In International Conference on Information Systems Security, pages 56–70.
Springer, 2008.

19. M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws using
pql: a program query language. InOOPSLA’05: Object-oriented programming, systems,
languages, and applications, pages 365–383. ACM, 2005.

20. E. Moggi. Notions of computation and monads.Information and computation, 93(1):55–92,
1991.

21. A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. InCSFW’04:
IEEE Computer Security Foundations Workshop, pages 172–186. IEEE, 2004.

22. J. Reynolds. Types, abstraction and parametric polymorphism. Information processing,
83(513-523):1, 1983.

23. A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and nonmalicious code.Mark-
toberdorf Lecture Notes, 2009. Seehttp://www.cse.chalmers.se/ ˜ andrei/
mod09.pdf .

24. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on
selected areas in communications, 21(1):5–19, 2003.

25. U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-flow integrity verifica-
tion for security-critical applications. InNDSS’06: Network and Distributed System Security
Symposium. ISOC, 2006.

26. U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting format string vulnerabilities with
type qaualifiers. InUSENIX Security Symposium, page 16. USENIX Association, 2001.

17

27. G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via dynamic in-
formation flow tracking. InASPLOS’04: Architectural Support for Programming Languages
and Operating Systems, pages 85–96. ACM, 2004.

28. O. Tripp, S. Fink, and O. Weisman. TAJ: effective taint analysis of web applications. In
PLDI’09: Programming Languages Design and Implementation, pages 87–97. ACM, 2009.

29. S. Tse and S. Zdancewic. Translating dependency into parametricity. ACM SIGPLAN No-
tices, 39(9):115–125, 2004.

30. P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda,and G. Vigna. Cross site script-
ing prevention with dynamic data tainting and static analysis. In NDSS’07: Network and
Distributed System Security Symposium. ISOC, 2007.

31. D. M. Volpano. Safety versus secrecy. InSAS’99: Static Analysis Symposium, pages 303–
311. Springer-Verlag, 1999.

32. Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using boolean satis-
fiability. ACM Trans. Program. Lang. Syst., 29(3):16, 2007.

33. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing system-wide
information flow for malware detection and analysis. InCCS’07: Computer and Communi-
cations Security, pages 116–127. ACM, 2007.

34. S. Zdancewic and A. Myers. Robust declassification. InCSFW’01: IEEE Computer Security
Foundations Workshop, pages 15–23. IEEE, 2001.

35. X. Zhang, A. Edwards, and T. Jaeger. Using cqual for static analysis of authorization hook
placement. InUSENIX Security Symposium, pages 33–48. USENIX Association, 2002.

Appendix

We include full definitions of various systems described in this paper. (See next page.)

18

Typing rules (DCC)

(T-var) Γ, x : s, Γ ′; Π ⊢ x : s

(T-unit) Γ ; Π ⊢ () : unit

(T-abs)
Γ, x : s; Π ⊢ e : t

Γ ; Π ⊢ λx. e : (s → t)

(T-app)
Γ ; Π ⊢ e : s → t Γ ; Π ⊢ e′ : s

Γ ; Π ⊢ (e e′) : t

(T-pair)
Γ ; Π ⊢ e1 : s1 Γ ; Π ⊢ e2 : s2

Γ ; Π ⊢ 〈e1, e2〉 : (s1 × s2)

(T-proj)
Γ ; Π ⊢ e : (s1 × s2)

Γ ; Π ⊢ (proji e) : si

(T-inj)
Γ ; Π ⊢ e : si

Γ ; Π ⊢ (inji e) : (s1 + s2)

(T-case)
Γ ; Π ⊢ e : (s1 + s2) Γ, x : si; Π ⊢ ei : s

Γ ; Π ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

(T-ret)
Γ ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ⊢ (ηℓ e) : Tℓ(s)

(T-bind)
Γ ; Π ⊢ e : Tℓ(s) Γ, x : s; Π ⊢ e′ : t ℓ � TΠ(t)

Γ ; Π ⊢ bind x = e in e′ : t

Indistinguishability relation (DCC)

(I-unit) () ∼ℓ () : unit

(I-function)
∀e, e′. e ∼ℓ e′ : s ⇒ (v e) ∼ℓ (v′ e′) : t

v ∼ℓ v′ : (s → t)

(I-product)
e1 ∼ℓ e′1 : s1 e2 ∼ℓ e′2 : s2

〈e1, e2〉 ∼ℓ 〈e
′

1, e
′

2〉 : (s1 × s2)

(I-sum)
ei ∼ℓ e′i : si

(inji ei) ∼ℓ (inji e′i) : (s1 + s2)

(I-monad-1)
ℓ′ 6⊑ ℓ

(ηℓ′ e) ∼ℓ (ηℓ′ e′) : Tℓ′(s)

(I-monad-2)
e ∼ℓ e′ : s

(ηℓ′ e) ∼ℓ (ηℓ′ e′) : Tℓ′(s)

(I-eval)
e −→⋆ v e′ −→⋆ v′ v ∼ℓ v′ : s

e ∼ℓ e′ : s

19

Typing rules (DCCd)

(TD-var) Γ, x : s, Γ ′; Π ⊢ x : s

(TD-unit) Γ ⊢ () : unit

(TD-abs)
Γ, x : s; Π ⊢ e : t

Γ ; Π ⊢ λx. e : (s → t)

(TD-app)
Γ ; Π ⊢ e : s → t Γ ; Π ⊢ e′ : s

Γ ; Π ⊢ (e e′) : t

(TD-pair)
Γ ; Π ⊢ e1 : s1 Γ ; Π ⊢ e2 : s2

Γ ; Π ⊢ 〈e1, e2〉 : (s1 × s2)

(TD-proj)
Γ ; Π ⊢ e : (s1 × s2)

Γ ; Π ⊢ (proji e) : si)

(TD-inj)
Γ ; Π ⊢ e : si

Γ ; Π ⊢ (inji e) : (s1 + s2)

(TD-case)
Γ ; Π ⊢ e : (s1 + s2)

ℓ Γ, x : sℓ
i ; Π ⊢ ei : s

Γ ; Π ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

(TD-ret)
Γ ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ⊢ (ηℓ e) : T ℓ(s)

(TD-bind)
Γ ; Π ⊢ e : T ℓ(s) Γ, x : sℓ; Π ⊢ e′ : t ℓ ≤ TΠ(t)

Γ ; Π ⊢ bind x = e in e′ : t

Leaking explicit flows via implicit flows: DCCd

leakℓ(unit) = λx : T ℓ(unit). ()
leakℓ(s × t) = λx : T ℓ(s × t). bind y = x in

〈leakℓ(s)(ηℓ (proj1 y)), leakℓ(t)(ηℓ (proj2 y))〉

leakℓ((s + t)ℓ′) = λx : T ℓ((s + t)ℓ′). bind y = x in

case y of

inj1(z1). (inj1 (leakℓ⊔ℓ′(s)(ηℓ⊔ℓ′ z1)))
‖ inj2(z2). (inj2 (leakℓ⊔ℓ′(t)(ηℓ⊔ℓ′ z2)))

leakℓ(s → t) = λx : T ℓ(s → t).
λz : s. bind f = x in leakℓ(t)(ηℓ (f z))

leakℓ(T ℓ′(s)) = λx : T ℓ(T ℓ′(s)). bind y = x in

(ηℓ′ (leakℓ′(s)y))

20

Syntax: DCCdc

typess, t ::= unit | (s × t) | (s + t) | (s → t) | Tℓ(s) | T ℓ(s) | s
ℓ

termse, v ::= () | 〈e, e′〉 | (proji e) | (inji e) | case e of inj1(x). e1 ‖ inj2(x). e2

| λx. e | (e e′) | (ηℓ e) | (ηℓ e) | bind x = e in e′ | (weaken e)

Typing rules: DCCdc

(TDC-var) Γ, x : s, Γ ′; Π ; Π ⊢ x : s
(TDC-unit) Γ ; Π ; Π ⊢ () : unit

(TDC-abs)
Γ, x : s; Π ; Π ⊢ e : t

Γ ; Π ; Π ⊢ λx. e : (s → t)

(TDC-app)
Γ ; Π ; Π ⊢ e : s → t Γ ; Π ; Π ⊢ e′ : s

Γ ; Π ; Π ⊢ (e e′) : t

(TDC-pair)
Γ ; Π ; Π ⊢ e1 : s1 Γ ; Π ; Π ⊢ e2 : s2

Γ ; Π ; Π ⊢ 〈e1, e2〉 : (s1 × s2)

(TDC-proj)
Γ ; Π ; Π ⊢ e : (s1 × s2)

Γ ; Π ; Π ⊢ (proji e) : si

(TDC-inj)
Γ ; Π ; Π ⊢ e : si

Γ ; Π ; Π ⊢ (inji e) : (s1 + s2)

(TDC-case)
Γ ; Π ; Π ⊢ e : (s1 + s2)

ℓ Γ, x : sℓ
i ; Π ; Π ⊢ ei : s

Γ ; Π ; Π ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

(TDC-ret-1)
Γ ; Π ⊔ ℓ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ; Π ⊢ (ηℓ e) : Tℓ(s)

(TDC-ret-2)
Γ ; Π ; Π ⊔ ℓ ⊢ e : s

Γ ; Π ; Π ⊢ (ηℓ e) : T ℓ(s)

(TDC-bind-1)

Γ ; Π ; Π ⊢ e : Tℓ(s) Γ, x : s; Π ; Π ⊢ e′ : t ℓ � TΠ(t)

Γ ; Π ; Π ⊢ bind x = e in e′ : t

(TDC-bind-2)

Γ ; Π ; Π ⊢ e : T ℓ(s) Γ, x : sℓ; Π ; Π ⊢ e′ : t ℓ ≤ TΠ(t)

Γ ; Π ; Π ⊢ bind x = e in e′ : t

(TDC-weaken)
Γ ; Π ; Π ⊢ e : Tℓ(s)

Γ ; Π ; Π ⊢ (weaken e) : Tβ(ℓ)(T ℓ(s))

Protection rules: DCCdc

(P-unit) ℓ � unit

(P-product) ℓ � s ∧ ℓ � t ⇒ ℓ � (s × t)
(P-function) ℓ � t ⇒ ℓ � (s → t)

(P-monad-1, 2) ℓ ⊑ ℓ′ ⇒ ℓ � Tℓ′(s) , ℓ � s ⇒ ℓ � Tℓ′(s)
(P-effect) ℓ � s ⇒ ℓ � T ℓ′(s)
(PD-unit) ℓ ≤ unit

(PD-product) ℓ ≤ s ∧ ℓ ≤ t ⇒ ℓ ≤ (s × t)
(PD-function) ℓ ≤ t ⇒ ℓ ≤ (s → t)

(PD-effect) ℓ ⊑ ℓ′ ⇒ ℓ ≤ T ℓ′(s) , ℓ ≤ s ⇒ ℓ ≤ T ℓ′(s)
(PD-sum) ℓ ≤ s ∧ ℓ ≤ t ⇒ ℓ ≤ (s + t)

(PD-monad) ℓ ≤ T ℓ′(s) ⇒ ℓ ≤ Tℓ′(s)

21

Open type equations: DCCdc

(E-open-1, 2) (sℓ)ℓ′ = sℓ⊔ℓ′ , s = s⊥

(E-unit) unitℓ = unit

(E-product) (s × t)ℓ = (sℓ × tℓ)
(E-function) (s → t)ℓ = s → tℓ

(E-effect-1, 2) T ℓ′(s)
ℓ = T ℓ′(s

ℓ) , ℓ ⊑ ℓ′ ⇒ T ℓ′(s)
ℓ = T ℓ′(s)

(E-monad) T ℓ′(s)
ℓ = T ℓ′(s

ℓ) ⇒ Tℓ′(s)
ℓ = Tℓ′(s

ℓ)

Syntax: DCCcd

typess, t ::= unit | (s × t) | (s + t) | (s → t) | Tℓ(s) | T ℓ(s) | s
ℓ

termse, v ::= () | 〈e, e′〉 | (proji e) | (inji e) | case e of inj1(x). e1 ‖ inj2(x). e2

| λx. e | (e e′) | (ηℓ e) | bind x = e in e′

Typing rules: DCCcd

(TCD-var) Γ, x : s, Γ ′; Π ; Σ ⊢ x : s
(TCD-unit) Γ ; Π ; Σ ⊢ () : unit

(TCD-abs)
Γ, x : s; Π ; Σ ⊢ e : t

Γ ; Π ; Σ ⊢ λx. e : (s → t)

(TCD-app)
Γ ; Π ; Σ ⊢ e : s → t Γ ; Π ; Σ ⊢ e′ : s

Γ ; Π ; Σ ⊢ (e e′) : t

(TCD-pair)
Γ ; Π ; Σ ⊢ e1 : s1 Γ ; Π ; Σ ⊢ e2 : s2

Γ ; Π ; Σ ⊢ 〈e1, e2〉 : (s1 × s2)

(TCD-proj)
Γ ; Π ; Σ ⊢ e : (s1 × s2)

Γ ; Π ; Σ ⊢ (proji e) : si

(TCD-inj)
Γ ; Π ; Σ ⊢ e : si

Γ ; Π ; Σ ⊢ (inji e) : (s1 + s2)

(TCD-case)

Γ ; Π ; Σ ⊢ e : (s1 + s2)
ℓ ℓ 6⊑ ⊥ ⇒ Σ 6⊑ ℓ Γ, x : sℓ

i ; Π ; Σ ⊢ ei : s

Γ ; Π ; Σ ⊢ case e of inj1(x). e1 ‖ inj2(x). e2 : s

(TCD-ret)
Γ ; Π ⊔ ℓ; Σ ⊢ e : s

Γ ; Π ; Σ ⊢ (ηℓ e) : Tℓ(s)

(TCD-bind-1)

Γ ; Π ; Σ ⊢ e : Tℓ(s) Γ, x : s; Π ; Σ ⊢ e′ : t ℓ � TΠ(t)

Γ ; Π ; Σ ⊢ bind x = e in e′ : t

(TCD-bind-2)

Γ ; Π ; Σ ⊢ e : Tℓ(s) Γ, x : sℓ; Π ; Σ ⊓ ℓ ⊢ e′ : t ℓ ≤ TΠ(t)

Γ ; Π ; Σ ⊢ bind x = e in e′ : t

Protection rules and Open type equations: DCCcd

Same as those for DCCdc .

22

