

VAMP EXPLORER: AN INTERACTIVE FRAMEWORK FOR

NAVIGATING A COMPLEX HIERARCHY OF PVS

THEOREMS

Approved by:

 Dr. Peter-Michael Seidel

 Dr. Margaret H. Dunham

 Dr. David Matula

VAMP EXPLORER: AN INTERACTIVE FRAMEWORK FOR

NAVIGATING A COMPLEX HIERARCHY OF PVS

THEOREMS

A Thesis Presented to the Graduate Faculty of the

School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

with a

Major in Computer Science

by

Nathaniel E. Ayewah

(B.S., Southern Methodist University, 2003)

July 28, 2005

 iii

Ayewah, Nathaniel E. B.S., Southern Methodist University, 2003

VAMP Explorer: An Interactive Framework for

Navigating a Complex Hierarchy of PVS

Theorems

 Advisor: Professor Peter-Michael Seidel

Master of Science degree conferred July 28, 2005

Thesis completed July 27, 2005

The VAMP (Verified Architecture Microprocessor) is a pipelined microprocessor that

is being verified using PVS (Prototype Verification System), a semi-automatic theorem

prover. Almost 450 theories formally describe and verify all the VAMP components

down to the gate level. This detail makes it possible to automatically generate an

implementation from the formal descriptions but also adds complexity to the hierarchy of

theories. These theories, composed of numerous lemmas and definitions, currently exist

as a collection of files and directories. They are supplemented by PVS proofs,

implementations in verilog and numerous publications explaining the work that has been

done.

The goal of our project is to provide a cohesive interface – VAMP Explorer – that

will make it easier to navigate and understand the correctness proofs of the VAMP. Our

contributions include a dynamic hierarchical graph for exploring the VAMP, a schematic

view for relating the theories to a traditional understanding of a microprocessor, and a

 iv

local view for identifying the properties and relationships in each theory. The VAMP

Explorer is web-based to make the VAMP theories widely accessible. It is built in a

modular structure so that it can adapt to changes and grow with future extensions to the

VAMP.

This project supplements the existing formal descriptions of the VAMP with high

level structures that present a profile of the VAMP and expose the relationships between

its components. The visualization of the VAMP can be seen as a case study to

demonstrate the benefits of our framework. Ultimately, our goal is to provide

methodologies that can be used more generally for the visualization of complex

hierarchical proofs and systems.

 v

TABLE OF CONTENTS

LIST OF FIGURES .. ix

LIST OF TABLES.. xi

ACKNOWLEDGEMENTS... xii

1. INTRODUCTION ...1

1.1. General Problem Statement ...1

1.2. Research Goals and Contributions...2

1.3. Background and Related Problems..3

1.3.1. Formal Verification.. 3

1.3.2. The VAMP Perspective ... 4

1.3.3. The Visualization Problem .. 5

1.4. Related Work ...6

1.4.1. Verification of Hardware Designs ... 6

1.4.2. Visualization of Hierarchical Structures .. 7

1.5. Organization...8

2. BASIC CONCEPTS AND TERMS ...9

2.1. Formal Verification and Theorem Proving..9

2.1.1. Formal Verification Methods... 10

2.1.2. Theorem Provers.. 10

2.2. PVS Concepts ..11

2.3. Visualization Concepts ..12

2.3.1. Human Cognition... 13

 vi

2.3.2. Visualizing Hierarchies.. 13

2.4. User Interface Design Concepts ..14

2.4.1. Usability Goals... 14

2.4.2. User Experience Goals... 15

3. REQUIREMENTS ANALYSIS AND CONCEPTUAL DESIGN16

3.1. User Analysis ...16

3.1.1. Primary Users... 16

3.1.2. Secondary Users... 17

3.2. Needs Analysis ..17

3.3. Requirements Specification ...19

3.3.1. Use Case Diagram.. 19

3.3.2. Functional Requirements ... 19

3.3.3. Usability Requirements.. 21

3.3.4. Data Requirements... 21

3.3.5. Time Requirements.. 22

3.3.6. Environmental Requirements... 22

3.4. Usability Goals ..22

3.5. Preliminary Designs and Prototypes..23

3.5.1. Preliminary Screenshots... 23

3.5.2. Early Challenges .. 27

3.6. High Level and Conceptual Design ...28

4. EXTRACTING STRUCTURED PVS CONTENT ...31

 vii

4.1. Parsing PVS ...31

4.1.1. The Grammar Oriented Language Developer (GOLD)............................. 32

4.1.2. The PVS Specification Language .. 33

4.1.3. Dealing with Shift-Reduce and Reduce-Reduce Conflicts 35

4.2. XML Schemas ...36

4.2.1. The Context Theories Schema... 37

4.2.2. The Imported Theories Schema and JGraph.. 38

4.2.3. The Theory Components Schema.. 39

4.2.4. The Schematic View Schema .. 41

4.2.5. PVS Proofs Scripts... 41

4.2.6. The Directory Structure ... 41

4.3. Java Implementation of Data Extraction Algorithms ..42

4.3.1. Class Diagram.. 42

4.3.2. The Data Extraction Algorithm ... 44

5. THE VAMP EXPLORER USER INTERFACE ..45

5.1. Planning the Interface ..45

5.1.1. Why Flash? .. 45

5.1.2. Design Paradigm.. 46

5.2. Providing Global Access to all Theories ...48

5.2.1. Visualizing Long Lists with Menus... 48

5.3. Creating a Directed Acyclic Graph View ..50

5.3.1. DAG view Challenges ... 50

 viii

5.3.2. DAG view Actions... 51

5.4. Creating a Local View ...52

5.4.1. Choosing Local View Components ... 52

5.3.2. Local view Actions .. 53

5.5. Creating a Schematic View..54

5.6. Creating a Content view ..55

5.6.1. The Split Screen... 55

5.6.2. The Control Panel .. 57

5.6.3. The History Buttons... 57

5.6.4. Other Content View Features... 58

5.7. Bringing It All Together ..58

6. DEPLOYING THE VAMP EXPLORER..61

6.1. Full System Deployment ...61

6.1.1. Web Deployment ... 61

7. CONCLUSION AND FUTURE DIRECTIONS..63

APPENDIX A. Modified BNF Form of the PVS Specification Language65

APPENDIX B. PVS Proof Scripts in BNF...73

APPENDIX C. Accessing the VAMP Explorer ...75

REFERENCES ...76

 ix

LIST OF FIGURES

Figure Page

 1.1. A Subset of the Relationships between VAMP Theories ...6

 2.1. Hierarchical Visualization Components ...14

 3.1. Use Case Diagram...19

 3.2. Preliminary Prototype of VAMP Explorer ...25

 3.3. Automatically Generating a Directed Acyclic Graph...26

 3.4. The Local View Concept ..26

 3.5. High-level Design: Overview ...28

 3.6. High-level Design: Data Extraction Phase ...29

 3.7. High-level Design: Visualization Phase ...30

 4.1. A Subset of Rules in the PVS Grammar...34

 4.2. The Shift-Reduce and Reduce-Reduce Conflicts ...36

 4.3. Planning the Directory Structure for the XML Files ..42

 4.4. Class Diagram for Data Extraction Phase...43

 5.1. Class Diagram for Flash Actionscript Classes..47

 5.2. Menus for Visualizing Long Lists ..49

 5.3. The Directed Acyclic Graph View ...51

 5.4. The Local View for the tom_correct5 Theory ..52

 5.5. Representing Components in the Schematic View...54

 x

 5.6. The Content View: Single Screen Mode ..56

 5.7. The Content View: Split Screen Mode ...56

 5.8. A Stylesheet to Facilitate Syntax-Coloring...58

 5.9. Overview of the VAMP Explorer ...60

 6.1. Directory Structure for the Web Folder ..62

 xi

LIST OF TABLES

Table Page

 4.1. The Context Theories Schema..37

 4.2. The Imported Theories Schema..38

 4.3. The Theory Components Schema...40

 xii

ACKNOWLEDGEMENTS

I want to thank Dr. Peter-Michael Seidel for introducing me to and steering me

through this project. Many thanks also to Nikhil Kikkeri for providing initial expertise on

the VAMP system and PVS in general – I’m glad I could draw from your well of

experience. I would also like to acknowledge the VAMP team at Saarburg University in

Germany led by Dr W.J. Paul that created the original theories and made them available

to us.

I am grateful to the committee of professors at SMU that reviewed this thesis. I also

got ideas or resources from individuals not directly related to the project: Dr. Joseph

Kiniry from the University College Dublin exposed the challenges of parsing PVS and

Devin Cook from California State University created an excellent engine for building

context-free grammars.

Finally I am thankful for my family and their unending patience when it looked like I

would never finish this project.

 1

Chapter 1

1. INTRODUCTION

1.1. General Problem Statement

The VAMP Project was started at Saarland University, Germany as an effort to

formally verify a microprocessor [BB+02]. The project resulted in a large body of

theorems which describe the microprocessor design and show that it is correct and bug

free. The theorems were written using a theorem prover called PVS (Prototype

Verification System) [OSR01]. In principle, we should be able to take these verified

designs and implement them in silicon, confident of their correctness, without needing to

simulate or validate them. Of course, synthesis and fabrication errors could lead to faulty

chips but we are confident in the underlying design … or are we?

Anyone introduced to the project and considering an implementation will want to

review the theories to gain a level of confidence in the quality and correctness of the

work. This is a complex proposition, since reading such a large body of PVS theories is

like trying to understand a large Java project by reading the Java code. The theories are

written in a modular fashion meaning that a user may have to navigate through several

files to find all the definitions, lemmas, or proofs that are connected to a given

component. A number of papers and publications describe the paper and pencil proofs

that drive the theories but do not include all the PVS theories in detail.

 2

All of this motivates our interest in a framework for visualizing and navigating the

hierarchies created by collections of PVS theories. We want to give theorem writers and

readers the big picture that shows how each component contributes to the final

correctness, while also allowing them to navigate through a sequence of relationships

between subcomponents and theories.

Since these collections can be quite large, we should generate the final interface

automatically from an existing anthology of PVS files. To do this, we should take

advantage of the structured nature of PVS theories. And since VAMP describes a

hardware system, we can provide an intuitive schematic presentation and provide a way

for users to compare the structural specifications with the behavioral statements they are

supposed to implement.

It would also be useful to implement an in-code commenting system like Javadoc that

will support automatic documentation generation [Sun05]. Unfortunately, the large body

of theories in the VAMP has already been written and does not include such structured

in-code comments, so we do not address such facilities in this project.

1.2. Research Goals and Contributions

The goal of this project is to create an interface to the VAMP theories that can be

used in general for visualizing and navigating PVS theories. Specifically, we create a

system that automatically generates this interface from the existing files. We also aim to

create an interface that is accessible over the web. This visualization should facilitate

efforts to communicate about the theories and give readers confidence in the correctness

of the theories.

 3

We also aim to make it possible for other researchers to extend or customize the

visualizations. To this end, we separate the project into two tasks. The first effort is to

extract and structure the information in the theories. These include the lemmas and

definitions as well as related proofs and theories. We format this extracted structure using

XML. This uniform structure drives the second stage of the project which is to visualize

the information using a web-based interactive interface.

This project has also created other useful contributions. We present a schema for

representing PVS theories in XML particularly when the goal is to visualize the theories.

Our research has also led to a simple method for generating schematic representations of

PVS constructs that are flagged as hardware structures. To facilitate these methods, we

have created a parsing engine for PVS files.

1.3. Background and Related Problems

1.3.1. Formal Verification

Traditionally, engineering fields place a great deal of emphasis on correctness in

design. This focus is necessary because faults in engineering design can cause great

inconvenience or even have fatal consequences. Computer hardware and software

engineering have often been criticized for not adopting this same rigor. Engineering

correct hardware and software designs is challenging because it is intractable to simulate

every possible input case especially for complex designs. Furthermore, market pressures

often lead to short design cycles [KG99]. In general, it is not always possible to

completely guarantee the correctness of a design because we cannot completely formalize

the intentions of the designer. However, we can use a number of existing approaches to

 4

check certain properties of the design and guarantee that it is equivalent to a given formal

specification.

Often designs are validated using simulation to predict the output given a set of input

vectors. While this kind of validation is not usually exhaustive enough to give us

confidence in our design, it can often identify most of the errors [Kr99]. On the other

hand, formal verification provides proof that a design or implementation meets a set of

requirements or exhibits certain desired properties. Techniques for formal verification

range from fully automatic approaches such as model-checking and equivalence-

checking to semi-automatic interactive theorem proving. The automatic methods are

currently more popular because they are less complex. But they are also less expressive

and do not scale well to large or complex circuits.

1.3.2. The VAMP Perspective

Interactive theorem proving has not been completely accepted for verifying large

designs because it is thought to be too time consuming and expensive, requiring

considerable expertise. The VAMP project set out to explore the feasibility of using

theorem proving to verify a microprocessor, complete with a pipelined architecture, an

out-of-order scheduler, a cache memory interface and complex arithmetic units. It uses

PVS, an interactive theorem prover, to specify the structure of the different components

and their intended behavior and to prove that this behavior is accomplished by the

structure. PVS supports specification down to the bit-level which makes it possible to

automatically generate a fully functional implementation (in Verilog) from the given

theorems.

 5

1.3.3. The Visualization Problem

The VAMP project has demonstrated that verification of such complex systems can

be accomplished in reasonable time and at reasonable cost. However the theorems do

nothing to hide the complexity of the system – indeed they exacerbate the problem by

bringing in the nuances of the PVS specification language. Currently, the VAMP

collection of theories have been arranged in files in a directory structure and made

available over the web [VMP05]. In addition a number of publications have been created

to describe the work that has been done. But a user wanting access to the theorems still

has a hard time navigating through them and inspecting the proofs that have been applied

to them. Figure 1.1 shows a hierarchy of some of the theorems in the VAMP system and

illustrates some of the challenges associated with navigating the VAMP:

• The hierarchy is very deep and provides detailed representations even at its lowest

levels.

• There are many interconnections between nodes.

• The high level components verified in the VAMP are related across interfaces that

sometimes span multiple theorems.

Our goal is to create a VAMP explorer that will give users new ways to visualize the

hierarchy and navigate through it. We believe this will make the VAMP theorems more

accessible to researchers and students wishing to better understand or use it.

 6

Figure 1.1. A Subset of the Relationships between VAMP Theories

1.4. Related Work

1.4.1. Verification of Hardware Designs

The VAMP is described in a collection of publications and theses written at different

stages of the verification project. Much of the initial work is done using paper-and-pencil

proofs in [MP00] which includes descriptions for a pipelined DLX-based implementation

with an IEEE compliant floating point unit and interrupts. [BJK01] describes the PVS

proofs used to verify some of the basic circuits such as “incrementers, adders, arithmetic

 7

units, multipliers, leading zero counters, shifters, and decoders.” [Krö01] verifies the

pipelined architecture and scheduling algorithms, [Ja02], [BJ01] and [Ber01] describe the

floating point unit and [Be04] describes the verification of the cache memory interface.

The architecture is based on the DLX instructions set described by Hennessy and

Patterson [HP96] and the out-of-order scheduling is based on Tomasulo’s algorithm

[Tom67].

Other work has been done to formally verify microprocessors and other hardware

designs. [KG99] and [Kr99] describe advances and techniques in model checking,

equivalence checking and theorem proving. Hardware designs have also been verified

using other theorem provers including HOL [Fo01] and ACL2 [BKM96].

1.4.2. Visualization of Hierarchical Structures

Visualization is the “process of transforming information into a visual form enabling

the user to observe the information” [GCE99]. Information visualization has many

applications in data mining, data management, networking and other fields. Visualization

can make information more understandable and support creative modeling [CW+00]. It

can be used to analyze data and uncover trends [WB98] or enhance a user interface.

Hierarchical visualization shows relationships between data items arranged in a tree

structure. Hierarchies are often shown using directed acyclic graphs and treemaps.

Treemaps are a space constrained visualization that show the highest levels of the

hierarchy and allow a user to zoom down [BSW02]. Research in hierarchical

visualization is conducted by groups wanting to visualize XML, databases or other

structured relationships. Some recent advances include an enterprise knowledge platform

 8

for delivering information in a hierarchy within a given context [Bra05] and methods for

dynamically changing the visualizing of XML according to what a user wants to capture

[JS04].

The PVS interactive development environment (IDE) focuses on providing an

effective interface for theorem development and not on presenting and navigating

completed theorems. As a result, past research in visualization of PVS has focused on

providing functionality that is popular in modern IDEs such as built in contextual help,

quick access to definitions, code completion, and pretty printing [Kin03].

1.5. Organization

In chapter 2, we describe the basic ideas that form the theoretical foundation for our

work including principles in theorem proving, visualization and user interface design. We

then go on to do a detailed requirements analysis in chapter 3 to determine and prioritize

the features that should be included in the VAMP Explorer. Chapter 4 describes our

effort to extract structured data from the existing bed of files and chapter 5 describes our

visualization approaches. In chapter 6 we discuss issues related to system deployment,

both for users wanting to visualize theories and researchers wanting to extract structured

data from their projects. Finally, we conclude in chapter 7 by describing requirements we

were not able to address and possible future directions for this project.

 9

Chapter 2

2. BASIC CONCEPTS AND TERMS

2.1. Formal Verification and Theorem Proving

Verifying the correctness of hardware and software designs is an inherently difficult

problem. Most students in these fields are taught to identify or recognize test cases that

represent the wide spectrum of possible conditions a system can be in. This approach,

enhanced with clever simulations, continues to be employed as the students move into

industry. Yet in industrial designs, these test cases and simulations often account for only

a small subset of possible conditions for the system.

It has to be said that many successful designs have been completed and released

despite this inability to test all cases. This is because all designs depend on some informal

logical reasoning done by a human designer [PS05]. The effectiveness of this reasoning

depends on the complexity of the problem and the experience of the designer. Formal

verification aims to improve the application of this reasoning by making it more precise

and rigorous. Unfortunately some abstractions in the human reasoning process are

difficult to express using the most accessible formal verification methods. Theorem

proving provides the greatest potential for overcoming these difficulties.

 10

2.1.1. Formal Verification Methods

Formal verification methods include equivalence checking, property checking and

theorem proving. The goal of equivalence checking is to prove that two different

specifications of a given system are functionally equivalent to each other. This is useful

when a specification (such as a high-level design) already exists and a new lower-level

implementation is to be created. Hence the correctness of the new system assumes that

the original specification is correct. The advantage of equivalence checking is that it can

be done automatically using techniques such as binary decision diagram (BDD)

equivalence and state space traversal. The disadvantage is that it is not very expressive

and is only feasible for relatively small circuits [Kr99].

Property checking approaches model the system and certain properties using

propositional temporal logics. These approaches show that the desired properties are

always true using symbolic state traversal techniques. Again, these approaches suffer

from a lack of expressiveness for dealing with large complex circuits [Kr99].

2.1.2. Theorem Provers

In theorem proving, the goal is to show through mathematical reasoning that a given

implementation is equivalent to a given specification. The specification and

implementation can be abstractly expressed using formal logics. These logics range from

First-Order logics which are decidable and hence support some automation to higher

order logics which require interaction from a human to complete the proofs.

Theorem provers are very expressive, especially when using higher order logic, and

can be used to describe and verify large and complex circuits. Still, they are not popular

 11

because the proofs cannot be written automatically. Instead, the theorems created must be

proved interactively which can be a time consuming process.

2.2. PVS Concepts

PVS is a research prototype developed at SRI International for writing higher order

logic specifications and interactively proving them. It includes a specification language,

an extendible theorem proving language and some predefined theories. It is implemented

in Common Lisp and uses the popular Emacs editor as its interface.

At the highest level, a PVS specification is either a theory or a datatype. These

specifications can be linked using import and export statements [OSRS01]. A PVS

specification file (extension ‘.pvs’) can have one or more theories or datatypes. Each

specification file has an associated proof file (extension ‘.prf’) that holds the lisp proof

scripts produced during the last interactive theorem proving session. Several related PVS

files are grouped into a context which usually corresponds to the directory the files are in.

PVS theories consist of type and constant declarations, expressions involving types,

constants, variables and/or functions, and formulae which state some assumption or

hypothesis. Completed specifications must first be parsed to ensure syntactic consistency.

Then they need to be typechecked to ensure semantic consistency. PVS’ rich type system

allows the creation of complex types (including functional types). This makes the

problem of checking the consistency of the type system undecidable. In some cases an

interactive theorem proving step is needed to prove type-correctness conditions (TCCs)

before the typechecking phase is complete.

 12

Once specifications have been parsed and typechecked, the interactive theorem

prover can be fired up to prove the lemmas or theorems in the specification. The prover

provides powerful commands that can reduce, rewrite or simplify formulas. It also

provides proof stategies for doing induction, recursion or other useful activities. PVS

supports the creation of user-defined proof strategies which combine commands in

different forms and can be used to represent a paradigm for approaching a class of

problems.

The PVS system includes a set of predefined theories called the Prelude. These

theories form the foundation for the theorem prover and define basic concepts that can be

used when writing specifications. These include theories that describe “logic, functions,

relations, induction, sets, numbers, sequences, sum types, quotient types, and mu-

calculus” [OS03].

2.3. Visualization Concepts

Modern technological advancements like the World Wide Web, email and personal

digital assistants have contributed to an explosion of information. Deriving useful

knowledge from all this information is a growing challenge. Research in visualization

aims to take advantage of human cognitive abilities to present information. This has led

to the creation of tools like tree maps, fish-eye lens-based components, tool tips, and

zoomable interfaces [Vis05].

 13

2.3.1. Human Cognition

Cognition refers to our mental abilities (or limitations) as human beings. In

visualization, we are concerned with cognitive processes that include memory, perception

and recognition, attention, learning and problem solving [SPR02].

For example, the way information is structured can affect our ability to focus on

salient features. It is easier to read the contents of the database when they are structured

using a table format, than it is to read them in a paragraph format. Another example

involves the use of familiar icons to represent certain actions. The choice of pictures in

these icons determines how well the user can learn to use the interface. Throughout our

project, we consider these principles as we decide what widgets to use in our interface.

2.3.2. Visualizing Hierarchies

Hierarchies are created when data is structured in a tree-like format with groups of

data forming subtrees. Hierarchies can be visualized using a directed acyclic graph

(DAG) which visually groups related parent- and child-nodes and visualizes this

relationship with an edge between the nodes. Variations on the DAG include tools that

zoom into a particular node or hide nodes that are not in use.

A treemap is another effective way of visualizing hierarchies. It constrains the entire

hierarchy to a fixed space and uses boxes to represent the highest level nodes. The

subtree of a node is represented by smaller boxes contained in the node. The treemap also

uses color as another dimension. For example, the color intensity of a box may indicate

the magnitude of a value in its subtree.

Some of these visualization components are shown in Figure 2.1.

 14

Figure 2.1. Hierarchical Visualization Components

2.4. User Interface Design Concepts

The best visual interfaces are often those that allow a user to directly manipulate

them. In this section, we describe a small subset of interaction design principles that,

when applied, lead to the most effective and user-friendly interfaces. Some of these

principles relate to the contents of a good interface, but there are also important principles

regarding the methodology we use to generate these interfaces.

2.4.1. Usability Goals

Most users have had the experience of interacting with an interface that was difficult

to use or frustrating. Perhaps it did not do what they expected in response to their actions,

Newsmap uses different colors to represent
categories of news and the size and intensity of the
boxes to reflect the popularity of the news item.

Source: http://www.marumushi.com/apps/newsmap/newsmap.cfm
(Accessed July 13, 2005)

TreeMap

News

US Sports World

LAPD
…

Dallas
Mavericks

…

Russia
…

The UN
…

Directed Acyclic Graph

 15

or perhaps it was difficult to learn. As we design our interface, our goal should be to

optimize the user’s interaction and their ability to complete their tasks. Some specific

goals are that the interface is effective, efficient, safe, useful, learnable and contains

features that are easy to remember [SPR02].

2.4.2. User Experience Goals

In interaction design, our focus should be on the user we are designing for, and on

ensuring their satisfaction. The user’s experience will impact the usefulness of the

interface to them. Some user experience goals include making the interface enjoyable,

helpful, supportive of creativity, and aesthetically pleasing [SPR02].

In chapter 3, we analyze our users and determine what goals we should have as we

design the interface.

 16

Chapter 3

3. REQUIREMENTS ANALYSIS AND CONCEPTUAL DESIGN

3.1. User Analysis

In this section, we wish to identify all the potential users of our system so that we can

direct our design to best support the needs of these users.

3.1.1. Primary Users

These users include researchers using PVS or interested in the VAMP. They represent

the individuals that will interact with our system the most. Specifically:

PVS Researchers may want to use the system to visualize their own theories but they

may not be familiar with web/visualization concepts, or data concepts such as XML.

They also may not be familiar with the hardware concepts used in the VAMP.

PVS Readers include those seeking to study a body of theorems previously

constructed using PVS. They may not be familiar with PVS constructs and other concepts

associated with our system.

VAMP Readers include those seeking to learn about the VAMP. Some of these users

may not care about PVS-specific details, but want to know how the components of the

VAMP come together to show correctness of the system.

 17

3.1.2. Secondary Users

These include users that may interact with our system but do not need to comprehend

all aspects of the system to meet their goals. This could include technical managers trying

to evaluate different formal verification techniques and wanting to experience theorem

proving at work on a full scale system like the VAMP. Other potential users are formal

verification engineers using other techniques such as property checking or equivalence

checking. These users will benefit from the interactive nature of our system but are not

our primary users. So, for example, our final interface will not devote many resources to

explaining theorem proving.

Finally our system could impact users in society who use products that have been

verified using PVS because this system could contribute to the correctness or acceptance

of the theorems.

This understanding of the intended audience is what drives our design and choice of

features in the final system. For example, we aim to use visualization structures that are

intuitive since many of our users will not be familiar with visualization principles.

3.2. Needs Analysis

In this section, we highlight the user needs that motivate our design and guide our

design decisions.

The Big Picture: Users and designers of large systems need to be able to see the big

picture to aid understanding and development. How does an individual theorem or lemma

contribute to the success of the entire system? What are the theories at the top of the

 18

hierarchy? Which theories support different subsystems such as the memory interface or

the pipelined scheduler?

Correctness Checking: Formal verification is necessary to ensure systems are correct

and safe. Exhaustive checking is usually not possible. Other formal verification methods

are not as expressive as theorem proving and cannot handle complex systems. Users need

a system that will give them confidence in the correctness of the proofs and,

consequently, the correctness of the design.

Theory Understanding: Users need help understanding individual theories. This may

come in the form of paper and pencil proofs, or documentation explaining the PVS

constructs used. This information is often separate from the theories. It would be very

helpful to put this information at the users’ fingertips as they read the theories.

Theory Access: Users and developers need a way to quickly find theories and to

compare theories or to find individual components. They may be interested, for example,

in discovering where an abstract datatype is defined or in reading the description of a

lemma that is used to support the current theory.

Theory Presentation: After creating the theories, designers and researchers need a

way to talk about it to others. Web based visualization provides a framework for public

and global distribution. The theories can be further enhanced by using syntax coloring to

expose keywords and identifiers.

The existing emacs-based PVS development environment meets some of the needs

described above. For example it provides some syntax coloring facilities and provides

 19

commands for visualizing a subset of the hierarchy and for visualizing proofs. But it does

not have a web-based front-end nor does it provide advanced facilities for quickly

navigating through a VAMP hierarchy.

3.3. Requirements Specification

3.3.1. Use Case Diagram

The Use case diagram describes some of the high level requirements of our system.

Figure 3.1. Use Case Diagram

3.3.2. Functional Requirements

• The system should visualize an overview of the body of theories and the

relationships between them.

User

Extract
Structure
from PVS

Access any
theory in the

project

View
related

Theories

View and
Visualize Theory

Components
Access a

previously
viewed theory

Read a
theory’s PVS
Specification

Compare
multiple PVS

Specifications

 20

• The system should provide different views of the same theory that provide

different kinds of information. For example, one view may show how other

theories are related to the given theory; another view may show what components

make up the given theory.

• The system should identify and classify subcomponents of a theory and show the

relationships between components, as well as relationships to pertinent lemmas,

proofs or definitions. A user should be able to navigate to these related

components.

• The interface should be automatically generated from a body of pvs files (with

few support files needed). The researcher should not have to do a lot of extra

work to support the interface. (The exception might be the inclusion of

documentation to create an automatic documentation generation system. This is

not done in this project, in part because the VAMP theory files do not contain

structured inline comments that support this.)

• The system should provide a split-screen to allow users to compare different code

from different theories or different parts of the same theory.

• The system should provide facilities for a user to selectively hide parts of the

hierarchy or focus on a subset of the hierarchy.

• The system should provide some documentation to aid the user’s understanding of

the theories

• The system should pretty print and/or syntax color theories to make them easier to

read.

 21

• The system should automatically identify structural components that can be

represented as schematic symbols and create a (canonical) schematic view of the

whole system.

• The system should provide quick access to any theory in the system.

• The system should keep track of the theories a user has explored and allow a user

to traverse back and forth along this history. The feature will be familiar to users

with experience browsing the web and will allow users to return to a theory after

temporarily leaving it.

3.3.3. Usability Requirements

• Complex relationships should not obscure user’s ability to see the hierarchy

• Though most users will have some expertise in hardware design, formal

verification and/or theorem proving, the interface should still be intuitive using

easy to understand visualization concepts.

• The system should provide enough and concise documentation so users lacking

expertise in certain areas can learn to use it fairly quickly.

3.3.4. Data Requirements

• The system should parse the PVS format into a structured format that is readily

accessible and is structured to support the tasks of the interface.

• A generic data format such as XML should be used to drive the interface so other

kinds of interfaces can be generated from this structured content.

 22

3.3.5. Time Requirements

• The interface should be very responsive even when representing bodies of

theories that have a lot of content such as the VAMP. To do this as much

processing as possible should be relegated to a preprocessing stage that converts

the PVS content into structured interface-accessible content.

3.3.6. Environmental Requirements

• The system should be web-based and accessible to most web users. This means it

should run in browsers like Internet Explorer and Mozilla-based browsers, and on

operating systems such as Microsoft’s Windows, Apple’s Macintosh, and Linux.

It should also have reasonable bandwidth and processor requirements.

• The preprocessing function that automatically extracts structured data content

from the PVS files should be accessible on a wide range of platforms. This is

because the PVS files may originally reside on different operating systems such as

Unix, Linux and Windows.

3.4. Usability Goals

In this section, we describe some general usability goals that we aim to keep in focus

as we develop our interface. Some of these goals are applicable to most user interfaces

and applying them leads to more user friendly interfaces [SPR02].

• A user should be able to quickly recognize the tools or commands to perform

desired tasks instead of having to recall them or refer to help documentation.

 23

• Our design emphasis should be on making the interface useful to the user rather

than providing many features.

• There should be few unexpected features and these should be easy to understand.

• The explorer should provide a consistent layout even as users use different

methods to visualize their content.

• The explorer should prevent the user from providing erroneous inputs by using

buttons or dropdown menus for predefined inputs.

• The user should have the freedom to move between different visualizations while

exploring a theory.

3.5. Preliminary Designs and Prototypes

While identifying the requirements for the VAMP Explorer, we developed some

initial designs and built some proof-of-concept prototypes. These exercises revealed

some significant challenges that we would need to overcome to complete this project.

3.5.1. Preliminary Screenshots

Figure 3.2 shows our initial concept. Here we only use a manually extracted subset of

the VAMP system but users already have access to a directed acyclic graph showing the

import relationships between theories. The theories come from different contexts and are

color-coded to reflect this. Each theory is labeled: context@theory, which is the

convention that occurs in PVS import lists. The interface provides tabs for switching

between different views of the relevant theories. In the lower window, we display

different kinds of content relevant to the current theory.

 24

In Figure 3.3, we explore a method for automatically generating the directed acyclic

graph. We generate and layout our graph using Graphviz, a popular graphing application

[Gvz05]. This exercise leads us to identify three steps that are needed to visualize the

hierarchy of theories.

1. Identify the relationships between the theories. In this prototype, this task was

completed manually, but the final system will need to extract this information

dynamically using the import lists in the theories.

2. Create and layout a graph based on these relationships. The layout algorithm

should be optimized for hierarchical structures as it decides, for example,

which nodes should appear at the top of the graph and which should appear at

the bottom. In this case, the graphing application is used for layout only and is

not a part of our final interface. Hence the graph properties (node coordinates

and edges) need to be exported into a standard format such as XML.

3. Redraw the graph using the final interface. In this case, our interface built

using Macromedia Flash [Mac05] and the graph is drawn using the

coordinates from step 2.

In Figure 3.4, we introduce a new view for navigating the hierarchy. This Local View

is similar to the dynamic graphs from TheBrain which visualize information in its context

by showing all relevant relationships [Bra05]. In this case relevant relationships include

constituent lemmas, imported theories, applicable views and ‘parent’ theories (i.e.

theories that use the current theory). In this exercise, we discover that identifying these

 25

parent theories may be complicated because this information isn’t naturally contained in

the current theory’s PVS specification.

Figure 3.2. Preliminary Prototype of VAMP Explorer

 26

Figure 3.3. Automatically Generating a Directed Acyclic Graph

Figure 3.4. The Local View Concept

 27

3.5.2. Early Challenges

These initial prototypes expose some problems we will need to address as we

approach our system design and implementation. Some of these are:

• Automatic Extraction: the process of manually preparing the data files to drive

these demos was time consuming and will not scale to the full VAMP system.

Hence we need to extract this information automatically. This extracted content

includes the relationships between theories and the relationships between

subcomponents that make up theories.

• Graph Layout: we need to use graph layout algorithms that make efficient use of

space and expose the intrinsic hierarchical nature of the relationships. Even with

this small illustration, the graph generated was quite complex – visualizing the

entire VAMP hierarchy will be difficult. One initial idea is to selectively hide

parts of the tree. This may be complicated because it would require that the layout

algorithm be rerun every time a new section of the theory is hidden or revealed.

• Scaling the Interface: when we interact with the full VAMP system, the interface

will need to be responsive even when dealing with large files.

• Schematic View: we will need to represent components with an appropriate

schematic gate and extract the inputs and outputs to these gates. In addition, we

will need a routing algorithm to layout these gates.

• Modeling the user’s interaction: In these prototypes, we use different paradigms

to allow a user to navigate between different views and different widgets to

 28

display the PVS code. We will need to identify the paradigms and components we

want to use in the final interface.

3.6. High Level and Conceptual Design

Figures 3.5-3.7 introduce a high level design detailing the implementation tasks

relevant to each major activity performed in the system. At the highest level, the tasks

Extract PVS Structure and Visualize VAMP represent the two major phases in this

project. Chapter 4 is devoted to a detailed description of the design and implementation

used to extract the PVS structure, while chapter 5 describes the visualization effort.

Figure 3.5. High-level Design: Overview

���������	
�
��������� 	�������	����

	����
���������

 29

Figure 3.6. High-level Design: Data Extraction Phase

���������	
�

���������

Generate list of theories
in each context

Extract relationships
between theories in

each context

Identify components in
each theory

Output theory list to XML grouped by context name.

Navigate directory structure to identify *.pvs files in
each context

Parse *.pvs files to get theory names, formals and
statistics about each theory.

Examine all theories in each context

Parse *.pvs files to get theory names and importing
statements.

Use layout algorithm to prepare graph showing import
relationship between theories.

Output XML file for each context

For each theory, track all the theories it imports and all
the theories that use it.

Parse each *.pvs file to get theory names, formals,
importing statements, and theory declarations.

Cleanup, format and syntax color code for display.

Structure and arrange extracted components in XML

 30

Figure 3.7. High-level Design: Visualization Phase

	�������	����

Launch global access
framework (for instant
access to any theory)

Launch the Directed
Acyclic Graph View

Launch the Schematic View

Display all theories grouped by context

Load the list of theories in each context

Display the theories in the current context.

Load XML for the current context

Graph the relationships between
theories in this context using the layout

coordinates in the XML files.

Make each theory a button that loads
code into the content view

Display limited info about theories e.g.
formals, statistics

Create a thumbnail view to give an
overview of large hierarchies Load XML content for current theory

Display the components in the theory as
well as the theories it imports and the
theories that import it.

Create hyperlinks from the imports and
usedby lists their respective theories

Set up tabs to switch
between views

Create hyperlinks for the components list
that launch the respective code in the
content view.

Load XML layout for components in the
current theory

Display icons representing the highest
level components with links to corres-

ponding code content

Each time a component is selected, drill
down to show the sub-components that

constitute it and launch the corres-
ponding content in the content view.

Launch the Local View

Create a thumbnail to give an overview
of large schematics

Launch the Content View

Set up system for switching between 1-
and 2-pane view

Set up stylesheet to manage syntax
coloring

Load XML content for the current theory

Each time a component is requested,
extract and display it in the active text
box and display related components in
a quick access combo box.

Keep track of the content in and the
history of each pane so users can
switch between the two panes.

 31

Chapter 4

4. EXTRACTING STRUCTURED PVS CONTENT

4.1. Parsing PVS

In this chapter, we describe the considerable effort to extract information from the

existing bed of PVS files in the VAMP and to structure this information to support our

visualization requirements. Our initial attempts led us to experiment with some of the

status and display commands in PVS [OSR01]. The status commands indicate which

related theories or formulas have been typechecked or proved. A side effect of this is that

they expose some of the relationships between components and theories. The display

commands can be used to generate a graphical representation of the theory hierarchies

and proof trees.

Unfortunately, the information provided from these built in commands is not

sufficient nor is it structured to maximize flexible access to the content for visualization.

At a basic level, the output of these commands is not formatted using a structured format

like XML. In addition, these commands do not provide detailed information about the

individual theory components and how they should be classified.

This leads us to consider building a parser for PVS. The PVS installation provides a

complete grammar for the PVS specification language in extended Backus-Naur Form

(BNF) [OSR01b]. Unfortunately, the language is very context sensitive and will need to

 32

be modified for our purposes. The details of these modifications are described in section

4.1.3. Our choice of parsing development engine is influenced by this need for flexibility.

4.1.1. The Grammar Oriented Language Developer (GOLD)

Usually parsers are built using compiler-compilers such as YACC and ANTLR which

incorporate source code describing the parser’s actions with the grammar describing the

language. The compiler-compiler uses this information to create a parsing program which

can then be used to parse source files in the specified language. The disadvantage of this

is that the grammar specification and source code are language dependent and tightly

coupled – changes in the grammar could lead to significant rewriting of the source code.

The GOLD parsing system was created by Devin Cook at California State University.

Its basic paradigm is to separate the task of specifying the grammar used in a parser

program from the actions associated with tokens and rules in this grammar. This has the

advantage of making it possible to build parsers in a language and platform independent

way [Co04]. It also gives us the flexibility to focus on the grammar, making

modifications where necessary, without considering the source code actions until we are

satisfied with the grammar.

The GOLD system is used in two phases. The first phase uses a LALR (Lookahead

Left-to-right Right-derivation) algorithm to compile a BNF grammar into a table that

represents every possible state the parser can be in as it processes the text the grammar

represents. During parsing, each time a new token is received by the parser, it must

decide based on the states in the table whether to shift the token onto a stack containing

other tokens that will eventually make up a rule, or to first reduce all the tokens on the

 33

stack to one rule before shifting the next token. The GOLD system features a builder that

is used for compiling BNF grammars into LALR tables and testing the grammars with

sample text to ensure that it is not ambiguous. This phase is completely language

independent and can be completed before moving to the second phase.

In the second phase, a language specific engine is used in conjunction with the LALR

table to parse a source text and perform desired actions. In this project, we choose a Java

engine written by Matthew Hawkins and featured on the GOLD Parser website [Co04].

With this engine, a simple loop can be used to specify the appropriate action each time a

new token is received or a rule is reduced.

4.1.2. The PVS Specification Language

In this section, we highlight some of the key features of the PVS grammar that we

exploit to create our structured XML representations of the VAMP files. The full

grammar is presented in [OSR01b]. The grammar is specified in extended Backus-Naur

Form which provides shorthand notation for dealing with common occurrences such as

repeated tokens, lists, optional tokens and alternate tokens. Unfortunately, the GOLD

system currently only works with standard BNF, so the PVS specification must be written

out in this form.

Figure 4.1 shows some of the important rules in the grammar. The start symbol points

to the highest rule in the grammar – the rule that represents a complete and correct input.

In this case the start symbol – Specification – represents an entire PVS specification file

which can contain one or more theories or datatypes. A theory is created using a shell of

keywords interspaced with several optional parts (indicated with square brackets). The

 34

most important part to us is the TheoryPart which contains one or more TheoryElements

optionally separated by a semicolon. It is these theory elements that form the basic

components of the VAMP system. Theory elements include import lists, formulas, type

and variable declarations, and library statements. In section 4.2, we structure the content

of PVS file for visualization by isolating each of these theory elements and grouping

similar ones.

"Start Symbol" = Specification

Specification ::= {Theory | Datatype}+

Theory ::= Id [TheoryFormals] ':' 'THEORY'
 [Exporting]
 'BEGIN'
 [AssumingPart]
 [TheoryPart]
 'END' Id

TheoryPart ::= {TheoryElement [';']}+

TheoryElement ::= Importing | TheoryDecl

Importing ::= 'IMPORTING' TheoryNames

TheoryDecl ::= LibDecl
 | TheoryAbbrDecl
 | TypeDecl
 | VarDecl
 | ConstDecl
 | RecursiveDecl
 | InductiveDecl
 | FormulaDecl
 | Judgement
 | Conversion
 | InlineDatatype

AssumingPart ::= 'ASSUMING' {AssumingElement [';']}+ 'ENDASSUMING'

AssumingElement ::= Importing
 | Assumption
 | TheoryDecl

Figure 4.1. A Subset of Rules in the PVS Grammar

 35

4.1.3. Dealing with Shift-Reduce and Reduce-Reduce Conflicts

One problem that becomes immediately apparent when we try to compile the given

PVS grammar is that, because of the context-sensitive nature of PVS, many shift-reduce

and reduce-reduce conflicts occur. A shift-reduce conflict occurs when the LALR

algorithm cannot decide whether to shift the next token onto the stack as part of a larger

rule, or to reduce the tokens on the stack to a rule. A reduce-reduce conflict occurs when

the tokens on the stack can be reduced to more than one rule.

Figure 4.2 demonstrates these conflicts in the PVS grammar. When the parser is

reading one of the theory elements in Figure 4.1, it does not know which one it is reading

since it only looks one token ahead. When it sees a string of comma-separated ids, it

cannot tell if it is reading a LibDecl or a VarDecl. In other words, it does not know the

context in which to interpret the ids. In the LibDecl context, these ids should be reduced

to the Ids rule, while in the VarDecl context they should be reduced to the IdOps rule.

This is a reduce-reduce conflict. A shift-reduce conflict occurs if the parser encounters an

operator (Opsym) in this string of ids. Now it needs to decide if it should shift the

operator unto the stack leading to the eventual reduction of an IdOps rule, or to reduce

the existing stack tokens into an Ids rule.

Our paradigm for dealing with this problem is to modify the grammar to make it more

general. In our above example, we can accomplish this by replacing the Ids non-terminal

in LibDecl with an IdOps. The implication of this approach is that any files that are

parsed successfully by the PVS system will also be successfully parsed by our system but

not vice versa. In this example, any library declarations that parse successfully in PVS

 36

will be accepted by our custom parser because IdOps is more general than Ids, but a

library declaration that includes operators and parses in our parser will not parse in PVS.

This is O.K. because our system will not be used to write PVS specifications and we can

assume that PVS files provided to us have already been successfully parsed in the PVS

system. The modified BNF file is presented in Appendix A.

LibDecl ::= Ids ':' 'LIBRARY' ['='] String

VarDecl ::= IdOps ':' 'VAR' TypeExpr

IdOps ::= IdOp++','

IdOp ::= Id | Opsym

Ids ::= Id++','

Figure 4.2. The Shift-Reduce and Reduce-Reduce Conflicts

4.2. XML Schemas

In this section, we design the XML schemas used to structure the components using

different paradigms depending on what view is driven from these schemas. The goal is to

create schemas that structure the PVS content in the VAMP such that anyone can create a

visual interface to this content. The XML content for each schema is generated using the

respective steps in Figure 3.5 and this content is used to drive the views in Figure 3.6. In

many cases, the <string> object is used to specify a display string to be used in the

visualization phase.

 37

4.2.1. The Context Theories Schema

Table 4.1. The Context Theories Schema

XML Tag Name Level Attributes Comments

<ContextTheories> 1 - Root node

| − <context> 2 id One object for each context

| − − <theory> 3 - One for each theory

| − − − <id> 4 - Unique theory id

| − − − <filename> 4 - PVS file containing theory

| − − − <theoryformals> 4 - optional; Group all the theory’s parameters.

| − − − − <theoryformal> 5 -

| − − − − − <string> 6 - The display string for this formal

| − − − − − <importing> 6 - optional; importing statement that precedes string

This is the simplest schema. It encapsulates each context in a context tag and lists all

the theories that occur in that context. Theory objects contain an id, the PVS file

containing the theory, and an optional description of some of the formals or parameters

associated with the theory. (A theory’s id should be unique in its context.)

This schema is useful for generating a global view of the system. It lists all the

theories in the VAMP, grouped by their context. A unique string for addressing each

theory can be constructed using the convention: context_id@theory_id.

 38

4.2.2. The Imported Theories Schema and JGraph

Table 4.2. The Imported Theories Schema

XML Tag Name Level Attributes Comments

<gxl> 1 - Root node; defines the namespace

| − <graph> 2 id Each file contains one graph for an entire context

| − − <node> 3 id One for each imported theory or context

| − − − <attr> 4 name=“Label” Identify this node using a string

| − − − − <string> 5 - context@theory for theories; or just context

| − − − <attr> 4 name=“Bounds” The coordinates of this node

| − − − − <tup> 5 - Group the attributes for left, right, width and height

| − − − − − <int> 6 -

| − − − <attr> 4 name=“ExtraLabels” optional; (node is a context) list the theories in this
context that are imported.

| − − − − <tup> 5 -

| − − − − − <string> 6 -

| − − − − − − <from> 7 -

| − − − − − − <to> 7 -

This schema is basically the directed acyclic graph (DAG) layout encoded using the

GXL standard [GXL]. Each graph represents an entire context and describes the

relationships between the theories in the context. Relationships to theories in another

context are grouped under one node labeled by the target context and listed using the

ExtraLabels attribute. We limit our DAG layout to individual contexts because the graph

showing the relationships between all theories in the VAMP is simply too large and has

too many connections to be useful to a user.

Each XML file is generated from a graph created using the JGraph Java libraries.

JGraph is designed as a “Swing compliant implementation of a graph component”

 39

[Al03]. In other words, it combines the architecture found in the standard Java Swing

user interface library with concepts from graph theory such as vertices, edges and

algorithms for layout and traversal. We use a layout algorithm that is optimized for

hierarchical graphs.

Generating and encoding the graphs in the data extraction phase saves us from doing

this at run-time in the visualization phase. This optimization simplifies the corresponding

visualization components and makes the interface more responsive.

4.2.3. The Theory Components Schema

This schema provides details about all the elements in a PVS theory including the

code used to specify these elements and the class they belong to. It supports the Local

view in Figure 3.6 by listing the theories imported by this theory, the theories that used

this theory and the components in the theory. It also supports the Content view by

providing a syntax-colored representation of each element’s specification.

The syntax coloring feature is initiated by several XML tags which markup each

token in the content. The actual formatting details and colors can be provided using a

stylesheet in the visualization phase. This gives designers in the visualization phase more

flexibility to choose and change the syntax coloring format.

 40

Table 4.3. The Theory Components Schema

XML Tag Name Level Attributes Comments

<theory> 1 - Root node;

| − <header> 2 - Specify some basic properties of the theory.

| − − <context> 3 - Its context

| − − <filename> 3 - The PVS specification file

| − − <theoryformals> 3 -

| − − − <theoryformal> 4 id

| − − − − <string> 5 -

| − − − − <importing> 5 -

optional; The theory’s parameters.

| − <imports> 2 -

| − − <importing> 3 id

| − − − <string> 4 -

| − − − <context> 4 -

| − − − <theoryname> 4 -

optional; List all the theories imported by this

theory. Each imported theory is contained in an

<importing> object and expressed using its context

as well as its theory name.

| − <usedbylist> 2 -

| − − <usedby> 3 id

| − − − <context> 4 -

| − − − <theoryname> 4 -

optional; List all the theories that use this theory.

Each usedby theory is contained in a <usedby>

object and expressed using its context as well as its

theory name.

| − <components> 2 id, label

| − − <component> 3 id

| − − − <string> 4 -

| − − − <type> 4 -

| − − − <content> 4 -

List all the theory elements, grouped by the section

they occur in (the Exporting Part, Assuming part or

Theory Body). <string> specifies a label for each

element, while <type> is used to classify the element

(as Library, Constant, Lemma etc.). <content> is

marked up with the following syntax tags:

| − − − − <comment> 5 - Every thing following a ‘%’ token

| − − − − <group> 5 - ‘(’ , ‘)’, ‘[’, ‘(#’ and other parentheses

| − − − − <oper> 5 - +, −, /, & and other operators

| − − − − <keyword1> 5 - Keywords for major groups like Library, Theory etc.

| − − − − <keyword2> 5 - Other keywords: BEGIN, TRUE, ALL etc.

| − − − − <idtoken> 5 - Corresponds to the Id token in the PVS grammar

| − − − − <number> 5 - Corresponds to the Number token in the grammar

 41

4.2.4. The Schematic View Schema

This schema is intended to support the schematic view. To do this, each component

must be broken into its constituent parts, arranged in a graph and encoded using a GXL

format similar to that of Table 4.2. The visualization phase can then replace the nodes in

this graph with icons that make it look more like a schematic. This includes icons for

AND gates, flip-flops and multiplexers.

4.2.5. PVS Proofs Scripts

A PVS proof file is associated with every specification file. It contains proof scripts

for each formula in the theory that has been proved. The scripts are written using a Lisp

format. It is quite simple to create a grammar to parse proof scripts – one is shown in

Appendix B. This can be used to extract the commands used in proofs and structure them

for display in a graphical format. But we do not use this at this point in the development

of the VAMP explorer, choosing instead to focus on the presentation of the theories.

4.2.6. The Directory Structure

Figure 4.3 shows the final directory structure used to order the XML file created in

this phase. When multiple files are needed to support a view, the files are arranged in

folders and files whose names mirror the context and theory names respectively in PVS.

This allows us to address an xml file based on the context or theory it is supposed to

represent. In the visualization phase, we will assume this addressing scheme when

creating hyperlinks between different components and theories.

 42

Figure 4.3. Planning the Directory Structure for the XML Files

4.3. Java Implementation of Data Extraction Algorithms

The data extraction effort is performed by a suite of Java classes build around the

framework of the GOLD parser engine. This suite elegantly prepares all the XML files

needed to support the visualization phase using the existing PVS files without modifying

them. It is designed to be general and applicable to other projects involving PVS files

arranged in contexts.

4.3.1. Class Diagram

Figure 4.4 shows a high level class diagram outlining the relationships between the

data extraction classes. The start point for the system is DataExtraction which coordinates

XML

ContextTheories.xml importing theory

add.xml … wb_control.xml

folder

folder folder file

file file

add … wb_control
folder folder

add_comb.xml … swap.xml

file file

…

 43

the data extraction process. The workhorse classes are ContextTheories, ImportingParser

and ProcessTheories which prepare different schemas. They depend on a number of

interfaces and factory classes displayed at the top of the diagram. Other dependencies

include the Gold Engine package which contains classes that use the LALR table created

by the GOLD parser to parse PVS specification files.

Figure 4.4. Class Diagram for Data Extraction Phase

 44

4.3.2. The Data Extraction Algorithm

Given the classes defined above, we carry out the data extraction using a few simple

steps:

1. Specify the root directory of the PVS project (in this case the VAMP files).

2. Run ContextTheories to create a list of all theories in this context.

3. Run ImportingParser to extract the importing relationships in each context

and lay them out in a graph. This step simultaneously creates a mapping from

each theory to every theory that uses it.

4. Run ProcessTheories to prepare a list of all components in each theory. Each

theory also captures a list of the theories that use it from the mapping in step 3

and a list of the theories it imports.

In the next chapter, we describe how this data is used to visualize the VAMP.

 45

Chapter 5

5. THE VAMP EXPLORER USER INTERFACE

5.1. Planning the Interface

As we set out to create a user interface for the VAMP theories, we must keep the

needs of the user in focus. Our implementation is intended as a prototype to provide a

framework for visualizing PVS theories and may be limited by time and development

constraints. But it should still facilitate communication between theory writers and

readers by exposing the big picture and providing access to related components, theories

and other resources.

5.1.1. Why Flash?

Our interface is developed using Macromedia Flash MX 2004 Professional edition.

Flash was introduced to provide animations and dynamic content over the World Wide

Web. It has evolved to be one of the most effective ways to deliver applications and

interfaces over the web. Our reasons for choosing Flash include:

• It is effective as a rapid prototyping and development environment when

experimenting with visual interfaces.

• It is readily available over the web, with over 90% of web users equipped to run

Flash applications [Mac05].

 46

• It delivers a consistent and lightweight experience across diverse platforms and

browsers.

• The Flash IDE comes with customizable modern user interface (UI)

components such as menus, trees, scroll panes and combo-boxes. It is also

supported by a vibrant community of professionals and enthusiasts who

regularly increase the variety of components available to interface designers.

(Here, the word ‘components’ refers to widgets used to build the user interface.

This should not be confused with our earlier use of the word to describe the

parts of the theory.)

• It provides strong support for XML, web services and other standards.

• The latest versions of Flash provide an object-oriented language called

Actionscript 2.0 that is similar to Java and that helps make Flash applications

more modular, structured and extendible.

The main disadvantage is that the Flash IDE is not freely available to developers that

may want to modify our implementation, but it is relatively inexpensive for educational

users. In addition, researchers that which to use the framework on projects other than the

VAMP do not need to modify any of the Flash files since the displayed content is

dynamically loaded from data files.

5.1.2. Design Paradigm

We aim to produce a modular and loosely coupled implementation. This paradigm

leads us to design our system as a collection of independent Flash applications (called

movies) representing each of the different views and connected through a main class.

 47

Figure 5.1 shows a class diagram showing the relationships between Actionscript classes

and associated movies.

Flash provides and listener/broadcaster model as the preferred means of

communication between components and movies. We build upon this functionality by

using events broadcast each time certain actions occur in one movie to notify other

relevant movies of these actions.

Figure 5.1. Class Diagram for Flash Actionscript Classes

 48

5.2. Providing Global Access to all Theories

The GlobalView class is not associated with any independent movies. It manipulates

components defined in the main VAMPExplorer application. It gives a user quick access

to any theory in the system using a menu system. Menus promote recognition over recall

– i.e. the user does not have to remember the name of the theory. However, given the

large number of theories to be considered, we need to consider what the most effective

menu-based approach is.

5.2.1. Visualizing Long Lists with Menus

Reference [Be00] describes a number of menu-based approaches and proposes a

Fish-eye menu as an effective way to navigate large amounts of information. Figure 5.2

illustrates the different menus. The Arrowbar and ScrollBar based menus allow a user to

explore the information by scrolling up and down but are not very effective for user’s that

know what they are looking for and want instant access to it. The Hierarchy menu breaks

up the content into categories by first name and lists the elements in each category. Like a

dictionary, it is quite effective for someone wanting quick access to a theory but is quite

clumsy for exploring.

The Fish-eye menu combines the strengths of the above menus by making content

close to the mouse pointer large and gradually reducing the size of menu items as they

move away from the pointer. Users can explore the list by moving the mouse slowly over

the menu, or they can quickly access a particular item by moving the mouse into the

vicinity of the item and then freezing the fish-eye lens (by moving over the right portion

 49

of the menu) and accessing the desired item. A demo of the fish-eye menu is available at

[Be00].

Figure 5.2. Menus for Visualizing Long Lists

Source: http://www.cs.umd.edu/hcil/fisheyemenu/

 50

5.3. Creating a Directed Acyclic Graph View

The directed acyclic graph (DAG) view is the most intuitive for the casual user. It

uses nodes to represent each of the theories and edges to indicate when one theory

imports another. The nodes are arranged in layers such that the node at the lower part of

an edge (the child) is always imported by the node at the upper part of that edge (the

parent).

5.3.1. DAG view Challenges

Two problems arise with this view of the theories. One is that a large number of

nodes will not easily fit in the viewing area of the user’s screen. We alleviated this

problem somewhat in the data extraction phase by limiting the graph to a single context,

but that still produces a large number of nodes for some contexts. So in the DAG view,

we provide a thumbnail window that allows the user to see the big picture and navigate

over all the nodes. We also provide a zooming utility that allows the user to increase or

decrease the range of visibility of the nodes. Finally, we place the entire view in a

scrolling window component that allows users to navigate to the hidden portions of the

graph.

Another problem with the DAG view that is quite pronounced in many of the VAMP

contexts is the large number of interconnections that may occur between the nodes. When

this happens it can be quite difficult to determine which nodes are related. We can

alleviate this problem by making the entire interface semitransparent so that all edges are

visible and then highlighting all the edges that are connected to the selected node.

 51

To further reduce the number of nodes in each graph, we group all the theories that

are imported from a different context into one node labeled by the context name. The user

can activate a pop-up menu in these context nodes to see details about which theories in

this context are imported. Selecting the context node causes a new DAG graph for that

context to be loaded. In this way a user can navigate through the VAMP.

Figure 5.3 illustrates some of the features in the DAG view.

Figure 5.3. The Directed Acyclic Graph View

5.3.2. DAG view Actions

The DAGView class manages its own connections to the XML files that layout the

graphs. Each time a context node is clicked, the XML data connector connects over the

web to the XML file representing that context and loads it. When it has finished loading,

it broadcasts an event which is received by the class and used to redraw the graph.

Whenever any node is selected DAGView broadcasts a ‘clicked’ event which can be

received by the main VAMPExplorer class and used to drive activities in the other views.

For example, the content view can load the code contained in the theory that was clicked.

 52

5.4. Creating a Local View

The local view presents the VAMP from the perspective of a single theory. It shows

all the subcomponents in this theory as well as its immediate child (importing) and parent

(used by) relationships. A user can navigate through this section of the VAMP hierarchy

by selecting the related theories. This results in a more narrow focus in the hierarchy and

is most useful when a user wants to focus on a small subset of the tree.

5.4.1. Choosing Local View Components

Figure 5.4. The Local View for the tom_correct5 Theory

Figure 5.4 shows a screen shot of the local view for the theory tom_correct5. Simple

list components are used to represent the ‘used by’ and ‘importing’ fields because these

are just one dimensional fields and do not contain a large number of values. Each theory

is presented using the full url: context@theory. This way, no additional information about

the location of the corresponding theory is needed.

 53

The ‘components’ field is more complex because each theory element is classified

based on its type and which part of the theory it occurs in. To bring out this hierarchy, we

use the Flash Tree UI Component. This component will be familiar to many users as the

interface used to access the file-system on most GUI based operating systems. Users can

show or hide subsets of the hierarchy as they seek instant access to a desired element. As

the tree grows, the component transforms into a list-like component with scrollbars to

provide access to hidden parts of the tree.

5.3.2. Local view Actions

The Local view broadcasts two kinds of events to the other views. When a theory is

selected in the either the ‘usedby’ or ‘importing’ list box, a ‘clicked’ event is broadcast

which causes most of the other views to update themselves since a new theory is

launched. This can be seen as a global event. On the other hand, any action on the tree

will result in a more local ‘treeChange’ event which only updates the content view. Both

of these events are handled by the main VAMPExplorer class which is then responsible

for initiating changes in the appropriate views.

The XML files that provide content for the local view are also used by the content

view. For this reason, we pass the responsibility for connecting to the XML files to a

“neutral” class: PVSTheoryProvider. An instance of this class is contained in the main

VAMPExplorer class and fed to both the local and content view to provide the necessary

content.

 54

5.5. Creating a Schematic View

The purpose of the schematic view is to provide more detail about each of the theory

elements by presenting them in a schematic. This is particularly applicable to the VAMP

project since many of the elements represent hardware circuits and gates.

Interestingly, the implementation for this view is very similar to the DAG view. Most

of the effort is shifted to the data extraction phase which must identify the parts of each

component and ‘graph’ them into a layout that represents a schematic. The visualization

phase, like the DAG view, simply publishes this layout and provides actions each time a

node is selected. The only difference is that in the schematic view, each node should be

represented by an icon that reflects a traditional understanding of the type of circuit

contained in that node. This includes icons representing AND-gates, multiplexers and

other circuits. Figure 5.5 lists some of these icons and the circuits they represent.

Figure 5.5. Representing Components in the Schematic View

AND - gate

OR - gate

select

MUX (IF-THEN-ELSE)

 55

5.6. Creating a Content view

The content view is in many ways the center of attention for most users because it

contains the specification they will use to understand the theory. The content view

provides features that facilitate the user’s efforts to do this.

5.6.1. The Split Screen

Figure 5.7 shows a screenshot of the content view in split screen mode. This mode

allows users to perform side-by-side comparison of different parts of a theory or different

theories altogether. Users can freely switch between this mode and the single screen

mode shown in Figure 5.6.

To facilitate this feature, we introduce the concept of an ‘active pane’. The active

pane is simply the screen that is currently selected. This is shown visually by using bolder

colors to identify the pane. Internally, a variable keeps track of which pane is active.

When an event in one of the other views triggers a change in the content view, that

change always takes place in the active pane. Additionally, when a user switches into

single screen mode, the contents of the active pane are preserved and displayed. (The

contents of the inactive pane are also preserved but are hidden.) Finally, the control panel

is updated each time the user selects a new pane to reflect the theory in that pane.

 56

Figure 5.6. The Content View: Single Screen Mode

Figure 5.7. The Content View: Split Screen Mode

One important implication of the split screen view is that it is possible for the inactive

pane to contain content from an ‘old’ theory, that is, a different theory from the one

loaded into the main VAMPExplorer class and all the other views. Therefore, facilities

have to be built into the content view to support local changes it may want to make

 57

through its control panel. For example, if the inactive pane is activated and a new

component is selected from the control panel, its code must be derived from the old

theory, not the one currently loaded into VAMPExplorer.

5.6.2. The Control Panel

The control panel provides some autonomy to the content view to allow the user to

explore a particular theory. It features a Flash drop-down combo box UI component from

which the user chooses an element to view. The list can be filtered to contain only

elements of the same type as the currently displayed element using the provided radio

boxes.

5.6.3. The History Buttons

The concept of a history will be familiar to most web users because this is a standard

feature on all browsers. Keeping track of the history of ‘places’ the user has visited is

complicated by the presence of two panes. Each pane keeps track of its own history and

the history buttons always refer to the active pane.

The content view acts as a slave to the other views. Actions in these views can lead to

changes in the content displayed but the content view cannot change the global state of

the system or launch new theories in any of the other views. We create this arrangement

so that users can freely move back and forth in the history without needing to launch

previously viewed theories. Again we have the problem described in section 5.6.1 of old

theories appearing in the content pane.

 58

5.6.4. Other Content View Features

Even though the content view cannot effect changes in the other views, it does

broadcast events in response to actions on the combo box, the radio boxes and the history

and pane control buttons. These events are handled locally (though occasionally the

history feature may initiate a request to the PVSTheoryProvider to reload a copy of an

old theory).

The content view uses stylesheets to perform syntax coloring on the code according

to the divisions first introduced in the data extraction phase (Table 4.3). Figure 5.8 gives

an example of a stylesheet that assigns formatting properties to each of the markup tags

that can appear in the content field. The stylesheets are attached to the Flash TextArea UI

component that takes up most of the content view and displays the PVS specification.

content { color : purple; }
comment { color : green; }
group { color : brown; }
oper { color : red; }
keyword1 { color : blue; }
keyword2 { color : green; }
idtoken { color : black; }
number { color : black; font-weight:bold; }
string { color : orange; }

Figure 5.8. A Stylesheet to Facilitate Syntax-Coloring

5.7. Bringing It All Together

Some of the roles of the VAMPExplorer class have already been mentioned in

previous sections. This class is associated with a movie that loads the other independent

movies and it responds to events these movies generate. It ensures all the views are

 59

updated to contain the global current theory (including the active pane in the content

view). It also synchronizes changes within the views so that they do not conflict. For

example, it is problematic to have multiple connections to XML files from different

movies loaded into the main movie. So VAMPExplorer must ensure these connections

occur sequentially. It does this by listening for events broadcast each time a data source is

completely loaded.

Figure 5.9 gives an overview of the VAMPExplorer bringing together all the movies.

Since the content view is likely to be constantly relevant to the user, it is always visible in

the lower half of the window. The other views are displayed in the upper half of the

window when the respective tabs are selected. The colors used in all the views are

consistent so that the entire interface appears to the user as one continuous entity.

 60

Figure 5.9. Overview of the VAMP Explorer

 61

Chapter 6

6. DEPLOYING THE VAMP EXPLORER

6.1. Full System Deployment

The VAMP Explorer was designed to be general so it can be applied to other PVS

projects. It makes some assumptions about the target project but does not rely on VAMP

specific constructs. The data extraction phase assumes the target project is arranged in

directories representing contexts and containing PVS specification files. The system

allows multiple theories in a specification file.

The data extraction modules are implemented in a platform independent way using

Java. All the user needs to do is supply a root directory where the PVS files are and a

target directory where the XML files will be stored.

6.1.1. Web Deployment

Once the XML directory has been generated, it should be placed in the folder that

contains all the other web specific files. The include SWF (Shockwave Format) files

generated by Flash, HTML files, Cascading Style Sheet files and configuration files. The

installer does not need to recreate the SWF files, nor does he or she need access to the

Flash IDE. This is because the content displayed in the movies is dynamically loaded

from the XML files. Figure 6.1 shows the final directory structure for this web folder.

 62

The entire folder can be transferred to a web server to make the project accessible over

the web.

Figure 6.1. Directory Structure for the Web Folder

web

style xml

textarea.css

folder

folder folder

file

Figure 4.3

index.html

file

VampExplorer.swf

fil
e

DAGView.swf

file

LocalView.swf

file
ContentView.swf

file

Start Page

 63

Chapter 7

7. CONCLUSION AND FUTURE DIRECTIONS

VAMP Explorer is a resource for researchers looking for ways to visualize or

communicate about theories created using PVS. This project has demonstrated some

visualization approaches and provided a framework for applying them to a wide variety

of projects. It has also revealed some potential areas of growth for the system.

One important aspect that was not explored is a documentation system. The VAMP

theories do not contain comments structured according to any particular set of rules. The

in-code commenting style exemplified by Javadoc [Sun05] is the most likely candidate

for a documentation system which can be integrated into the VAMP Explorer interface.

This project also does not explore different methods for visualizing proof trees. The

PVS system already visualizes proofs using a tree diagram to display the hierarchy of

commands with some arranged sequentially and others on the same level.

The user’s access to theories could be improved by making it possible to run queries

on the system. The queries can be simple searches for theories by name or more

complicated queries over the XML files that form the basis for the visualization. In

addition, we could provide hyperlinks within the theory code that link relevant keywords

to their corresponding theories.

 64

To make the VAMP Explorer prototype a more widely used ‘PVS Explorer’, it will

need to be refined and tested with other projects. This action may expose more details

and nuances that do not occur in the VAMP but that may apply in other projects and

scenarios.

 65

APPENDIX A. Modified BNF Form of the PVS Specification Language

! ---------------------------------------
! -- M o d i f i c a t i o n of pvs.bnf
! ---------------------------------------
! Express pvs.bnf in BNF form (not extended)
! ---------------------------------------

! -
! First some GOLD Parser settings
! -

"Name" = 'PVS'
"Author" = 'Nathaniel Ayewah'
"Version" = 'PVS 2.3'
"About" = 'The PVS 2.3 Grammer in BNF form for use with the Gold Parser'

"Start Symbol" = <Specification>
Comment Line = '%'

! -

<Specification> ::= <Theory> | <Datatype>
 | <Theory> <Specification>
 | <Datatype> <Specification>

! SHIFT-REDUCE Correction !
<Theory> ::= <IdOp> <TheoryFormals> ':' 'THEORY' <TheoryOption2> 'BEGIN' <TheoryOption3>
<TheoryOption4> 'END' Id
 | <IdOp> ':' 'THEORY' <TheoryOption2> 'BEGIN' <TheoryOption3> <TheoryOption4> 'END' Id
<TheoryOption2> ::= <Exporting> |
<TheoryOption3> ::= <AssumingPart> |
<TheoryOption4> ::= <TheoryPart> |

<TheoryFormals> ::= '[' <TheoryFormalList> ']'
<TheoryFormalList> ::= <TheoryFormal> ',' <TheoryFormalList> | <TheoryFormal>

<TheoryFormal> ::= '(' <Importing> ')' <TheoryFormalDecl> | <TheoryFormalDecl>

<TheoryFormalDecl> ::= <TheoryFormalType> | <TheoryFormalConst>

! CORRECTION !
<TheoryFormalType> ::= <IdOps> ':' <TypeDeclGroup2> 'FROM' <TypeExpr>
 | <IdOps> ':' <TypeDeclGroup2>

 66

<TheoryFormalConst> ::= <IdOps> ':' <TypeExpr>

<Exporting> ::= 'EXPORTING' <ExportingNames> 'WITH' <ExportingTheories>
 | 'EXPORTING' <ExportingNames>

<ExportingNames> ::= 'ALL' 'BUT' <ExportingNameList>
 | 'ALL'
 | <ExportingNameList>
<ExportingNameList> ::= <ExportingName> ',' <ExportingNameList> | <ExportingName>

<ExportingName> ::= <IdOp> <ExportingNameOptions>
<ExportingNameOptions> ::= ':' <TypeExpr> | ':' 'TYPE'
 | ':' 'FORMULA' |

<ExportingTheories> ::= 'ALL' | 'CLOSURE' | <TheoryNames>

<Importing> ::= 'IMPORTING' <TheoryNames>

<AssumingPart> ::= 'ASSUMING' <AssumingElementList> 'ENDASSUMING'
<AssumingElementList> ::= <AssumingElement> <Semicolon> <AssumingElementList>
 | <AssumingElement> <Semicolon>

<AssumingElement> ::= <Importing>
 | <Assumption>
 | <TheoryDecl>

<TheoryPart> ::= <TheoryElementList>
<TheoryElementList> ::= <TheoryElement> <Semicolon> <TheoryElementList>
 | <TheoryElement> <Semicolon>
<Semicolon> ::= ';' |

<TheoryElement> ::= <Importing> | <TheoryDecl>

<TheoryDecl> ::= <LibDecl>
 | <TheoryAbbrDecl>
 | <TypeDecl>
 | <VarDecl>
 | <ConstDecl>
 | <RecursiveDecl>
 | <InductiveDecl>
 | <FormulaDecl>
 | <Judgement>
 | <Conversion>
 | <InlineDatatype>

! CORRECTED !
<LibDecl> ::= <IdOps> ':' 'LIBRARY' '=' String
 | <IdOps> ':' 'LIBRARY' String

! CORRECTED !
<TheoryAbbrDecl> ::= <IdOps> ':' 'THEORY' '=' <TheoryName>

! CORRECTED !

 67

<TypeDecl> ::= <IdOps> ':' 'TYPE' <TypeDeclGroup3>
 | <IdOps> ':' 'NONEMPTY_TYPE' <TypeDeclGroup3>
 | <IdOps> ':' 'TYPE+' <TypeDeclGroup3>
 | <IdOp> <Bindings> ':' 'TYPE' <TypeDeclGroup3>
 | <IdOp> <Bindings> ':' 'NONEMPTY_TYPE' <TypeDeclGroup3>
 | <IdOp> <Bindings> ':' 'TYPE+' <TypeDeclGroup3>
 | <IdOp> ':' 'TYPE' <TypeDeclGroup3>
 | <IdOp> ':' 'NONEMPTY_TYPE' <TypeDeclGroup3>
 | <IdOp> ':' 'TYPE+' <TypeDeclGroup3>
<TypeDeclGroup2> ::= 'TYPE' | 'NONEMPTY_TYPE' | 'TYPE+'
<TypeDeclGroup3> ::= <TypeDeclGroup4> <TypeExpr> 'CONTAINING' <Expr>
 | <TypeDeclGroup4> <TypeExpr>
 |
<TypeDeclGroup4> ::= '='|'FROM'

<VarDecl> ::= <IdOps> ':' 'VAR' <TypeExpr>

<ConstDecl> ::= <IdOps> ':' <TypeExpr> '=' <Expr>
 | <IdOp> <Bindings> ':' <TypeExpr> '=' <Expr>
 | <IdOp> <BindingsPlus> ':' <TypeExpr> '=' <Expr>
 | <IdOp> ':' <TypeExpr> '=' <Expr>
 | <IdOps> ':' <TypeExpr>
 | <IdOp> <Bindings> ':' <TypeExpr>
 | <IdOp> <BindingsPlus> ':' <TypeExpr>
 | <IdOp> ':' <TypeExpr>

<RecursiveDecl> ::= <IdOps> ':' <RecursiveDeclEnd> <MeasureDeclEnd>
 | <IdOp> <Bindings> ':' <RecursiveDeclEnd> <MeasureDeclEnd>
 | <IdOp> <BindingsPlus> ':' <RecursiveDeclEnd> <MeasureDeclEnd>
 | <IdOp> ':' <RecursiveDeclEnd> <MeasureDeclEnd>
<RecursiveDeclEnd> ::= 'RECURSIVE' <TypeExpr> '=' <Expr>
<MeasureDeclEnd> ::= 'MEASURE' <Expr> 'BY' <Expr> | 'MEASURE' <Expr>

<InductiveDecl> ::= <IdOps> ':' <InductiveDeclEnd>
 | <IdOp> <Bindings> ':' <InductiveDeclEnd>
 | <IdOp> <BindingsPlus> ':' <InductiveDeclEnd>
 | <IdOp> ':' <InductiveDeclEnd>
<InductiveDeclEnd> ::= 'INDUCTIVE' <TypeExpr> '=' <Expr>

<BindingsPlus> ::= <Bindings> <BindingsPlus> | <Bindings>

! CORRECTED !
<Assumption> ::= <IdOps> ':' 'ASSUMPTION' <Expr>

! CORRECTED !
<FormulaDecl> ::= <IdOps> ':' <FormulaName> <Expr>

<Judgement> ::= <SubtypeJudgement> | <ConstantJudgement>

! CORRECTION ! Make Judgements less restrictive by using IdOps instead of IdOp
<SubtypeJudgement> ::= <IdOps> ':' 'JUDGEMENT' <TypeExprList> 'SUBTYPE_OF' <TypeExpr>
 | 'JUDGEMENT' <TypeExprList> 'SUBTYPE_OF' <TypeExpr>
<TypeExprList> ::= <TypeExpr> ',' <TypeExprList> | <TypeExpr>

 68

<ConstantJudgement> ::= <IdOps> ':' 'JUDGEMENT' <ConstantReferenceList> 'HAS_TYPE'
<TypeExpr>
 | 'JUDGEMENT' <ConstantReferenceList> 'HAS_TYPE' <TypeExpr>
<ConstantReferenceList> ::= <ConstantReference> ',' <ConstantReferenceList> | <ConstantReference>

<ConstantReference> ::= Number | <Name> <BindingsAsterisk>

<Conversion> ::= 'CONVERSION' <ConversionGroupList>
<ConversionGroupList> ::= <ConversionGroup> ',' <ConversionGroupList> | <ConversionGroup>
<ConversionGroup> ::= <Name> ':' <TypeExpr>
 | <Name>

<Datatype> ::= <InlineDatatype>
 | <IdOp> <TheoryFormals> <DatatypeHead> <DatatypeBody>

<DatatypeHead> ::= ':' 'DATATYPE' <DatatypeOption1>
<DatatypeBody> ::= 'BEGIN' <DatatypeOption2> <DatatypeOption3> <DatatypePart> 'END' Id
<DatatypeOption1> ::= 'WITH' 'SUBTYPES' <Ids> |
<DatatypeOption2> ::= <Importing> ';' | <Importing> |
<DatatypeOption3> ::= <AssumingPart> |

<InlineDatatype> ::= <IdOp> <DatatypeHead> <DatatypeBody>

<DatatypePart> ::= <DatatypePartGroup> <DatatypePart>
 | <DatatypePartGroup>
<DatatypePartGroup> ::= <Constructor> ':' <IdOp> ':' Id
 | <Constructor> ':' <IdOp>

<Constructor> ::= <IdOp> '(' <ConstructorGroupList> ')'
 | <IdOp>
<ConstructorGroupList> ::= <ConstructorGroup> ',' <ConstructorGroupList>
 | <ConstructorGroup>
<ConstructorGroup> ::= <IdOps> ':' <TypeExpr>

<TypeExpr> ::= <Name>
 | <EnumerationType>
 | <Subtype>
 | <TypeApplication>
 | <FunctionType>
 | <TupleType>
 | <RecordType>

<EnumerationType> ::= '{' <IdOp> '}'
 | '{' <IdOp> ',' <IdOps> '}'

<Subtype> ::= '{' <SetBindings2> '|' <Expr> '}'
 | '(' <Expr> ')'

<SetBindings2> ::= <IdOp> ':' <TypeExpr> ',' <SetBindings2>
 | <IdOp> ':' <TypeExpr> <SetBindings2>
 | <IdOp> ':' <TypeExpr>
 | <IdOp> ',' <SetBindings2>

 69

 | <IdOp> <SetBindings2>
 | <IdOp>
 | <Bindings> ',' <SetBindings2>
 | <Bindings> <SetBindings2>
 | <Bindings>

!<SetBinding> ::= <IdOp> ':' <TypeExpr>
! | <IdOp>
! | <Bindings>

<TypeApplication> ::= <Name> <Arguments>

<FunctionType> ::= <FunctionHeader> '[' <FTTypeGroupList> '->' <TypeExpr> ']'
 | '[' <FTTypeGroupList> '->' <TypeExpr> ']'
<FunctionHeader> ::= 'FUNCTION'|'ARRAY'

<TupleType> ::= '[' <FTTypeGroupList> ']'
<FTTypeGroupList> ::= <FTTypeGroup> ',' <FTTypeGroupList> | <FTTypeGroup>
<FTTypeGroup> ::= <IdOp> ':' <TypeExpr> | <TypeExpr>

<RecordType> ::= '[#' <FieldDeclsList> '#]'
<FieldDeclsList> ::= <FieldDecls> ',' <FieldDeclsList> | <FieldDecls>

<FieldDecls> ::= <Ids> ':' <TypeExpr>

<Expr> ::= Number
 | String
 | <Name>
 | <Expr> <Arguments>
 | <Expr> <Binop> <Expr>
 | '-' <Expr>
 | <Unaryop> <Expr>
 | <Expr> '̀' Id | <Expr> '̀' Number
 | '(' <ExprList> ')'
 | '(:' <ExprListAsterisk> ':)'
 | '[|' <ExprListAsterisk> '|]'
 | '(#' <AssignmentList> '#)'
 | <Expr> '::' <TypeExpr>
 | <IfExpr>
 | <BindingExpr>
 | '{' <SetBindings> '|' <Expr> '}'
 | 'LET' <LetBindingList> 'IN' <Expr>
 | <Expr> 'WHERE' <LetBindingList>
 | <Expr> 'WITH' '[' <AssignmentList> ']'
 | 'CASES' <Expr> 'OF' <SelectionList> 'ELSE' <Expr> 'ENDCASES'
 | 'CASES' <Expr> 'OF' <SelectionList> 'ENDCASES'
 | 'COND' <CondGroupList> 'ENDCOND'
 | <TableExpr>

<ExprList> ::= <Expr> ',' <ExprList> | <Expr>
<ExprListAsterisk> ::= <ExprList> |
<AssignmentList> ::= <Assignment> ',' <AssignmentList> | <Assignment>
<LetBindingList> ::= <LetBinding> ',' <LetBindingList> | <LetBinding>

 70

<SelectionList> ::= <Selection> ',' <SelectionList> | <Selection>
<CondGroupList> ::= <Expr> '->' <Expr> ',' <CondGroupList>
 | <Expr> '->' <Expr>
 | 'ELSE' '->' <Expr>
<IfExpr> ::= 'IF' <Expr> 'THEN' <Expr> <ElsIfExprGroup> 'ELSE' <Expr> 'ENDIF'
<ElsIfExprGroup> ::= 'ELSIF' <Expr> 'THEN' <Expr> <ElsIfExprGroup> |

<BindingExpr> ::= <BindingOp> <LambdaBindings> ':' <Expr>

<BindingOp> ::= 'LAMBDA' | 'FORALL' | 'EXISTS' | <IdOp> '!'

<LambdaBindings> ::= <LambdaBinding> ',' <LambdaBindings>
 | <LambdaBinding> <LambdaBindings>
 | <LambdaBinding>

<LambdaBinding> ::= <IdOp> | <Bindings>

<SetBindings> ::= <SetBinding> ',' <SetBindings>
 | <SetBinding> <SetBindings>
 | <SetBinding>
 | <IdOps>
 | <IdOps> ':' <TypeExpr>

<SetBinding> ::= <IdOp> ':' <TypeExpr>
 | <IdOp>
 | <Bindings>

<Bindings> ::= '(' <BindingList> ')'
<BindingList> ::= <Binding> ',' <BindingList> | <Binding>

<Binding> ::= <TypedId> | '(' <TypedIds> ')'

<Assignment> ::= <AssignArgs> <AssignmentGroup> <Expr>
<AssignmentGroup> ::= ':=' | '|->'

<AssignArgs> ::= Id '!' Number
 | Id
 | Number
 | <AssignArgPlus>
<AssignArgPlus> ::= <AssignArg> <AssignArgPlus>
 | <AssignArg>

<AssignArg> ::= '(' <ExprList> ')'
 | '̀' Id
 | '̀' Number

<Selection> ::= <IdOp> '(' <IdOps> ')' ':' <Expr>
 | <IdOp> ':' <Expr>

<TableExpr> ::= 'TABLE' <TableExprOption1> <TableExprOption2> <TableExprOption3>
<TableEntryPlus> 'ENDTABLE'
<TableExprOption1> ::= <Expr> |
<TableExprOption2> ::= ',' <Expr> |

 71

<TableExprOption3> ::= <ColHeading> |
<TableEntryPlus> ::= <TableEntry> <TableEntryPlus>
 | <TableEntry>

<ColHeading> ::= '|[' <Expr> <ColHeadingGroupPlus> ']|'
<ColHeadingGroupPlus> ::= <ColHeadingGroup> <ColHeadingGroupPlus>
 | <ColHeadingGroup>
<ColHeadingGroup> ::= '|' <Expr> | '|' 'ELSE'

<TableEntry> ::= <TableEntryGroupPlus> '||'
<TableEntryGroupPlus> ::= <TableEntryGroup> <TableEntryGroupPlus>
 | <TableEntryGroup>
<TableEntryGroup> ::= '|' <Expr> | '|' 'ELSE'

<LetBinding> ::= <LetBindingGroup> '=' <Expr>
<LetBindingGroup> ::= <LetBind> | '(' <LetBindList> ')'
<LetBindList> ::= <LetBind> ',' <LetBindList> | <LetBind>

<LetBind> ::= <IdOp> <BindingsAsterisk> ':' <TypeExpr>
 | <IdOp> <BindingsAsterisk>
<BindingsAsterisk> ::= <Bindings> <BindingsAsterisk> |

<Arguments> ::= '(' <ExprList> ')'
 !<ExprList> is already defined

<TypedIds> ::= <IdOps> ':' <TypeExpr> '|' <Expr>
 | <IdOps> ':' <TypeExpr>
 | <IdOps> '|' <Expr>
 | <IdOps>

<TypedId> ::= <IdOp> ':' <TypeExpr> '|' <Expr>
 | <IdOp> ':' <TypeExpr>
 | <IdOp> '|' <Expr>
 | <IdOp>

<TheoryNames> ::= <TheoryName> ',' <TheoryNames> | <TheoryName>

<TheoryName> ::= Id '@' Id <Actuals>
 | Id '@' Id
 | Id <Actuals>
 | Id

! SHIFT-REDUCE Correction !
<Name> ::= <NameHead> <Actuals> '.' <IdOp>
 | <NameHead> <Actuals>
 | <NameHead> '.' <IdOp>
 | <NameHead>
<NameHead> ::= <IdOp> '@' <IdOp> | <IdOp>

<Actuals> ::= '[' <ActualList> ']'
<ActualList> ::= <Actual> ',' <ActualList> | <Actual>

<Actual> ::= <Expr> | <TypeExpr>

 72

 | <Actual> '̀' Id
 | <Actual> '̀' Number
 | <Actual> <Binop> <Expr>
 | <Actual> <Arguments>
 | <Actual> '::' <TypeExpr>
 | <Actual> 'WHERE' <LetBindingList>
 | <Actual> 'WITH' '[' <AssignmentList> ']'

<IdOps> ::= Id ',' <IdOps> | <Opsym> ',' <IdOps> | <Opsym> | Id

<IdOp> ::= Id | <Opsym>

<Opsym> ::= <BinOp> | <UnaryOp> | <OpsymOthers>
<OpsymOthers> ::= 'IF' | 'TRUE' | 'FALSE' | '[||]'

<BinOp> ::= 'o' | 'IFF' | '<=>' | 'IMPLIES' | '=>' | 'WHEN' | 'OR'
 | '\/' | 'AND' | '/\' | '&' | 'XOR' | 'ANDTHEN' | 'ORELSE'
 | '̂' | '+' | '-' | '*' | '/' | '++' | '~' | '**' | '//' | '̂̂ '
 | '|-' | '|=' | '<|' | '|>' | '=' | '/=' | '==' | '<' | '<='
 | '>' | '>=' | '<<' | '>>' | '<<=' | '>>=' | '#' | '@@' | '##'

<UnaryOp> ::= 'NOT' | '~' | '[]' | '<>' | '-'

<FormulaName> ::= 'AXIOM' | 'CHALLENGE' | 'CLAIM' | 'CONJECTURE' | 'COROLLARY'
 | 'FACT' | 'FORMULA' | 'LAW' | 'LEMMA' | 'OBLIGATION'
 | 'POSTULATE' | 'PROPOSITION' | 'SUBLEMMA' | 'THEOREM'

<Ids> ::= Id ',' <Ids> | Id
Id = {Letter}{IdChar}*

Number = {Number}+

{String Chars} = {Printable} - ["]
String = '"' {String Chars}* '"'

{IdChar} = {AlphaNumeric} + [_] + [?]

 73

APPENDIX B. PVS Proof Scripts in BNF

"Name" = 'Enter the name of the grammar'
"Author" = 'Enter your name'
"Version" = 'The version of the grammar and/or language'
"About" = 'A short description of the grammar'

"Start Symbol" = <Program>

! --- Sets

{ID Body} = {Printable} - [()"|] - {Whitespace}
{String Chars} = {Printable} - ["\]

! --- Terminals

Identifier = {ID Body}+
StringLiteral = '"' ({String Chars} | '\' {Printable})* '"'

! --- Rules

<Program> ::= <TheoryProofList>

<TheoryProofList> ::= <TheoryProofs> <TheoryProofList>
 |

<TheoryProofs> ::= '(' '|' Identifier '|' <ProofList> ')'

<ProofList> ::= <Proof> <ProofList>
 |

<Proof> ::= '(' '|' Identifier '|' <ProofBody> ')'

<ProofBody> ::= StringLiteral <SingleCommand> <ManyCommands> 'NIL'

<SingleCommand> ::= '(' Identifier <SubExpr> ')'
 | 'NIL'

<ManyCommands> ::= '(' <CommandContainers> ')'

 74

 | 'NIL'

<CommandContainers> ::= <CommandContainer> <CommandContainers>
 | <CommandContainer>

<CommandContainer> ::= '(' <ProofBody> ')'

<SubExpr> ::= <Id> <SubExpr>
 | <ParenExpr> <SubExpr>
 |

<ParenExpr> ::= '(' <SubExpr>')'

<Id> ::= Identifier
 | StringLiteral

 75

APPENDIX C. Accessing the VAMP Explorer

The VAMP Explorer can be accessed online at:

http://www.natidea.com/projects/VAMPExplorer

This link provides access to some of the preliminary prototypes as well as the latest

functional version of the interface.

 76

REFERENCES

[Al03] G. Alder. Design and Implementation of the JGraph Swing Component. 2003.
http://www.jgraph.com, (Accessed July 2005).

[BB+02] C. Berg et. al. Formal Verification of the VAMP Microprocessor: Project
Status. Saarland University, February 2002.

[Be00] B.B. Bederson. Fisheye Menus. In Proceedings of ACM Conference on User
Interface Software and Technology (UIST 2000), pp. 217-226, November
2000. Demo at http://www.cs.umd.edu/hcil/fisheyemenu/, (Accessed July
2005).

[Be04] S. Beyer. Putting It All Together – Formal Verification of the VAMP. Ph.D.
thesis, Saarland University, Saarbrücken, Germany, 2004.

[Ber01] Christoph Berg. Formal Verification of an IEEE floating point adder.
Master’s thesis, Saarland University, Saarbrücken, Germany, 2001.

[BJ01] Christoph Berg and Christian Jacobi. Formal Verification of the VAMP
Floating Point Unit. In CHARME 2001, volume 2144 of LNCS, pp 325-339.
Springer, 2001.

[BJK01] Christoph Berg, Christian Jacobi, and Daniel Kröning. Formal Verification of
a Basic Circuits Library. Proc. 9th IASTED International Conference on
Applied Informatics, Innsbruck (AI’2001), pp 252-255. ACTA Press, 2001.

[BKM96] Bishop Brock, Matt Kaufmann and J Moore. ACL2 Theorems about
Commercial Microprocessors. In M. Srivas and A. Camilleri (eds.)
Proceedings of Formal Methods in Computer-Aided Design (FMCAD'96),
Springer-Verlag, pp. 275-293, 1996.

[Bra05] TheBrain Technologies Corporation, http://www.thebrain.com/, (Accessed
July 2005).

[BSW02] B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and Quantum
Treemaps: Making Effective Use of 2D Space to Display Hierarchies. ACM
Transactions on Graphics (TOG), 21, (4), October 2002, 833-854.

 77

[Co04] Devin Cook. Design and Developement of a Grammar Oriented Parsing
System. Master’s thesis, Calfornia State University, Sacramento, CA, 2004.
http://www.devincook.com/goldparser, (Accessed July 2005).

[CW+00] A. Crapo, L. Waisel, W. Wallace and T. Willemain. Visualization and the
process of modeling: a cognitive-theoretic view. Proc. of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 218 – 226, Boston, MA, 2000.

[Fo01] A.C.J. Fox. An Algebraic Framework for Modeling and Verifying
Microprocessors Using HOL. Technical report No. 512, University of
Cambridge Computer Laboratory, March 2001.

[GCE99] Nahum Gershon, Stuart Card, Stephen G. Eick. Information visualization
tutorial. CHI '99 extended abstracts on Human factors in computing systems,
pp. 149 – 150, May 15-20, 1999, Pittsburgh, Pennsylvania.

[Gvz05] Graphviz – Graph Visualization Software. AT&T. http://www.graphviz.org/,
(Accessed July 2005).

[GXL] Ric Holt , Andy Schürr, Susan E. Sim, and Andreas Winter. GXL – Graph
eXchange Language. http://www.gupro.de/GXL, (Accessed July 2005).

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[Ja02] Jacobi, C., Formal Verification of a Fully IEEE Compliant Floating Point
Unit, PhD Thesis, University of the Saarland, 2002.

[JS04] J. Jelinek and P. Slavik. XML visualization using tree rewriting. In
Proceedings of the 20th spring conference on Computer graphics, Pg 65 - 72,
Budmerice, Slovakia, 2004

[KG99] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware
design: a survey. ACM Transactions on Design Automation of Electronic
Systems (TODAES), v.4 n.2, p.123-193, April 1999

[Kin03] J. Kiniry. Formalizing the User’s Context to Support User Interfaces for
Integrated Mathematical Environments. Electronic Notes in Theoretical
Computer Science, Volume 103, 3 Nov. 2004, Pages 81-103.

[Kr99] Thomas Kropf. Introduction to Formal Hardware Verification. Springer-
Verlag, Berlin, Germany, 1999.

 78

[Krö01] D. Kröning. Formal Verification of Pipelined Microprocessors. Ph.D. thesis,
Saarland University, Saarbrücken, Germany, 2001.

[Mac05] Macromedia – Flash MX 2004. http://www.macromedia.com/software/flash,
(Accessed July 2005).

[MP00] S. M. Mueller and W. J. Paul. Computer Architecture. Complexity and
Correctness. Springer-Verlag, Berlin, Germany, 2000.

[OS03] S. Owre and N. Shankar. The PVS Prelude Library. CSL Technical Report
SRI-CSL-03-01, SRI International, Menlo Park, CA, March 2003.

[OSR01] S. Owre, N. Shankar, J.M. Rushby and D. Stringer-Calvert. PVS System
Guide. Version 2.4, SRI International, Menlo Park, CA, November 2001.

[OSR01b] S. Owre, N. Shankar, J.M. Rushby and D. Stringer-Calvert. PVS Language
Reference. Version 2.4, SRI International, Menlo Park, CA, November 2001.

[PS05] P. Seidel. A Short Introduction to Theorem Proving. Lecture notes, Southern
Methodist University, Dallas, Texas, March 2005.

[PS05b] P. Seidel, Theorem Proving. Lecture notes, Southern Methodist University,
Dallas, Texas, March 2005.

[SPR02] Jennifer Preece, Yvonne Rogers and Helen Sharp. Interaction Design. Wiley,
Hoboken, NJ, January 2002.

[Sun05] Sun Microsystems, Inc. Javadoc Tool. http://java.sun.com/j2se/javadoc/,
(Accessed July 2005).

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. In IBM Journal of Research and Development, volume 11 (1), pages
25–33. IBM, 1967.

[Vis05] Visualization at the Human-Computer Interaction Lab. University of
Maryland. http://www.cs.umd.edu/hcil/research/visualization.shtml (Accessed
July 2005).

[VMP05] Institut für Rechnerarchitektur und Parallelrechner – VAMP.
http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/downloads.php
(Accessed July 2005).

[WB98] Christopher Westphal and Teresa Blaxton. Data Mining Solutions. Wiley
Computer Publishing, New York, 1998.

