
Learning from Defect Removals

Nathaniel Ayewah
Department of Computer Science

University of Maryland
College Park, USA

ayewah@cs.umd.edu

William Pugh
Department of Computer Science

University of Maryland
College Park, USA
pugh@cs.umd.edu

Abstract

Recent research has tried to identify changes in source
code repositories that fix bugs by linking these changes to
reports in issue tracking systems. These changes have been
traced back to the point in time when they were previously
modified as a way of identifying bug introducing changes.
But we observe that not all changes linked to bug tracking
systems are fixing bugs; some are enhancing the code.
Furthermore, not all fixes are applied at the point in the
code where the bug was originally introduced. We flesh out
these observations with a manual review of several software
projects, and use this opportunity to see how many defects
are in the scope of static analysis tools.

1. Introduction

Static analysis tools are an attractive way to find vi-
olations of code quality and security requirements. They
can analyze a program without running it, and when they
operate soundly, they can find all instances in a class of
defects [6]. But they also often produce false warnings
or warnings that developers do not care about [3]. Many
modern tools are not generally sound, but simply put some
effort into finding patterns of problems that have been seen
before. They use heuristics to minimize the number of false
warnings and hone in on warnings that are likely to be
interesting to developers. FindBugs is one such tool, with
over 150 detectors written to find about 400 patterns of
defective behavior.

In the FindBugs project, we generally discover new pat-
terns by observing real (and usually simple) mistakes made
by developers. We can find these mistakes by reviewing
source code in software configuration management (SCM)
systems. But we may not want to examine every revision
or commit; just those that are simple, those that fix bugs
and those that introduce bugs. Bug fixing commits may
be identified by creating links between SCM systems and
issue tracking databases such as Bugzilla1, Jira2 and Trac3

1. http://www.bugzilla.org
2. http://www.jira.com
3. http://trac.edgewall.org

[4], [8]. Bug introducing commits may be associated with
unit test regressions, or may be found by tracking lines
changed in bug fixing commits to the point in time when
they were previously modified [9], [5], [10]. These previous
modifications are sometimes called fix-inducing commits.

One problem with linking between SCM systems and
issue tracking databases is that not all issues in the databases
are associated with fixing bugs; some are requests for new
features while others remind developers of needed tasks [1],
[7]. Even when a report requests a bug fix, the associated
source code changes may include other activities such as
adding test cases or refactoring code, and so cannot always
be regarded as bug-fix changes. And even when the source
code changes are fixing bugs, the fixes may not have been
directly induced by a previous modification of the same
lines, but may instead have been caused by an API change
or induced by a separate bug fix. In other words, not all
modifications that directly precede bug-fix commits should
be regarded as bug introducing or fix-inducing.

In this study, we illustrate these problems with examples
found by reviewing bug reports and associated source code
from three different projects. Our review suggests that ap-
plications and algorithms identifying fix-inducing commits
may need to be more selective in how they choose bug-
fixing commits because sometimes it is unclear whether the
fix could have been prevented by more careful programming
of the changes that previously modified the affected lines.
While reviewing the three projects, we also look for prob-
lems that could have been detected by static analysis and
evaluate real static analysis warnings that are removed to
determine if they were fixed directly or removed incidentally.
We observe unsurprisingly that only a few changes are in the
scope of static analysis and many warnings were removed
because their supporting context changed.

2. Reviewing Defects

We manually reviewed bug reports and source code
changes from three projects, including two written primarily
in Java, and one written in Python4. This manual review

4. http://python.org



is subjective, but it enables us to find examples and make
qualitative observations. We reviewed reports and associ-
ated code changes together, categorizing them as defects,
enhancements or refactorings. We reserved the defects cate-
gory for cases involving bug-fix commits, where developers
are fixing problems not just responding to new requirements.
In some cases, the issue tracking system contained labels
set by users such as “bug” or “improvement”. Since our
review is conducted for the purpose of identifying bug-fix
commits, our designation sometimes differs from the user’s;
we highlight these cases in our results.

Most of our reviews were on two medium size plugins
from different releases of the Eclipse project5. We reviewed
the Text Editor plugin and the Launching plugin which
allows users to compile and run applications on their local
JRE. The source code was in a CVS repository and issues
were tracked using a Bugzilla database. To link issues to
their associated source code changes, we rely on the work
of Schröter et al. who mined Eclipse for this information
by searching commit messages for bug report numbers [8].
Reports were restricted to those that occurred 6 months
before or after a major release, with most occurring before
the release.

We also reviewed some source code changes from
Groovy6, a dynamic language implemented in Java, and
from CherryPy7, a framework for building web applications
using Python. Both are much smaller code bases, hosted
in SVN repositories. Developers in both projects follow
established conventions for including issue tracking numbers
in commit messages, making it easy to link between the
SCM and the issue tracker. In addition, both projects used
issue trackers (Jira and Trac respectively) that allowed users
to label each report (see Tables 2 and 3 in the results).
Finally, we ran static analysis tools (FindBugs and Pylint8

respectively) over several revisions of each project and noted
the warnings that were removed.

3. Results and Observations

Table 1. Categorizing Reports and Commits in Eclipse

Launching Plugin Text Editor Plugin
Reports Commits Reports Commits

Defects 33 80 38 48
Enhancements 21 37 11 11
Refactorings 0 0 3 4

Table 1 summarizes our reviews for the Eclipse plugins.
Most reports focused on fixing defects but about 33% of

5. http://eclipse.org
6. http://groovy.codehaus.org
7. http://www.cherrypy.org
8. http://logilab.org/pylint

reports were enhancements or refactorings. Tables 2 and
3 summarize our classifications for Groovy and CherryPy
reports respectively. Unlike the Eclipse results, we only
reviewed one commit per report. Our reviews generally
matched the labels provided by users, but some reports la-
beled as defects by users were categorized as enhancements
or refactorings. For example, CherryPy issue #600 calls
for splitting some functionality into two classes to make a
feature more manageable9. It is labeled a defect, but we cate-
gorize this as an enhancement. In the following sections, we
make qualitative observations about the different categories
of reports.

Table 2. Categorizing Reports in Groovy

Jira Label Defect Enhancement Refactor
- Bug 23 7 0
- Improvement 2 21 4
- New Feature 0 1 0
- Task 0 1 1

Table 3. Categorizing Reports in CherryPy

Trac Label Defect Enhancement Refactor
- Defect 29 13 0
- Enhancement 0 5 1
- Task 1 0 1

3.1. Enhancements

As was noted earlier, some bug reports and tickets refer to
requested enhancements to support new user requirements,
accommodate changing requirements, or in some cases,
mitigate previously unforeseen circumstances. These sorts of
reports end up in the bug database because developers use
it to communicate with each other. In the Groovy project,
a large number of reports fit into this category, suggesting
that the culture of the team is to rely heavily on the issue
tracker for project management (instead of communicating
over email or managing separate requirements documents).

Sometimes users and developers disagree about whether
a problem represents a defect or an enhancement. For
example, in one bug report from the Eclipse project a user
complains that Eclipse does not correctly support environ-
ment variable configuration10. Developers initially refuse
to support this feature, but the reporter feels strongly and
responds:

“This is a very unfortunate decision. I ask that you
reconsider. Inability to support env variable con-
figuration in a launch configurations will continue

9. http://www.cherrypy.org/ticket/600
10. Bug reports are at https://bugs.eclipse.org/bugs/



to cause (my company) SIGNIFICANT difficulty
re: sharing launch configurations. We are still on
the fence re: Eclipse usage...this is not going to
help the Eclipse case.”

Developers eventually make changes to support the user’s
request. Even though the user regards this as a critical
problem, we do not classify this as a bug fix for our
purposes, because the changes made do not correct an earlier
introduced bug.

Other examples of enhancements we reviewed were
requests for better error messages, requests for API or
structural changes to improve performance, and requests
to remove temporary code or “hacks”. During the review
of Eclipse plugins, we observed that commits associated
with enhancements appeared more likely to contain added or
removed methods and classes than commits associated with
defects. 33% of enhancement commits contained added or
removed methods and classes compared to 21% of defect
commits. We observed similar proportions in the Groovy
project. This could be a clue for future studies seeking to
automatically categorize these commits.

3.2. Refactorings

Many refactoring changes involved removing dependence
on deprecated features or old libraries. In Eclipse several
bug reports called for eliminating unnecessary dependen-
cies between certain components to encourage more loose
coupling. Other refactoring changes were made to improve
performance. One interesting case in the Groovy project
is issue #191511 which called for replacing inefficient Java
number constructors with invocations of valueOf(). This
is an existing bug pattern in FindBugs and this change led
to the removal of about a dozen warnings.

3.3. Defects

Among reports classified as defects, most were the direct
result of an error or oversight by the developer that previ-
ously modified the offending code. For example, bug report
#29753 for the Eclipse Launching plugin states: “Eclipse
keeps a lock on jar files even after a launch configuration
is finished”. One would reasonably expect that the program
should release a resource after using it, so this is classified
as a defect. Other examples of defects we reviewed included
failing to properly update system configuration in response
to user actions, incorrect API usage, memory leaks and out
of memory errors.

One source of ambiguity is cases where developers miss
important requirements that were not clearly spelled out
in advance. If we think the requirement could have been

11. http://jira.codehaus.org/browse/GROOVY-1915

determined by a careful and rigorous software practice,
we may classify this as a defect. But if the requirement
is only apparent with the benefit of hindsight, it may be
viewed as a new requirement. Two illustrative cases from the
CherryPy project are issue #588 where developers missed a
requirement that is specified in a standard HTTP RFC, and
issue #622 where a rare chain of events could lead to errors
on the client. Both of these where classified as defects by
users, but we classified the second case as an enhancement.

Some cases classified as defects were not directly induced
by the previous modification of the same lines. One example
from the Groovy project is issue #2606 where an API class
is used in ways it was not designed to be used, causing an
Exception in some cases. Developers decided to change the
API class to prevent the Exception, rather than change the
code that was using it incorrectly. Another case from Groovy
is issue #2672 where a quirk in an external API was causing
a Null Pointer Exception on some platforms. The developer
found a reference to this problem in the external API’s bug
database and applied a hack that indirectly fixed the problem.

3.4. Problems Found by Static Analysis

In our review of Groovy and CherryPy, we ran static
analysis tools over multiple sequential revisions and noted
the warnings that were removed. Only about 1 in 10 re-
visions for Groovy and 1 in 5 revisions for CherryPy had
removed warnings. Most warnings were removed because
the supporting context was changed or deleted. (Supporting
context refers to containing methods, classes and packages
used to identify warnings; when these are changed it causes
warnings to go away and reappear as new warnings). There
were a handful of revisions that appeared to directly fix

(a) org/eclipse/ui/texteditor/ConfigurationElementSorter.java, rev 1.5, line 144

try {
manifestElements = ManifestElement.parseHeader(...);

} catch (BundleException e){
continue;

}

int i=0;
while (i < manifestElements.length && !toTest.isEmpty()) {

...

(b) org/eclipse/ui/texteditor/ConfigurationElementSorter.java, rev 1.6, line 151

try {
manifestElements = ManifestElement.parseHeader(...);

} catch (BundleException e){
continue;

}
if (manifestElements == null)

continue;

int i=0;
while (i < manifestElements.length && !toTest.isEmpty()) {

...

Figure 1. Code Snapshot showing fixed NPE problem
that may be found with Static Analysis



warnings but they were low priority or performance issues
like the inefficient number constructor issues described in
Section 3.2.

During our review, we also looked for changes fixing
problems that are similar to the patterns found by static
analysis tools. Only a few commits fixed these kinds of
patterns (about 5% of the Eclipse plugin changes). We were
particularly interested in reports that contained stack traces
for Null Pointer Exceptions because many static analysis
patterns are devoted to finding these sorts of problems.
An example is shown in Figure 1 (which corresponds to
Eclipse bug report #70002). The developer inserts a check
for null which indicates that the earlier assignment to
manifestElements may return null. We can study these
patterns to see if existing static analysis techniques could
have made this determination earlier.

4. Related Work

Several past projects introduce and refine an approach to
finding fix-inducing commits that is based on creating a link
between the bug report database and the code repository
using commit messages [9], [10], [5], [2]. Part of the
challenge is to trace back from the fix commit to the fix
inducing commit while accounting for changes in file struc-
ture including line number and method name changes. Kim
et al [5] and Williams et al [10] also manually review the
source code of fix commits to decide if they were true fixes,
but do not review the bug reports to distinguish between
those that refer to defects and those that are enhancements.

Other past projects have tried to develop automatic tech-
niques to distinguish between enhancements and defects in
bug reports. Mockus and Votta [7] analyze the textual de-
scriptions in bug reports and use this to classify the changes
as adaptive (adding new features), corrective, or perfective
(restructuring the code). They also consider how long a bug
report is active as well as the number of lines of code
changed and use these metrics to validate the consistency
of their classification across different projects. Antoniol et
al [1] also successfully distinguish corrective maintenance
issues from other types of issues using several machine
learning techniques. Our study focuses on a narrower class
of bug-fixes because we are interested in corrective main-
tenance on code that was previously modified in ways that
induced the later fix. But it is likely that automatic methods
may also be able to distinguish between these directly
induced bug-fix changes (and associated bug reports) and
other indirectly induced fixes and enhancements.

5. Conclusions

Our review of several software projects examines the ob-
servation that many SCM changes linked to reports in issue
tracking systems are not bug fix changes. This observation

impacts efforts to determine which earlier changes may have
introduced bugs.

References

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-
G. Guéhéneuc. Is it a bug or an enhancement?: a text-
based approach to classify change requests. In CASCON ’08:
Proceedings of the 2008 conference of the center for advanced
studies on collaborative research, pages 304–318, New York,
NY, USA, 2008. ACM.

[2] L. Aversano, L. Cerulo, and C. Del Grosso. Learning from
bug-introducing changes to prevent fault prone code. In
IWPSE ’07: Ninth international workshop on Principles of
software evolution, pages 19–26, New York, NY, USA, 2007.
ACM.

[3] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on
production software. In PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 1–8, New York, USA,
2007. ACM.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In ICSM ’03: Proceedings of the International Conference
on Software Maintenance, page 23, Washington, DC, USA,
2003. IEEE Computer Society.

[5] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead.
Automatic identification of bug-introducing changes. In
ASE ’06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages 81–
90, Washington, DC, USA, 2006. IEEE Computer Society.

[6] J. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pin-
cus, S. Rajamani, and R. Venkatapathy. Righting software.
Software, IEEE, 21(3):92–100, May-June 2004.

[7] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In ICSM ’00: Proceedings
of the International Conference on Software Maintenance
(ICSM’00), page 120, Washington, DC, USA, 2000. IEEE
Computer Society.

[8] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller. If
your bug database could talk... (short paper). In Proceedings
of the 5th International Symposium on Empirical Software
Engineering. Volume II: Short Papers and Posters, pages 18–
20, September 2006.

[9] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05: Proceedings of the
2005 international workshop on Mining software repositories,
pages 1–5, New York, NY, USA, 2005. ACM.

[10] C. Williams and J. Spacco. Szz revisited: verifying when
changes induce fixes. In DEFECTS ’08: Proceedings of the
2008 workshop on Defects in large software systems, pages
32–36, New York, NY, USA, 2008. ACM.


