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The VAMP (Verified Architecture Microprocessor) is a pipelined microprocessor that 

is being verified using PVS (Prototype Verification System), a semi-automatic theorem 

prover. Almost 450 theories formally describe and verify all the VAMP components 

down to the gate level. This detail makes it possible to automatically generate an 

implementation from the formal descriptions but also adds complexity to the hierarchy of 

theories. These theories, composed of numerous lemmas and definitions, currently exist 

as a collection of files and directories. They are supplemented by PVS proofs, 

implementations in verilog and numerous publications explaining the work that has been 

done. 

The goal of our project is to provide a cohesive interface – VAMP Explorer – that 

will make it easier to navigate and understand the correctness proofs of the VAMP. Our 

contributions include a dynamic hierarchical graph for exploring the VAMP, a schematic 

view for relating the theories to a traditional understanding of a microprocessor, and a 
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local view for identifying the properties and relationships in each theory. The VAMP 

Explorer is web-based to make the VAMP theories widely accessible. It is built in a 

modular structure so that it can adapt to changes and grow with future extensions to the 

VAMP. 

This project supplements the existing formal descriptions of the VAMP with high 

level structures that present a profile of the VAMP and expose the relationships between 

its components. The visualization of the VAMP can be seen as a case study to 

demonstrate the benefits of our framework. Ultimately, our goal is to provide 

methodologies that can be used more generally for the visualization of complex 

hierarchical proofs and systems. 
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Chapter 1 

1. INTRODUCTION 

1.1. General Problem Statement 

The VAMP Project was started at Saarland University, Germany as an effort to 

formally verify a microprocessor [BB+02]. The project resulted in a large body of 

theorems which describe the microprocessor design and show that it is correct and bug 

free. The theorems were written using a theorem prover called PVS (Prototype 

Verification System) [OSR01]. In principle, we should be able to take these verified 

designs and implement them in silicon, confident of their correctness, without needing to 

simulate or validate them. Of course, synthesis and fabrication errors could lead to faulty 

chips but we are confident in the underlying design … or are we? 

Anyone introduced to the project and considering an implementation will want to 

review the theories to gain a level of confidence in the quality and correctness of the 

work. This is a complex proposition, since reading such a large body of PVS theories is 

like trying to understand a large Java project by reading the Java code. The theories are 

written in a modular fashion meaning that a user may have to navigate through several 

files to find all the definitions, lemmas, or proofs that are connected to a given 

component. A number of papers and publications describe the paper and pencil proofs 

that drive the theories but do not include all the PVS theories in detail.  
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All of this motivates our interest in a framework for visualizing and navigating the 

hierarchies created by collections of PVS theories. We want to give theorem writers and 

readers the big picture that shows how each component contributes to the final 

correctness, while also allowing them to navigate through a sequence of relationships 

between subcomponents and theories. 

Since these collections can be quite large, we should generate the final interface 

automatically from an existing anthology of PVS files. To do this, we should take 

advantage of the structured nature of PVS theories. And since VAMP describes a 

hardware system, we can provide an intuitive schematic presentation and provide a way 

for users to compare the structural specifications with the behavioral statements they are 

supposed to implement.  

It would also be useful to implement an in-code commenting system like Javadoc that 

will support automatic documentation generation [Sun05]. Unfortunately, the large body 

of theories in the VAMP has already been written and does not include such structured 

in-code comments, so we do not address such facilities in this project. 

1.2. Research Goals and Contributions 

The goal of this project is to create an interface to the VAMP theories that can be 

used in general for visualizing and navigating PVS theories. Specifically, we create a 

system that automatically generates this interface from the existing files. We also aim to 

create an interface that is accessible over the web. This visualization should facilitate 

efforts to communicate about the theories and give readers confidence in the correctness 

of the theories.  
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We also aim to make it possible for other researchers to extend or customize the 

visualizations. To this end, we separate the project into two tasks. The first effort is to 

extract and structure the information in the theories. These include the lemmas and 

definitions as well as related proofs and theories. We format this extracted structure using 

XML. This uniform structure drives the second stage of the project which is to visualize 

the information using a web-based interactive interface. 

This project has also created other useful contributions. We present a schema for 

representing PVS theories in XML particularly when the goal is to visualize the theories. 

Our research has also led to a simple method for generating schematic representations of 

PVS constructs that are flagged as hardware structures. To facilitate these methods, we 

have created a parsing engine for PVS files. 

1.3. Background and Related Problems 

1.3.1.  Formal Verification 

Traditionally, engineering fields place a great deal of emphasis on correctness in 

design. This focus is necessary because faults in engineering design can cause great 

inconvenience or even have fatal consequences. Computer hardware and software 

engineering have often been criticized for not adopting this same rigor. Engineering 

correct hardware and software designs is challenging because it is intractable to simulate 

every possible input case especially for complex designs. Furthermore, market pressures 

often lead to short design cycles [KG99]. In general, it is not always possible to 

completely guarantee the correctness of a design because we cannot completely formalize 

the intentions of the designer. However, we can use a number of existing approaches to 
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check certain properties of the design and guarantee that it is equivalent to a given formal 

specification. 

Often designs are validated using simulation to predict the output given a set of input 

vectors. While this kind of validation is not usually exhaustive enough to give us 

confidence in our design, it can often identify most of the errors [Kr99]. On the other 

hand, formal verification provides proof that a design or implementation meets a set of 

requirements or exhibits certain desired properties. Techniques for formal verification 

range from fully automatic approaches such as model-checking and equivalence-

checking to semi-automatic interactive theorem proving. The automatic methods are 

currently more popular because they are less complex. But they are also less expressive 

and do not scale well to large or complex circuits.  

1.3.2.  The VAMP Perspective 

Interactive theorem proving has not been completely accepted for verifying large 

designs because it is thought to be too time consuming and expensive, requiring 

considerable expertise. The VAMP project set out to explore the feasibility of using 

theorem proving to verify a microprocessor, complete with a pipelined architecture, an 

out-of-order scheduler, a cache memory interface and complex arithmetic units. It uses 

PVS, an interactive theorem prover, to specify the structure of the different components 

and their intended behavior and to prove that this behavior is accomplished by the 

structure. PVS supports specification down to the bit-level which makes it possible to 

automatically generate a fully functional implementation (in Verilog) from the given 

theorems. 
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1.3.3.  The Visualization Problem 

The VAMP project has demonstrated that verification of such complex systems can 

be accomplished in reasonable time and at reasonable cost. However the theorems do 

nothing to hide the complexity of the system – indeed they exacerbate the problem by 

bringing in the nuances of the PVS specification language. Currently, the VAMP 

collection of theories have been arranged in files in a directory structure and made 

available over the web [VMP05]. In addition a number of publications have been created 

to describe the work that has been done. But a user wanting access to the theorems still 

has a hard time navigating through them and inspecting the proofs that have been applied 

to them. Figure 1.1 shows a hierarchy of some of the theorems in the VAMP system and 

illustrates some of the challenges associated with navigating the VAMP: 

• The hierarchy is very deep and provides detailed representations even at its lowest 

levels. 

• There are many interconnections between nodes. 

• The high level components verified in the VAMP are related across interfaces that 

sometimes span multiple theorems. 

Our goal is to create a VAMP explorer that will give users new ways to visualize the 

hierarchy and navigate through it. We believe this will make the VAMP theorems more 

accessible to researchers and students wishing to better understand or use it. 
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Figure 1.1.  A Subset of the Relationships between VAMP Theories 

1.4. Related Work 

1.4.1.  Verification of Hardware Designs 

The VAMP is described in a collection of publications and theses written at different 

stages of the verification project. Much of the initial work is done using paper-and-pencil 

proofs in [MP00] which includes descriptions for a pipelined DLX-based implementation 

with an IEEE compliant floating point unit and interrupts. [BJK01] describes the PVS 

proofs used to verify some of the basic circuits such as “incrementers, adders, arithmetic 
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units, multipliers, leading zero counters, shifters, and decoders.” [Krö01] verifies the 

pipelined architecture and scheduling algorithms, [Ja02], [BJ01] and [Ber01] describe the 

floating point unit and [Be04] describes the verification of the cache memory interface. 

The architecture is based on the DLX instructions set described by Hennessy and 

Patterson [HP96] and the out-of-order scheduling is based on Tomasulo’s algorithm 

[Tom67]. 

Other work has been done to formally verify microprocessors and other hardware 

designs. [KG99] and [Kr99] describe advances and techniques in model checking, 

equivalence checking and theorem proving. Hardware designs have also been verified 

using other theorem provers including HOL [Fo01] and ACL2 [BKM96]. 

1.4.2.  Visualization of Hierarchical Structures 

Visualization is the “process of transforming information into a visual form enabling 

the user to observe the information” [GCE99]. Information visualization has many 

applications in data mining, data management, networking and other fields. Visualization 

can make information more understandable and support creative modeling [CW+00]. It 

can be used to analyze data and uncover trends [WB98] or enhance a user interface. 

Hierarchical visualization shows relationships between data items arranged in a tree 

structure. Hierarchies are often shown using directed acyclic graphs and treemaps. 

Treemaps are a space constrained visualization that show the highest levels of the 

hierarchy and allow a user to zoom down [BSW02]. Research in hierarchical 

visualization is conducted by groups wanting to visualize XML, databases or other 

structured relationships. Some recent advances include an enterprise knowledge platform 
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for delivering information in a hierarchy within a given context [Bra05] and methods for 

dynamically changing the visualizing of XML according to what a user wants to capture 

[JS04]. 

The PVS interactive development environment (IDE) focuses on providing an 

effective interface for theorem development and not on presenting and navigating 

completed theorems. As a result, past research in visualization of PVS has focused on 

providing functionality that is popular in modern IDEs such as built in contextual help, 

quick access to definitions, code completion, and pretty printing [Kin03]. 

1.5. Organization 

In chapter 2, we describe the basic ideas that form the theoretical foundation for our 

work including principles in theorem proving, visualization and user interface design. We 

then go on to do a detailed requirements analysis in chapter 3 to determine and prioritize 

the features that should be included in the VAMP Explorer. Chapter 4 describes our 

effort to extract structured data from the existing bed of files and chapter 5 describes our 

visualization approaches. In chapter 6 we discuss issues related to system deployment, 

both for users wanting to visualize theories and researchers wanting to extract structured 

data from their projects. Finally, we conclude in chapter 7 by describing requirements we 

were not able to address and possible future directions for this project. 
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Chapter 2 

2. BASIC CONCEPTS AND TERMS 

2.1. Formal Verification and Theorem Proving 

Verifying the correctness of hardware and software designs is an inherently difficult 

problem. Most students in these fields are taught to identify or recognize test cases that 

represent the wide spectrum of possible conditions a system can be in. This approach, 

enhanced with clever simulations, continues to be employed as the students move into 

industry. Yet in industrial designs, these test cases and simulations often account for only 

a small subset of possible conditions for the system. 

It has to be said that many successful designs have been completed and released 

despite this inability to test all cases. This is because all designs depend on some informal 

logical reasoning done by a human designer [PS05]. The effectiveness of this reasoning 

depends on the complexity of the problem and the experience of the designer. Formal 

verification aims to improve the application of this reasoning by making it more precise 

and rigorous. Unfortunately some abstractions in the human reasoning process are 

difficult to express using the most accessible formal verification methods. Theorem 

proving provides the greatest potential for overcoming these difficulties. 



 

 10 

2.1.1.  Formal Verification Methods 

Formal verification methods include equivalence checking, property checking and 

theorem proving. The goal of equivalence checking is to prove that two different 

specifications of a given system are functionally equivalent to each other. This is useful 

when a specification (such as a high-level design) already exists and a new lower-level 

implementation is to be created. Hence the correctness of the new system assumes that 

the original specification is correct. The advantage of equivalence checking is that it can 

be done automatically using techniques such as binary decision diagram (BDD) 

equivalence and state space traversal. The disadvantage is that it is not very expressive 

and is only feasible for relatively small circuits [Kr99]. 

Property checking approaches model the system and certain properties using 

propositional temporal logics. These approaches show that the desired properties are 

always true using symbolic state traversal techniques. Again, these approaches suffer 

from a lack of expressiveness for dealing with large complex circuits [Kr99]. 

2.1.2.  Theorem Provers 

In theorem proving, the goal is to show through mathematical reasoning that a given 

implementation is equivalent to a given specification. The specification and 

implementation can be abstractly expressed using formal logics. These logics range from 

First-Order logics which are decidable and hence support some automation to higher 

order logics which require interaction from a human to complete the proofs.  

Theorem provers are very expressive, especially when using higher order logic, and 

can be used to describe and verify large and complex circuits. Still, they are not popular 
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because the proofs cannot be written automatically. Instead, the theorems created must be 

proved interactively which can be a time consuming process. 

2.2. PVS Concepts 

PVS is a research prototype developed at SRI International for writing higher order 

logic specifications and interactively proving them. It includes a specification language, 

an extendible theorem proving language and some predefined theories. It is implemented 

in Common Lisp and uses the popular Emacs editor as its interface. 

At the highest level, a PVS specification is either a theory or a datatype. These 

specifications can be linked using import and export statements [OSRS01]. A PVS 

specification file (extension ‘.pvs’) can have one or more theories or datatypes. Each 

specification file has an associated proof file (extension ‘.prf’) that holds the lisp proof 

scripts produced during the last interactive theorem proving session. Several related PVS 

files are grouped into a context which usually corresponds to the directory the files are in. 

PVS theories consist of type and constant declarations, expressions involving types, 

constants, variables and/or functions, and formulae which state some assumption or 

hypothesis. Completed specifications must first be parsed to ensure syntactic consistency. 

Then they need to be typechecked to ensure semantic consistency. PVS’ rich type system 

allows the creation of complex types (including functional types). This makes the 

problem of checking the consistency of the type system undecidable. In some cases an 

interactive theorem proving step is needed to prove type-correctness conditions (TCCs) 

before the typechecking phase is complete. 
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Once specifications have been parsed and typechecked, the interactive theorem 

prover can be fired up to prove the lemmas or theorems in the specification. The prover 

provides powerful commands that can reduce, rewrite or simplify formulas. It also 

provides proof stategies for doing induction, recursion or other useful activities. PVS 

supports the creation of user-defined proof strategies which combine commands in 

different forms and can be used to represent a paradigm for approaching a class of 

problems. 

The PVS system includes a set of predefined theories called the Prelude. These 

theories form the foundation for the theorem prover and define basic concepts that can be 

used when writing specifications. These include theories that describe “logic, functions, 

relations, induction, sets, numbers, sequences, sum types, quotient types, and mu-

calculus” [OS03]. 

2.3. Visualization Concepts 

Modern technological advancements like the World Wide Web, email and personal 

digital assistants have contributed to an explosion of information. Deriving useful 

knowledge from all this information is a growing challenge. Research in visualization 

aims to take advantage of human cognitive abilities to present information. This has led 

to the creation of tools like tree maps, fish-eye lens-based components, tool tips, and 

zoomable interfaces [Vis05]. 
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2.3.1.  Human Cognition 

Cognition refers to our mental abilities (or limitations) as human beings. In 

visualization, we are concerned with cognitive processes that include memory, perception 

and recognition, attention, learning and problem solving [SPR02].  

For example, the way information is structured can affect our ability to focus on 

salient features. It is easier to read the contents of the database when they are structured 

using a table format, than it is to read them in a paragraph format. Another example 

involves the use of familiar icons to represent certain actions. The choice of pictures in 

these icons determines how well the user can learn to use the interface. Throughout our 

project, we consider these principles as we decide what widgets to use in our interface. 

2.3.2.  Visualizing Hierarchies 

Hierarchies are created when data is structured in a tree-like format with groups of 

data forming subtrees. Hierarchies can be visualized using a directed acyclic graph 

(DAG) which visually groups related parent- and child-nodes and visualizes this 

relationship with an edge between the nodes. Variations on the DAG include tools that 

zoom into a particular node or hide nodes that are not in use.  

A treemap is another effective way of visualizing hierarchies. It constrains the entire 

hierarchy to a fixed space and uses boxes to represent the highest level nodes. The 

subtree of a node is represented by smaller boxes contained in the node. The treemap also 

uses color as another dimension. For example, the color intensity of a box may indicate 

the magnitude of a value in its subtree.  

Some of these visualization components are shown in Figure 2.1. 
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Figure 2.1.  Hierarchical Visualization Components 

2.4. User Interface Design Concepts 

The best visual interfaces are often those that allow a user to directly manipulate 

them. In this section, we describe a small subset of interaction design principles that, 

when applied, lead to the most effective and user-friendly interfaces. Some of these 

principles relate to the contents of a good interface, but there are also important principles 

regarding the methodology we use to generate these interfaces.  

2.4.1.  Usability Goals 

Most users have had the experience of interacting with an interface that was difficult 

to use or frustrating. Perhaps it did not do what they expected in response to their actions, 

Newsmap uses different colors to represent 
categories of news and the size and intensity of the 
boxes to reflect the popularity of the news item. 

Source: http://www.marumushi.com/apps/newsmap/newsmap.cfm 
(Accessed July 13, 2005) 

TreeMap 
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LAPD 
… 

Dallas 
Mavericks 

… 

Russia 
… 

The UN 
… 

Directed Acyclic Graph 
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or perhaps it was difficult to learn. As we design our interface, our goal should be to 

optimize the user’s interaction and their ability to complete their tasks. Some specific 

goals are that the interface is effective, efficient, safe, useful, learnable and contains 

features that are easy to remember [SPR02]. 

2.4.2.  User Experience Goals 

In interaction design, our focus should be on the user we are designing for, and on 

ensuring their satisfaction. The user’s experience will impact the usefulness of the 

interface to them. Some user experience goals include making the interface enjoyable, 

helpful, supportive of creativity, and aesthetically pleasing [SPR02]. 

In chapter 3, we analyze our users and determine what goals we should have as we 

design the interface. 
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Chapter 3 

3. REQUIREMENTS ANALYSIS AND CONCEPTUAL DESIGN 

3.1. User Analysis 

In this section, we wish to identify all the potential users of our system so that we can 

direct our design to best support the needs of these users. 

3.1.1.  Primary Users 

These users include researchers using PVS or interested in the VAMP. They represent 

the individuals that will interact with our system the most. Specifically: 

PVS Researchers may want to use the system to visualize their own theories but they 

may not be familiar with web/visualization concepts, or data concepts such as XML. 

They also may not be familiar with the hardware concepts used in the VAMP. 

PVS Readers include those seeking to study a body of theorems previously 

constructed using PVS. They may not be familiar with PVS constructs and other concepts 

associated with our system. 

VAMP Readers include those seeking to learn about the VAMP. Some of these users 

may not care about PVS-specific details, but want to know how the components of the 

VAMP come together to show correctness of the system. 
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3.1.2.  Secondary Users 

These include users that may interact with our system but do not need to comprehend 

all aspects of the system to meet their goals. This could include technical managers trying 

to evaluate different formal verification techniques and wanting to experience theorem 

proving at work on a full scale system like the VAMP. Other potential users are formal 

verification engineers using other techniques such as property checking or equivalence 

checking. These users will benefit from the interactive nature of our system but are not 

our primary users. So, for example, our final interface will not devote many resources to 

explaining theorem proving. 

Finally our system could impact users in society who use products that have been 

verified using PVS because this system could contribute to the correctness or acceptance 

of the theorems. 

This understanding of the intended audience is what drives our design and choice of 

features in the final system. For example, we aim to use visualization structures that are 

intuitive since many of our users will not be familiar with visualization principles. 

3.2. Needs Analysis 

In this section, we highlight the user needs that motivate our design and guide our 

design decisions. 

The Big Picture: Users and designers of large systems need to be able to see the big 

picture to aid understanding and development. How does an individual theorem or lemma 

contribute to the success of the entire system? What are the theories at the top of the 
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hierarchy? Which theories support different subsystems such as the memory interface or 

the pipelined scheduler? 

Correctness Checking: Formal verification is necessary to ensure systems are correct 

and safe. Exhaustive checking is usually not possible. Other formal verification methods 

are not as expressive as theorem proving and cannot handle complex systems. Users need 

a system that will give them confidence in the correctness of the proofs and, 

consequently, the correctness of the design. 

Theory Understanding: Users need help understanding individual theories. This may 

come in the form of paper and pencil proofs, or documentation explaining the PVS 

constructs used. This information is often separate from the theories. It would be very 

helpful to put this information at the users’ fingertips as they read the theories. 

Theory Access: Users and developers need a way to quickly find theories and to 

compare theories or to find individual components. They may be interested, for example, 

in discovering where an abstract datatype is defined or in reading the description of a 

lemma that is used to support the current theory.  

Theory Presentation: After creating the theories, designers and researchers need a 

way to talk about it to others. Web based visualization provides a framework for public 

and global distribution. The theories can be further enhanced by using syntax coloring to 

expose keywords and identifiers. 

 

The existing emacs-based PVS development environment meets some of the needs 

described above. For example it provides some syntax coloring facilities and provides 
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commands for visualizing a subset of the hierarchy and for visualizing proofs. But it does 

not have a web-based front-end nor does it provide advanced facilities for quickly 

navigating through a VAMP hierarchy. 

3.3. Requirements Specification 

3.3.1.  Use Case Diagram 

The Use case diagram describes some of the high level requirements of our system. 

 

Figure 3.1.  Use Case Diagram 

3.3.2.  Functional Requirements 

• The system should visualize an overview of the body of theories and the 

relationships between them.
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• The system should provide different views of the same theory that provide 

different kinds of information. For example, one view may show how other 

theories are related to the given theory; another view may show what components 

make up the given theory. 

• The system should identify and classify subcomponents of a theory and show the 

relationships between components, as well as relationships to pertinent lemmas, 

proofs or definitions. A user should be able to navigate to these related 

components. 

• The interface should be automatically generated from a body of pvs files (with 

few support files needed). The researcher should not have to do a lot of extra 

work to support the interface. (The exception might be the inclusion of 

documentation to create an automatic documentation generation system. This is 

not done in this project, in part because the VAMP theory files do not contain 

structured inline comments that support this.) 

• The system should provide a split-screen to allow users to compare different code 

from different theories or different parts of the same theory. 

• The system should provide facilities for a user to selectively hide parts of the 

hierarchy or focus on a subset of the hierarchy.

• The system should provide some documentation to aid the user’s understanding of 

the theories

• The system should pretty print and/or syntax color theories to make them easier to 

read. 
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• The system should automatically identify structural components that can be 

represented as schematic symbols and create a (canonical) schematic view of the 

whole system.

• The system should provide quick access to any theory in the system.

• The system should keep track of the theories a user has explored and allow a user 

to traverse back and forth along this history. The feature will be familiar to users 

with experience browsing the web and will allow users to return to a theory after 

temporarily leaving it.

3.3.3.  Usability Requirements 

• Complex relationships should not obscure user’s ability to see the hierarchy 

• Though most users will have some expertise in hardware design, formal 

verification and/or theorem proving, the interface should still be intuitive using 

easy to understand visualization concepts.  

• The system should provide enough and concise documentation so users lacking 

expertise in certain areas can learn to use it fairly quickly. 

3.3.4.  Data Requirements 

• The system should parse the PVS format into a structured format that is readily 

accessible and is structured to support the tasks of the interface. 

• A generic data format such as XML should be used to drive the interface so other 

kinds of interfaces can be generated from this structured content. 
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3.3.5.  Time Requirements 

• The interface should be very responsive even when representing bodies of 

theories that have a lot of content such as the VAMP. To do this as much 

processing as possible should be relegated to a preprocessing stage that converts 

the PVS content into structured interface-accessible content. 

3.3.6.  Environmental Requirements 

• The system should be web-based and accessible to most web users. This means it 

should run in browsers like Internet Explorer and Mozilla-based browsers, and on 

operating systems such as Microsoft’s Windows, Apple’s Macintosh, and Linux. 

It should also have reasonable bandwidth and processor requirements. 

• The preprocessing function that automatically extracts structured data content 

from the PVS files should be accessible on a wide range of platforms. This is 

because the PVS files may originally reside on different operating systems such as 

Unix, Linux and Windows. 

3.4. Usability Goals 

In this section, we describe some general usability goals that we aim to keep in focus 

as we develop our interface. Some of these goals are applicable to most user interfaces 

and applying them leads to more user friendly interfaces [SPR02]. 

• A user should be able to quickly recognize the tools or commands to perform 

desired tasks instead of having to recall them or refer to help documentation. 
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• Our design emphasis should be on making the interface useful to the user rather 

than providing many features. 

• There should be few unexpected features and these should be easy to understand. 

• The explorer should provide a consistent layout even as users use different 

methods to visualize their content. 

• The explorer should prevent the user from providing erroneous inputs by using 

buttons or dropdown menus for predefined inputs. 

• The user should have the freedom to move between different visualizations while 

exploring a theory. 

3.5. Preliminary Designs and Prototypes 

While identifying the requirements for the VAMP Explorer, we developed some 

initial designs and built some proof-of-concept prototypes. These exercises revealed 

some significant challenges that we would need to overcome to complete this project. 

3.5.1.  Preliminary Screenshots 

Figure 3.2 shows our initial concept. Here we only use a manually extracted subset of 

the VAMP system but users already have access to a directed acyclic graph showing the 

import relationships between theories. The theories come from different contexts and are 

color-coded to reflect this. Each theory is labeled: context@theory, which is the 

convention that occurs in PVS import lists. The interface provides tabs for switching 

between different views of the relevant theories. In the lower window, we display 

different kinds of content relevant to the current theory. 
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In Figure 3.3, we explore a method for automatically generating the directed acyclic 

graph. We generate and layout our graph using Graphviz, a popular graphing application 

[Gvz05]. This exercise leads us to identify three steps that are needed to visualize the 

hierarchy of theories. 

1. Identify the relationships between the theories. In this prototype, this task was 

completed manually, but the final system will need to extract this information 

dynamically using the import lists in the theories. 

2. Create and layout a graph based on these relationships. The layout algorithm 

should be optimized for hierarchical structures as it decides, for example, 

which nodes should appear at the top of the graph and which should appear at 

the bottom. In this case, the graphing application is used for layout only and is 

not a part of our final interface. Hence the graph properties (node coordinates 

and edges) need to be exported into a standard format such as XML. 

3. Redraw the graph using the final interface. In this case, our interface built 

using Macromedia Flash [Mac05] and the graph is drawn using the 

coordinates from step 2. 

In Figure 3.4, we introduce a new view for navigating the hierarchy. This Local View 

is similar to the dynamic graphs from TheBrain which visualize information in its context 

by showing all relevant relationships [Bra05]. In this case relevant relationships include 

constituent lemmas, imported theories, applicable views and ‘parent’ theories (i.e. 

theories that use the current theory). In this exercise, we discover that identifying these 



 

 25 

parent theories may be complicated because this information isn’t naturally contained in 

the current theory’s PVS specification. 

 

Figure 3.2.  Preliminary Prototype of VAMP Explorer 
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Figure 3.3.  Automatically Generating a Directed Acyclic Graph 

 

Figure 3.4.  The Local View Concept 
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3.5.2.  Early Challenges 

These initial prototypes expose some problems we will need to address as we 

approach our system design and implementation. Some of these are: 

• Automatic Extraction: the process of manually preparing the data files to drive 

these demos was time consuming and will not scale to the full VAMP system. 

Hence we need to extract this information automatically. This extracted content 

includes the relationships between theories and the relationships between 

subcomponents that make up theories. 

• Graph Layout: we need to use graph layout algorithms that make efficient use of 

space and expose the intrinsic hierarchical nature of the relationships. Even with 

this small illustration, the graph generated was quite complex – visualizing the 

entire VAMP hierarchy will be difficult. One initial idea is to selectively hide 

parts of the tree. This may be complicated because it would require that the layout 

algorithm be rerun every time a new section of the theory is hidden or revealed. 

• Scaling the Interface: when we interact with the full VAMP system, the interface 

will need to be responsive even when dealing with large files. 

• Schematic View: we will need to represent components with an appropriate 

schematic gate and extract the inputs and outputs to these gates. In addition, we 

will need a routing algorithm to layout these gates. 

• Modeling the user’s interaction: In these prototypes, we use different paradigms 

to allow a user to navigate between different views and different widgets to 
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display the PVS code. We will need to identify the paradigms and components we 

want to use in the final interface. 

3.6. High Level and Conceptual Design 

Figures 3.5-3.7 introduce a high level design detailing the implementation tasks 

relevant to each major activity performed in the system. At the highest level, the tasks 

Extract PVS Structure and Visualize VAMP represent the two major phases in this 

project. Chapter 4 is devoted to a detailed description of the design and implementation 

used to extract the PVS structure, while chapter 5 describes the visualization effort. 

 

Figure 3.5.  High-level Design: Overview 
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Figure 3.6.  High-level Design: Data Extraction Phase 
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Figure 3.7.  High-level Design: Visualization Phase 
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Chapter 4 

4. EXTRACTING STRUCTURED PVS CONTENT 

4.1. Parsing PVS 

In this chapter, we describe the considerable effort to extract information from the 

existing bed of PVS files in the VAMP and to structure this information to support our 

visualization requirements. Our initial attempts led us to experiment with some of the 

status and display commands in PVS [OSR01]. The status commands indicate which 

related theories or formulas have been typechecked or proved. A side effect of this is that 

they expose some of the relationships between components and theories. The display 

commands can be used to generate a graphical representation of the theory hierarchies 

and proof trees. 

Unfortunately, the information provided from these built in commands is not 

sufficient nor is it structured to maximize flexible access to the content for visualization. 

At a basic level, the output of these commands is not formatted using a structured format 

like XML. In addition, these commands do not provide detailed information about the 

individual theory components and how they should be classified. 

This leads us to consider building a parser for PVS. The PVS installation provides a 

complete grammar for the PVS specification language in extended Backus-Naur Form 

(BNF) [OSR01b]. Unfortunately, the language is very context sensitive and will need to 
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be modified for our purposes. The details of these modifications are described in section 

4.1.3. Our choice of parsing development engine is influenced by this need for flexibility. 

4.1.1.  The Grammar Oriented Language Developer (GOLD) 

Usually parsers are built using compiler-compilers such as YACC and ANTLR which 

incorporate source code describing the parser’s actions with the grammar describing the 

language. The compiler-compiler uses this information to create a parsing program which 

can then be used to parse source files in the specified language. The disadvantage of this 

is that the grammar specification and source code are language dependent and tightly 

coupled – changes in the grammar could lead to significant rewriting of the source code. 

The GOLD parsing system was created by Devin Cook at California State University. 

Its basic paradigm is to separate the task of specifying the grammar used in a parser 

program from the actions associated with tokens and rules in this grammar. This has the 

advantage of making it possible to build parsers in a language and platform independent 

way [Co04]. It also gives us the flexibility to focus on the grammar, making 

modifications where necessary, without considering the source code actions until we are 

satisfied with the grammar. 

The GOLD system is used in two phases. The first phase uses a LALR (Lookahead 

Left-to-right Right-derivation) algorithm to compile a BNF grammar into a table that 

represents every possible state the parser can be in as it processes the text the grammar 

represents. During parsing, each time a new token is received by the parser, it must 

decide based on the states in the table whether to shift the token onto a stack containing 

other tokens that will eventually make up a rule, or to first reduce all the tokens on the 
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stack to one rule before shifting the next token. The GOLD system features a builder that 

is used for compiling BNF grammars into LALR tables and testing the grammars with 

sample text to ensure that it is not ambiguous. This phase is completely language 

independent and can be completed before moving to the second phase. 

In the second phase, a language specific engine is used in conjunction with the LALR 

table to parse a source text and perform desired actions. In this project, we choose a Java 

engine written by Matthew Hawkins and featured on the GOLD Parser website [Co04]. 

With this engine, a simple loop can be used to specify the appropriate action each time a 

new token is received or a rule is reduced. 

4.1.2.  The PVS Specification Language 

In this section, we highlight some of the key features of the PVS grammar that we 

exploit to create our structured XML representations of the VAMP files. The full 

grammar is presented in [OSR01b]. The grammar is specified in extended Backus-Naur 

Form which provides shorthand notation for dealing with common occurrences such as 

repeated tokens, lists, optional tokens and alternate tokens. Unfortunately, the GOLD 

system currently only works with standard BNF, so the PVS specification must be written 

out in this form. 

Figure 4.1 shows some of the important rules in the grammar. The start symbol points 

to the highest rule in the grammar – the rule that represents a complete and correct input. 

In this case the start symbol – Specification – represents an entire PVS specification file 

which can contain one or more theories or datatypes. A theory is created using a shell of 

keywords interspaced with several optional parts (indicated with square brackets). The 
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most important part to us is the TheoryPart which contains one or more TheoryElements 

optionally separated by a semicolon. It is these theory elements that form the basic 

components of the VAMP system. Theory elements include import lists, formulas, type 

and variable declarations, and library statements. In section 4.2, we structure the content 

of PVS file for visualization by isolating each of these theory elements and grouping 

similar ones.  

 
"Start Symbol" = Specification 
 
Specification ::= {Theory | Datatype}+ 
 
Theory ::= Id [TheoryFormals] ':' 'THEORY' 
      [Exporting] 
      'BEGIN' 
             [AssumingPart] 
             [TheoryPart] 
      'END' Id 
 
TheoryPart ::= {TheoryElement [';']}+ 
 
TheoryElement ::= Importing | TheoryDecl 
 
Importing ::= 'IMPORTING' TheoryNames 
 
TheoryDecl ::= LibDecl 
             | TheoryAbbrDecl 
           | TypeDecl 
           | VarDecl 
           | ConstDecl 
             | RecursiveDecl 
           | InductiveDecl 
           | FormulaDecl 
           | Judgement 
           | Conversion 
           | InlineDatatype 
 
AssumingPart ::= 'ASSUMING' {AssumingElement [';']}+ 'ENDASSUMING' 
 
AssumingElement ::= Importing 
           | Assumption 
           | TheoryDecl 
 

 

Figure 4.1.  A Subset of Rules in the PVS Grammar 



 

 35 

4.1.3.  Dealing with Shift-Reduce and Reduce-Reduce Conflicts 

One problem that becomes immediately apparent when we try to compile the given 

PVS grammar is that, because of the context-sensitive nature of PVS, many shift-reduce 

and reduce-reduce conflicts occur. A shift-reduce conflict occurs when the LALR 

algorithm cannot decide whether to shift the next token onto the stack as part of a larger 

rule, or to reduce the tokens on the stack to a rule. A reduce-reduce conflict occurs when 

the tokens on the stack can be reduced to more than one rule. 

Figure 4.2 demonstrates these conflicts in the PVS grammar. When the parser is 

reading one of the theory elements in Figure 4.1, it does not know which one it is reading 

since it only looks one token ahead. When it sees a string of comma-separated ids, it 

cannot tell if it is reading a LibDecl or a VarDecl. In other words, it does not know the 

context in which to interpret the ids. In the LibDecl context, these ids should be reduced 

to the Ids rule, while in the VarDecl context they should be reduced to the IdOps rule. 

This is a reduce-reduce conflict. A shift-reduce conflict occurs if the parser encounters an 

operator (Opsym) in this string of ids. Now it needs to decide if it should shift the 

operator unto the stack leading to the eventual reduction of an IdOps rule, or to reduce 

the existing stack tokens into an Ids rule. 

Our paradigm for dealing with this problem is to modify the grammar to make it more 

general. In our above example, we can accomplish this by replacing the Ids non-terminal 

in LibDecl with an IdOps. The implication of this approach is that any files that are 

parsed successfully by the PVS system will also be successfully parsed by our system but 

not vice versa. In this example, any library declarations that parse successfully in PVS 
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will be accepted by our custom parser because IdOps is more general than Ids, but a 

library declaration that includes operators and parses in our parser will not parse in PVS. 

This is O.K. because our system will not be used to write PVS specifications and we can 

assume that PVS files provided to us have already been successfully parsed in the PVS 

system. The modified BNF file is presented in Appendix A. 

 

 
LibDecl ::= Ids ':' 'LIBRARY' ['='] String 
 
VarDecl ::= IdOps ':' 'VAR' TypeExpr 
 
IdOps ::= IdOp++',' 
 
IdOp ::= Id | Opsym 
 
Ids ::= Id++',' 
 

 

Figure 4.2.  The Shift-Reduce and Reduce-Reduce Conflicts 

4.2. XML Schemas 

In this section, we design the XML schemas used to structure the components using 

different paradigms depending on what view is driven from these schemas. The goal is to 

create schemas that structure the PVS content in the VAMP such that anyone can create a 

visual interface to this content. The XML content for each schema is generated using the 

respective steps in Figure 3.5 and this content is used to drive the views in Figure 3.6. In 

many cases, the <string> object is used to specify a display string to be used in the 

visualization phase. 
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4.2.1.  The Context Theories Schema 

Table 4.1. The Context Theories Schema 

XML Tag Name Level Attributes Comments 

<ContextTheories> 1 - Root node 

| − <context> 2 id One object for each context 

| − − <theory> 3 - One for each theory 

| − − − <id> 4 - Unique theory id 

| − − − <filename> 4 - PVS file containing theory 

| − − − <theoryformals> 4 - optional; Group all the theory’s parameters. 

| − − − − <theoryformal> 5 -  

| − − − − − <string> 6 - The display string for this formal 

| − − − − − <importing> 6 - optional; importing statement that precedes string 

 

This is the simplest schema. It encapsulates each context in a context tag and lists all 

the theories that occur in that context. Theory objects contain an id, the PVS file 

containing the theory, and an optional description of some of the formals or parameters 

associated with the theory. (A theory’s id should be unique in its context.) 

This schema is useful for generating a global view of the system. It lists all the 

theories in the VAMP, grouped by their context. A unique string for addressing each 

theory can be constructed using the convention: context_id@theory_id. 
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4.2.2.  The Imported Theories Schema and JGraph 

Table 4.2. The Imported Theories Schema 

XML Tag Name Level Attributes Comments 

<gxl> 1 - Root node; defines the namespace 

| − <graph> 2 id Each file contains one graph for an entire context 

| − − <node> 3 id One for each imported theory or context 

| − − − <attr> 4 name=“Label” Identify this node using a string 

| − − − − <string> 5 - context@theory for theories; or just context 

| − − − <attr> 4 name=“Bounds” The coordinates of this node 

| − − − − <tup> 5 - Group the attributes for left, right, width and height 

| − − − − − <int> 6 -  

| − − − <attr> 4 name=“ExtraLabels” optional; (node is a context) list the theories in this 
context that are imported. 

| − − − − <tup> 5 -  

| − − − − − <string> 6 -  

| − − − − − − <from> 7 -  

| − − − − − − <to> 7 -  

 

This schema is basically the directed acyclic graph (DAG) layout encoded using the 

GXL standard [GXL]. Each graph represents an entire context and describes the 

relationships between the theories in the context. Relationships to theories in another 

context are grouped under one node labeled by the target context and listed using the 

ExtraLabels attribute. We limit our DAG layout to individual contexts because the graph 

showing the relationships between all theories in the VAMP is simply too large and has 

too many connections to be useful to a user. 

Each XML file is generated from a graph created using the JGraph Java libraries. 

JGraph is designed as a “Swing compliant implementation of a graph component” 
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[Al03]. In other words, it combines the architecture found in the standard Java Swing 

user interface library with concepts from graph theory such as vertices, edges and 

algorithms for layout and traversal. We use a layout algorithm that is optimized for 

hierarchical graphs.  

Generating and encoding the graphs in the data extraction phase saves us from doing 

this at run-time in the visualization phase. This optimization simplifies the corresponding 

visualization components and makes the interface more responsive. 

4.2.3.  The Theory Components Schema 

This schema provides details about all the elements in a PVS theory including the 

code used to specify these elements and the class they belong to. It supports the Local 

view in Figure 3.6 by listing the theories imported by this theory, the theories that used 

this theory and the components in the theory. It also supports the Content view by 

providing a syntax-colored representation of each element’s specification. 

The syntax coloring feature is initiated by several XML tags which markup each 

token in the content. The actual formatting details and colors can be provided using a 

stylesheet in the visualization phase. This gives designers in the visualization phase more 

flexibility to choose and change the syntax coloring format. 
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Table 4.3. The Theory Components Schema 

XML Tag Name Level Attributes Comments 

<theory> 1 - Root node;  

| − <header> 2 - Specify some basic properties of the theory. 

| − − <context> 3 - Its context 

| − − <filename> 3 - The PVS specification file 

| − − <theoryformals> 3 - 

| − − − <theoryformal> 4 id 

| − − − − <string> 5 - 

| − − − − <importing> 5 - 

optional; The theory’s parameters. 

| − <imports> 2 - 

| − − <importing> 3 id 

| − − − <string> 4 - 

| − − − <context> 4 - 

| − − − <theoryname> 4 - 

optional; List all the theories imported by this 

theory. Each imported theory is contained in an 

<importing> object and expressed using its context 

as well as its theory name. 

| − <usedbylist> 2 - 

| − − <usedby> 3 id 

| − − − <context> 4 - 

| − − − <theoryname> 4 - 

optional; List all the theories that use this theory. 

Each usedby theory is contained in a <usedby> 

object and expressed using its context as well as its 

theory name. 

| − <components> 2 id, label 

| − − <component> 3 id 

| − − − <string> 4 - 

| − − − <type> 4 - 

| − − − <content> 4 - 

List all the theory elements, grouped by the section 

they occur in (the Exporting Part, Assuming part or 

Theory Body). <string> specifies a label for each 

element, while <type> is used to classify the element 

(as Library, Constant, Lemma etc.). <content> is 

marked up with the following syntax tags: 

| − − − − <comment> 5 - Every thing following a ‘%’ token 

| − − − − <group> 5 - ‘(’ , ‘)’, ‘[’, ‘(#’ and other parentheses 

| − − − − <oper> 5 - +, −, /, & and other operators 

| − − − − <keyword1> 5 - Keywords for major groups like Library, Theory etc. 

| − − − − <keyword2> 5 - Other keywords: BEGIN, TRUE, ALL etc. 

| − − − − <idtoken> 5 - Corresponds to the Id token in the PVS grammar 

| − − − − <number> 5 - Corresponds to the Number token in the grammar 
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4.2.4.  The Schematic View Schema 

This schema is intended to support the schematic view. To do this, each component 

must be broken into its constituent parts, arranged in a graph and encoded using a GXL 

format similar to that of Table 4.2. The visualization phase can then replace the nodes in 

this graph with icons that make it look more like a schematic. This includes icons for 

AND gates, flip-flops and multiplexers. 

4.2.5.  PVS Proofs Scripts 

A PVS proof file is associated with every specification file. It contains proof scripts 

for each formula in the theory that has been proved. The scripts are written using a Lisp 

format. It is quite simple to create a grammar to parse proof scripts – one is shown in 

Appendix B. This can be used to extract the commands used in proofs and structure them 

for display in a graphical format. But we do not use this at this point in the development 

of the VAMP explorer, choosing instead to focus on the presentation of the theories. 

4.2.6.  The Directory Structure 

Figure 4.3 shows the final directory structure used to order the XML file created in 

this phase. When multiple files are needed to support a view, the files are arranged in 

folders and files whose names mirror the context and theory names respectively in PVS. 

This allows us to address an xml file based on the context or theory it is supposed to 

represent. In the visualization phase, we will assume this addressing scheme when 

creating hyperlinks between different components and theories. 
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Figure 4.3.  Planning the Directory Structure for the XML Files 

4.3. Java Implementation of Data Extraction Algorithms 

The data extraction effort is performed by a suite of Java classes build around the 

framework of the GOLD parser engine. This suite elegantly prepares all the XML files 

needed to support the visualization phase using the existing PVS files without modifying 

them. It is designed to be general and applicable to other projects involving PVS files 

arranged in contexts. 

4.3.1.  Class Diagram 

Figure 4.4 shows a high level class diagram outlining the relationships between the 

data extraction classes. The start point for the system is DataExtraction which coordinates 
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the data extraction process. The workhorse classes are ContextTheories, ImportingParser 

and ProcessTheories which prepare different schemas. They depend on a number of 

interfaces and factory classes displayed at the top of the diagram. Other dependencies 

include the Gold Engine package which contains classes that use the LALR table created 

by the GOLD parser to parse PVS specification files. 

 

Figure 4.4.  Class Diagram for Data Extraction Phase 
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4.3.2.  The Data Extraction Algorithm 

Given the classes defined above, we carry out the data extraction using a few simple 

steps: 

1. Specify the root directory of the PVS project (in this case the VAMP files). 

2. Run ContextTheories to create a list of all theories in this context. 

3. Run ImportingParser to extract the importing relationships in each context 

and lay them out in a graph. This step simultaneously creates a mapping from 

each theory to every theory that uses it. 

4. Run ProcessTheories to prepare a list of all components in each theory. Each 

theory also captures a list of the theories that use it from the mapping in step 3 

and a list of the theories it imports. 

In the next chapter, we describe how this data is used to visualize the VAMP. 
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Chapter 5 

5. THE VAMP EXPLORER USER INTERFACE 

5.1. Planning the Interface 

As we set out to create a user interface for the VAMP theories, we must keep the 

needs of the user in focus. Our implementation is intended as a prototype to provide a 

framework for visualizing PVS theories and may be limited by time and development 

constraints. But it should still facilitate communication between theory writers and 

readers by exposing the big picture and providing access to related components, theories 

and other resources. 

5.1.1.  Why Flash? 

Our interface is developed using Macromedia Flash MX 2004 Professional edition. 

Flash was introduced to provide animations and dynamic content over the World Wide 

Web. It has evolved to be one of the most effective ways to deliver applications and 

interfaces over the web. Our reasons for choosing Flash include: 

• It is effective as a rapid prototyping and development environment when 

experimenting with visual interfaces. 

• It is readily available over the web, with over 90% of web users equipped to run 

Flash applications [Mac05]. 
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• It delivers a consistent and lightweight experience across diverse platforms and 

browsers. 

• The Flash IDE comes with customizable modern user interface (UI) 

components such as menus, trees, scroll panes and combo-boxes. It is also 

supported by a vibrant community of professionals and enthusiasts who 

regularly increase the variety of components available to interface designers. 

(Here, the word ‘components’ refers to widgets used to build the user interface. 

This should not be confused with our earlier use of the word to describe the 

parts of the theory.) 

• It provides strong support for XML, web services and other standards. 

• The latest versions of Flash provide an object-oriented language called 

Actionscript 2.0 that is similar to Java and that helps make Flash applications 

more modular, structured and extendible. 

The main disadvantage is that the Flash IDE is not freely available to developers that 

may want to modify our implementation, but it is relatively inexpensive for educational 

users. In addition, researchers that which to use the framework on projects other than the 

VAMP do not need to modify any of the Flash files since the displayed content is 

dynamically loaded from data files. 

5.1.2.  Design Paradigm 

We aim to produce a modular and loosely coupled implementation. This paradigm 

leads us to design our system as a collection of independent Flash applications (called 

movies) representing each of the different views and connected through a main class. 
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Figure 5.1 shows a class diagram showing the relationships between Actionscript classes 

and associated movies. 

Flash provides and listener/broadcaster model as the preferred means of 

communication between components and movies. We build upon this functionality by 

using events broadcast each time certain actions occur in one movie to notify other 

relevant movies of these actions. 

 

Figure 5.1.  Class Diagram for Flash Actionscript Classes 
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5.2. Providing Global Access to all Theories 

The GlobalView class is not associated with any independent movies. It manipulates 

components defined in the main VAMPExplorer application. It gives a user quick access 

to any theory in the system using a menu system. Menus promote recognition over recall 

– i.e. the user does not have to remember the name of the theory. However, given the 

large number of theories to be considered, we need to consider what the most effective 

menu-based approach is. 

5.2.1.  Visualizing Long Lists with Menus 

Reference [Be00] describes a number of menu-based approaches and proposes a 

Fish-eye menu as an effective way to navigate large amounts of information. Figure 5.2 

illustrates the different menus. The Arrowbar and ScrollBar based menus allow a user to 

explore the information by scrolling up and down but are not very effective for user’s that 

know what they are looking for and want instant access to it. The Hierarchy menu breaks 

up the content into categories by first name and lists the elements in each category. Like a 

dictionary, it is quite effective for someone wanting quick access to a theory but is quite 

clumsy for exploring. 

The Fish-eye menu combines the strengths of the above menus by making content 

close to the mouse pointer large and gradually reducing the size of menu items as they 

move away from the pointer. Users can explore the list by moving the mouse slowly over 

the menu, or they can quickly access a particular item by moving the mouse into the 

vicinity of the item and then freezing the fish-eye lens (by moving over the right portion 
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of the menu) and accessing the desired item. A demo of the fish-eye menu is available at 

[Be00]. 

 

Figure 5.2.  Menus for Visualizing Long Lists 

Source: http://www.cs.umd.edu/hcil/fisheyemenu/ 
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5.3. Creating a Directed Acyclic Graph View 

The directed acyclic graph (DAG) view is the most intuitive for the casual user. It 

uses nodes to represent each of the theories and edges to indicate when one theory 

imports another. The nodes are arranged in layers such that the node at the lower part of 

an edge (the child) is always imported by the node at the upper part of that edge (the 

parent). 

5.3.1.  DAG view Challenges 

Two problems arise with this view of the theories. One is that a large number of 

nodes will not easily fit in the viewing area of the user’s screen. We alleviated this 

problem somewhat in the data extraction phase by limiting the graph to a single context, 

but that still produces a large number of nodes for some contexts. So in the DAG view, 

we provide a thumbnail window that allows the user to see the big picture and navigate 

over all the nodes. We also provide a zooming utility that allows the user to increase or 

decrease the range of visibility of the nodes. Finally, we place the entire view in a 

scrolling window component that allows users to navigate to the hidden portions of the 

graph. 

Another problem with the DAG view that is quite pronounced in many of the VAMP 

contexts is the large number of interconnections that may occur between the nodes. When 

this happens it can be quite difficult to determine which nodes are related. We can 

alleviate this problem by making the entire interface semitransparent so that all edges are 

visible and then highlighting all the edges that are connected to the selected node. 
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To further reduce the number of nodes in each graph, we group all the theories that 

are imported from a different context into one node labeled by the context name. The user 

can activate a pop-up menu in these context nodes to see details about which theories in 

this context are imported. Selecting the context node causes a new DAG graph for that 

context to be loaded. In this way a user can navigate through the VAMP. 

Figure 5.3 illustrates some of the features in the DAG view. 

 

Figure 5.3.  The Directed Acyclic Graph View 

5.3.2.  DAG view Actions 

The DAGView class manages its own connections to the XML files that layout the 

graphs. Each time a context node is clicked, the XML data connector connects over the 

web to the XML file representing that context and loads it. When it has finished loading, 

it broadcasts an event which is received by the class and used to redraw the graph. 

Whenever any node is selected DAGView broadcasts a ‘clicked’ event which can be 

received by the main VAMPExplorer class and used to drive activities in the other views. 

For example, the content view can load the code contained in the theory that was clicked. 
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5.4. Creating a Local View 

The local view presents the VAMP from the perspective of a single theory. It shows 

all the subcomponents in this theory as well as its immediate child (importing) and parent 

(used by) relationships. A user can navigate through this section of the VAMP hierarchy 

by selecting the related theories. This results in a more narrow focus in the hierarchy and 

is most useful when a user wants to focus on a small subset of the tree.  

5.4.1.  Choosing Local View Components 

 

Figure 5.4.  The Local View for the tom_correct5 Theory 

Figure 5.4 shows a screen shot of the local view for the theory tom_correct5. Simple 

list components are used to represent the ‘used by’ and ‘importing’ fields because these 

are just one dimensional fields and do not contain a large number of values. Each theory 

is presented using the full url: context@theory. This way, no additional information about 

the location of the corresponding theory is needed. 
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The ‘components’ field is more complex because each theory element is classified 

based on its type and which part of the theory it occurs in. To bring out this hierarchy, we 

use the Flash Tree UI Component. This component will be familiar to many users as the 

interface used to access the file-system on most GUI based operating systems. Users can 

show or hide subsets of the hierarchy as they seek instant access to a desired element. As 

the tree grows, the component transforms into a list-like component with scrollbars to 

provide access to hidden parts of the tree. 

5.3.2.  Local view Actions 

The Local view broadcasts two kinds of events to the other views. When a theory is 

selected in the either the ‘usedby’ or ‘importing’ list box, a ‘clicked’ event is broadcast 

which causes most of the other views to update themselves since a new theory is 

launched. This can be seen as a global event. On the other hand, any action on the tree 

will result in a more local ‘treeChange’ event which only updates the content view. Both 

of these events are handled by the main VAMPExplorer class which is then responsible 

for initiating changes in the appropriate views. 

The XML files that provide content for the local view are also used by the content 

view. For this reason, we pass the responsibility for connecting to the XML files to a 

“neutral” class: PVSTheoryProvider. An instance of this class is contained in the main 

VAMPExplorer class and fed to both the local and content view to provide the necessary 

content. 
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5.5. Creating a Schematic View 

The purpose of the schematic view is to provide more detail about each of the theory 

elements by presenting them in a schematic. This is particularly applicable to the VAMP 

project since many of the elements represent hardware circuits and gates.  

Interestingly, the implementation for this view is very similar to the DAG view. Most 

of the effort is shifted to the data extraction phase which must identify the parts of each 

component and ‘graph’ them into a layout that represents a schematic. The visualization 

phase, like the DAG view, simply publishes this layout and provides actions each time a 

node is selected. The only difference is that in the schematic view, each node should be 

represented by an icon that reflects a traditional understanding of the type of circuit 

contained in that node. This includes icons representing AND-gates, multiplexers and 

other circuits. Figure 5.5 lists some of these icons and the circuits they represent.  

 

Figure 5.5.  Representing Components in the Schematic View 

AND - gate 

OR - gate 

select 

MUX (IF-THEN-ELSE) 



 

 55 

5.6. Creating a Content view 

The content view is in many ways the center of attention for most users because it 

contains the specification they will use to understand the theory. The content view 

provides features that facilitate the user’s efforts to do this. 

5.6.1.  The Split Screen 

Figure 5.7 shows a screenshot of the content view in split screen mode. This mode 

allows users to perform side-by-side comparison of different parts of a theory or different 

theories altogether. Users can freely switch between this mode and the single screen 

mode shown in Figure 5.6.  

To facilitate this feature, we introduce the concept of an ‘active pane’. The active 

pane is simply the screen that is currently selected. This is shown visually by using bolder 

colors to identify the pane. Internally, a variable keeps track of which pane is active. 

When an event in one of the other views triggers a change in the content view, that 

change always takes place in the active pane. Additionally, when a user switches into 

single screen mode, the contents of the active pane are preserved and displayed. (The 

contents of the inactive pane are also preserved but are hidden.) Finally, the control panel 

is updated each time the user selects a new pane to reflect the theory in that pane. 
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Figure 5.6.  The Content View: Single Screen Mode 

 

Figure 5.7.  The Content View: Split Screen Mode 

One important implication of the split screen view is that it is possible for the inactive 

pane to contain content from an ‘old’ theory, that is, a different theory from the one 

loaded into the main VAMPExplorer class and all the other views. Therefore, facilities 

have to be built into the content view to support local changes it may want to make 
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through its control panel. For example, if the inactive pane is activated and a new 

component is selected from the control panel, its code must be derived from the old 

theory, not the one currently loaded into VAMPExplorer. 

5.6.2.  The Control Panel 

The control panel provides some autonomy to the content view to allow the user to 

explore a particular theory. It features a Flash drop-down combo box UI component from 

which the user chooses an element to view. The list can be filtered to contain only 

elements of the same type as the currently displayed element using the provided radio 

boxes. 

5.6.3.  The History Buttons 

The concept of a history will be familiar to most web users because this is a standard 

feature on all browsers. Keeping track of the history of ‘places’ the user has visited is 

complicated by the presence of two panes. Each pane keeps track of its own history and 

the history buttons always refer to the active pane. 

The content view acts as a slave to the other views. Actions in these views can lead to 

changes in the content displayed but the content view cannot change the global state of 

the system or launch new theories in any of the other views. We create this arrangement 

so that users can freely move back and forth in the history without needing to launch 

previously viewed theories. Again we have the problem described in section 5.6.1 of old 

theories appearing in the content pane. 
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5.6.4.  Other Content View Features 

Even though the content view cannot effect changes in the other views, it does 

broadcast events in response to actions on the combo box, the radio boxes and the history 

and pane control buttons. These events are handled locally (though occasionally the 

history feature may initiate a request to the PVSTheoryProvider to reload a copy of an 

old theory). 

The content view uses stylesheets to perform syntax coloring on the code according 

to the divisions first introduced in the data extraction phase (Table 4.3). Figure 5.8 gives 

an example of a stylesheet that assigns formatting properties to each of the markup tags 

that can appear in the content field. The stylesheets are attached to the Flash TextArea UI 

component that takes up most of the content view and displays the PVS specification. 

 

 
content  { color : purple; } 
comment  { color : green;  } 
group    { color : brown;  } 
oper     { color : red;    } 
keyword1 { color : blue;   } 
keyword2 { color : green;  } 
idtoken  { color : black;  } 
number   { color : black; font-weight:bold; } 
string   { color : orange; } 
 

 

Figure 5.8.  A Stylesheet to Facilitate Syntax-Coloring 

5.7. Bringing It All Together 

Some of the roles of the VAMPExplorer class have already been mentioned in 

previous sections. This class is associated with a movie that loads the other independent 

movies and it responds to events these movies generate. It ensures all the views are 
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updated to contain the global current theory (including the active pane in the content 

view). It also synchronizes changes within the views so that they do not conflict. For 

example, it is problematic to have multiple connections to XML files from different 

movies loaded into the main movie. So VAMPExplorer must ensure these connections 

occur sequentially. It does this by listening for events broadcast each time a data source is 

completely loaded. 

Figure 5.9 gives an overview of the VAMPExplorer bringing together all the movies. 

Since the content view is likely to be constantly relevant to the user, it is always visible in 

the lower half of the window. The other views are displayed in the upper half of the 

window when the respective tabs are selected. The colors used in all the views are 

consistent so that the entire interface appears to the user as one continuous entity. 
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Figure 5.9.  Overview of the VAMP Explorer 
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Chapter 6 

6. DEPLOYING THE VAMP EXPLORER 

6.1. Full System Deployment 

The VAMP Explorer was designed to be general so it can be applied to other PVS 

projects. It makes some assumptions about the target project but does not rely on VAMP 

specific constructs. The data extraction phase assumes the target project is arranged in 

directories representing contexts and containing PVS specification files. The system 

allows multiple theories in a specification file.  

The data extraction modules are implemented in a platform independent way using 

Java. All the user needs to do is supply a root directory where the PVS files are and a 

target directory where the XML files will be stored. 

6.1.1.  Web Deployment 

Once the XML directory has been generated, it should be placed in the folder that 

contains all the other web specific files. The include SWF (Shockwave Format) files 

generated by Flash, HTML files, Cascading Style Sheet files and configuration files. The 

installer does not need to recreate the SWF files, nor does he or she need access to the 

Flash IDE. This is because the content displayed in the movies is dynamically loaded 

from the XML files. Figure 6.1 shows the final directory structure for this web folder. 
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The entire folder can be transferred to a web server to make the project accessible over 

the web. 

 

Figure 6.1.  Directory Structure for the Web Folder 
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Chapter 7 

7. CONCLUSION AND FUTURE DIRECTIONS 

VAMP Explorer is a resource for researchers looking for ways to visualize or 

communicate about theories created using PVS. This project has demonstrated some 

visualization approaches and provided a framework for applying them to a wide variety 

of projects. It has also revealed some potential areas of growth for the system. 

One important aspect that was not explored is a documentation system. The VAMP 

theories do not contain comments structured according to any particular set of rules. The 

in-code commenting style exemplified by Javadoc [Sun05] is the most likely candidate 

for a documentation system which can be integrated into the VAMP Explorer interface. 

This project also does not explore different methods for visualizing proof trees. The 

PVS system already visualizes proofs using a tree diagram to display the hierarchy of 

commands with some arranged sequentially and others on the same level. 

The user’s access to theories could be improved by making it possible to run queries 

on the system. The queries can be simple searches for theories by name or more 

complicated queries over the XML files that form the basis for the visualization. In 

addition, we could provide hyperlinks within the theory code that link relevant keywords 

to their corresponding theories. 
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To make the VAMP Explorer prototype a more widely used ‘PVS Explorer’, it will 

need to be refined and tested with other projects. This action may expose more details 

and nuances that do not occur in the VAMP but that may apply in other projects and 

scenarios.  
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APPENDIX A. Modified BNF Form of the PVS Specification Language 

 
! --------------------------------------- 
! -- M o d i f i c a t i o n  of pvs.bnf 
! --------------------------------------- 
!    Express pvs.bnf in BNF form (not extended) 
! --------------------------------------- 
 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
! First some GOLD Parser settings 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
"Name"     = 'PVS' 
"Author"   = 'Nathaniel Ayewah' 
"Version"  = 'PVS 2.3' 
"About"    = 'The PVS 2.3 Grammer in BNF form for use with the Gold Parser' 
 
"Start Symbol" = <Specification> 
Comment Line = '%' 
 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
<Specification> ::= <Theory> | <Datatype> 
                |   <Theory> <Specification> 
                |   <Datatype> <Specification> 
 
! SHIFT-REDUCE Correction ! 
<Theory> ::= <IdOp> <TheoryFormals> ':' 'THEORY' <TheoryOption2> 'BEGIN' <TheoryOption3> 
<TheoryOption4> 'END' Id 
         |   <IdOp> ':' 'THEORY' <TheoryOption2> 'BEGIN' <TheoryOption3> <TheoryOption4> 'END' Id 
<TheoryOption2> ::= <Exporting> | 
<TheoryOption3> ::= <AssumingPart> | 
<TheoryOption4> ::= <TheoryPart> | 
 
<TheoryFormals> ::= '[' <TheoryFormalList> ']' 
<TheoryFormalList> ::= <TheoryFormal> ',' <TheoryFormalList> | <TheoryFormal> 
 
<TheoryFormal> ::= '(' <Importing> ')' <TheoryFormalDecl> | <TheoryFormalDecl> 
 
<TheoryFormalDecl> ::= <TheoryFormalType> | <TheoryFormalConst> 
 
! CORRECTION ! 
<TheoryFormalType> ::= <IdOps> ':' <TypeDeclGroup2> 'FROM' <TypeExpr> 
                   |   <IdOps> ':' <TypeDeclGroup2> 
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<TheoryFormalConst> ::= <IdOps> ':' <TypeExpr> 
 
<Exporting> ::= 'EXPORTING' <ExportingNames> 'WITH' <ExportingTheories> 
            |   'EXPORTING' <ExportingNames> 
 
<ExportingNames> ::= 'ALL' 'BUT' <ExportingNameList> 
                 |   'ALL' 
                 |   <ExportingNameList> 
<ExportingNameList> ::= <ExportingName> ',' <ExportingNameList> | <ExportingName> 
 
<ExportingName> ::= <IdOp> <ExportingNameOptions> 
<ExportingNameOptions> ::= ':' <TypeExpr> | ':' 'TYPE' 
                       |   ':' 'FORMULA'  | 
 
<ExportingTheories> ::= 'ALL' | 'CLOSURE' | <TheoryNames> 
 
<Importing> ::= 'IMPORTING' <TheoryNames> 
 
<AssumingPart> ::= 'ASSUMING' <AssumingElementList> 'ENDASSUMING' 
<AssumingElementList> ::= <AssumingElement> <Semicolon> <AssumingElementList> 
                      |   <AssumingElement> <Semicolon> 
 
<AssumingElement> ::= <Importing> 
    |   <Assumption> 
    |   <TheoryDecl> 
 
<TheoryPart> ::= <TheoryElementList> 
<TheoryElementList> ::= <TheoryElement> <Semicolon> <TheoryElementList> 
                    |   <TheoryElement> <Semicolon> 
<Semicolon> ::= ';' | 
 
<TheoryElement> ::= <Importing> | <TheoryDecl> 
 
<TheoryDecl> ::= <LibDecl> 
             |   <TheoryAbbrDecl> 
      |   <TypeDecl> 
      |   <VarDecl> 
      |   <ConstDecl> 
             |   <RecursiveDecl> 
      |   <InductiveDecl> 
      |   <FormulaDecl> 
      |   <Judgement> 
      |   <Conversion> 
      |   <InlineDatatype> 
 
! CORRECTED ! 
<LibDecl> ::= <IdOps> ':' 'LIBRARY' '=' String 
          |   <IdOps> ':' 'LIBRARY' String 
 
! CORRECTED ! 
<TheoryAbbrDecl> ::= <IdOps> ':' 'THEORY' '=' <TheoryName> 
 
! CORRECTED ! 
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<TypeDecl> ::= <IdOps> ':' 'TYPE' <TypeDeclGroup3> 
           |   <IdOps> ':' 'NONEMPTY_TYPE' <TypeDeclGroup3> 
           |   <IdOps> ':' 'TYPE+' <TypeDeclGroup3> 
           |   <IdOp> <Bindings> ':' 'TYPE' <TypeDeclGroup3> 
           |   <IdOp> <Bindings> ':' 'NONEMPTY_TYPE' <TypeDeclGroup3> 
           |   <IdOp> <Bindings> ':' 'TYPE+' <TypeDeclGroup3> 
           |   <IdOp> ':' 'TYPE' <TypeDeclGroup3> 
           |   <IdOp> ':' 'NONEMPTY_TYPE' <TypeDeclGroup3> 
           |   <IdOp> ':' 'TYPE+' <TypeDeclGroup3> 
<TypeDeclGroup2> ::= 'TYPE' | 'NONEMPTY_TYPE' | 'TYPE+' 
<TypeDeclGroup3> ::= <TypeDeclGroup4> <TypeExpr> 'CONTAINING' <Expr> 
                 |   <TypeDeclGroup4> <TypeExpr> 
                 | 
<TypeDeclGroup4> ::= '='|'FROM' 
 
<VarDecl> ::= <IdOps> ':' 'VAR' <TypeExpr> 
 
<ConstDecl> ::= <IdOps> ':' <TypeExpr> '=' <Expr> 
            |   <IdOp> <Bindings> ':' <TypeExpr> '=' <Expr> 
            |   <IdOp> <BindingsPlus> ':' <TypeExpr> '=' <Expr> 
            |   <IdOp> ':' <TypeExpr> '=' <Expr> 
            |   <IdOps> ':' <TypeExpr> 
            |   <IdOp> <Bindings> ':' <TypeExpr> 
            |   <IdOp> <BindingsPlus> ':' <TypeExpr> 
            |   <IdOp> ':' <TypeExpr> 
 
<RecursiveDecl> ::= <IdOps> ':' <RecursiveDeclEnd> <MeasureDeclEnd> 
                |   <IdOp> <Bindings> ':' <RecursiveDeclEnd> <MeasureDeclEnd> 
                |   <IdOp> <BindingsPlus> ':' <RecursiveDeclEnd> <MeasureDeclEnd> 
                |   <IdOp> ':' <RecursiveDeclEnd> <MeasureDeclEnd> 
<RecursiveDeclEnd> ::= 'RECURSIVE' <TypeExpr> '=' <Expr> 
<MeasureDeclEnd> ::= 'MEASURE' <Expr> 'BY' <Expr> | 'MEASURE' <Expr> 
 
<InductiveDecl> ::= <IdOps> ':' <InductiveDeclEnd> 
                |   <IdOp> <Bindings> ':' <InductiveDeclEnd> 
                |   <IdOp> <BindingsPlus> ':' <InductiveDeclEnd> 
                |   <IdOp> ':' <InductiveDeclEnd> 
<InductiveDeclEnd> ::= 'INDUCTIVE' <TypeExpr> '=' <Expr> 
 
<BindingsPlus> ::= <Bindings> <BindingsPlus> | <Bindings> 
     
! CORRECTED ! 
<Assumption> ::= <IdOps> ':' 'ASSUMPTION' <Expr> 
 
! CORRECTED ! 
<FormulaDecl> ::= <IdOps> ':' <FormulaName> <Expr> 
 
<Judgement> ::= <SubtypeJudgement> | <ConstantJudgement> 
 
! CORRECTION ! Make Judgements less restrictive by using IdOps instead of IdOp 
<SubtypeJudgement> ::= <IdOps> ':' 'JUDGEMENT' <TypeExprList> 'SUBTYPE_OF' <TypeExpr> 
                   |   'JUDGEMENT' <TypeExprList> 'SUBTYPE_OF' <TypeExpr> 
<TypeExprList> ::= <TypeExpr> ',' <TypeExprList> | <TypeExpr> 
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<ConstantJudgement> ::= <IdOps> ':' 'JUDGEMENT' <ConstantReferenceList> 'HAS_TYPE' 
<TypeExpr> 
                    |   'JUDGEMENT' <ConstantReferenceList> 'HAS_TYPE' <TypeExpr> 
<ConstantReferenceList> ::= <ConstantReference> ',' <ConstantReferenceList> | <ConstantReference> 
 
<ConstantReference> ::= Number | <Name> <BindingsAsterisk> 
 
<Conversion> ::= 'CONVERSION' <ConversionGroupList> 
<ConversionGroupList> ::= <ConversionGroup> ',' <ConversionGroupList> | <ConversionGroup> 
<ConversionGroup> ::= <Name> ':' <TypeExpr> 
                  |   <Name> 
 
<Datatype> ::= <InlineDatatype> 
           |   <IdOp> <TheoryFormals> <DatatypeHead> <DatatypeBody> 
 
<DatatypeHead> ::= ':' 'DATATYPE' <DatatypeOption1> 
<DatatypeBody> ::= 'BEGIN' <DatatypeOption2> <DatatypeOption3> <DatatypePart> 'END' Id 
<DatatypeOption1> ::= 'WITH' 'SUBTYPES' <Ids> | 
<DatatypeOption2> ::= <Importing> ';' | <Importing> | 
<DatatypeOption3> ::= <AssumingPart> | 
 
<InlineDatatype> ::= <IdOp> <DatatypeHead> <DatatypeBody> 
 
<DatatypePart> ::= <DatatypePartGroup> <DatatypePart> 
               |   <DatatypePartGroup> 
<DatatypePartGroup> ::= <Constructor> ':' <IdOp> ':' Id 
                    |   <Constructor> ':' <IdOp> 
 
<Constructor> ::= <IdOp> '(' <ConstructorGroupList> ')' 
              |   <IdOp> 
<ConstructorGroupList> ::= <ConstructorGroup> ',' <ConstructorGroupList> 
                       |   <ConstructorGroup> 
<ConstructorGroup> ::= <IdOps> ':' <TypeExpr> 
 
<TypeExpr> ::= <Name> 
           |   <EnumerationType> 
           |   <Subtype> 
           |   <TypeApplication> 
           |   <FunctionType> 
           |   <TupleType> 
           |   <RecordType> 
 
<EnumerationType> ::= '{' <IdOp> '}' 
                  |   '{' <IdOp> ',' <IdOps> '}' 
 
<Subtype> ::= '{' <SetBindings2> '|' <Expr> '}' 
          | '(' <Expr> ')' 
 
<SetBindings2> ::= <IdOp> ':' <TypeExpr> ',' <SetBindings2> 
               |   <IdOp> ':' <TypeExpr> <SetBindings2> 
               |   <IdOp> ':' <TypeExpr> 
               |   <IdOp> ',' <SetBindings2> 



 

 69 

               |   <IdOp> <SetBindings2> 
               |   <IdOp> 
               |   <Bindings> ',' <SetBindings2> 
               |   <Bindings> <SetBindings2> 
               |   <Bindings> 
 
!<SetBinding> ::= <IdOp> ':' <TypeExpr> 
!             |   <IdOp> 
!             |   <Bindings> 
 
<TypeApplication> ::= <Name> <Arguments> 
 
<FunctionType> ::= <FunctionHeader> '[' <FTTypeGroupList> '->' <TypeExpr> ']' 
               |   '[' <FTTypeGroupList> '->' <TypeExpr> ']' 
<FunctionHeader> ::= 'FUNCTION'|'ARRAY' 
 
<TupleType> ::= '[' <FTTypeGroupList> ']' 
<FTTypeGroupList> ::= <FTTypeGroup> ',' <FTTypeGroupList> | <FTTypeGroup> 
<FTTypeGroup> ::= <IdOp> ':' <TypeExpr> | <TypeExpr> 
 
<RecordType> ::= '[#' <FieldDeclsList> '#]' 
<FieldDeclsList> ::= <FieldDecls> ',' <FieldDeclsList> | <FieldDecls> 
 
<FieldDecls> ::= <Ids> ':' <TypeExpr> 
 
<Expr> ::= Number 
       |   String 
       |   <Name> 
       |   <Expr> <Arguments> 
       |   <Expr> <Binop> <Expr> 
       |   '-' <Expr> 
       |   <Unaryop> <Expr> 
       |   <Expr> '̀' Id | <Expr> '̀' Number 
       |   '(' <ExprList> ')' 
       |   '(:' <ExprListAsterisk> ':)' 
       |   '[|' <ExprListAsterisk> '|]' 
       |   '(#' <AssignmentList> '#)' 
       |   <Expr> '::' <TypeExpr> 
       |   <IfExpr> 
       |   <BindingExpr> 
       |   '{' <SetBindings> '|' <Expr> '}' 
       |   'LET' <LetBindingList> 'IN' <Expr> 
       |   <Expr> 'WHERE' <LetBindingList> 
       |   <Expr> 'WITH' '[' <AssignmentList> ']' 
       |   'CASES' <Expr> 'OF' <SelectionList> 'ELSE' <Expr> 'ENDCASES' 
       |   'CASES' <Expr> 'OF' <SelectionList> 'ENDCASES' 
       |   'COND' <CondGroupList> 'ENDCOND' 
       |   <TableExpr> 
 
<ExprList> ::= <Expr> ',' <ExprList> | <Expr> 
<ExprListAsterisk> ::= <ExprList> | 
<AssignmentList> ::= <Assignment> ',' <AssignmentList> | <Assignment> 
<LetBindingList> ::= <LetBinding> ',' <LetBindingList> | <LetBinding> 
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<SelectionList> ::= <Selection> ',' <SelectionList> | <Selection> 
<CondGroupList> ::= <Expr> '->' <Expr> ',' <CondGroupList> 
                |   <Expr> '->' <Expr> 
                |   'ELSE' '->' <Expr> 
<IfExpr> ::= 'IF' <Expr> 'THEN' <Expr> <ElsIfExprGroup> 'ELSE' <Expr> 'ENDIF' 
<ElsIfExprGroup> ::= 'ELSIF' <Expr> 'THEN' <Expr> <ElsIfExprGroup> | 
 
<BindingExpr> ::= <BindingOp> <LambdaBindings> ':' <Expr> 
 
<BindingOp> ::= 'LAMBDA' | 'FORALL' | 'EXISTS' | <IdOp> '!' 
 
<LambdaBindings> ::= <LambdaBinding> ',' <LambdaBindings> 
                 |   <LambdaBinding> <LambdaBindings> 
                 |   <LambdaBinding> 
 
<LambdaBinding> ::= <IdOp> | <Bindings> 
 
<SetBindings> ::= <SetBinding> ',' <SetBindings> 
              |   <SetBinding> <SetBindings> 
              |   <SetBinding> 
              |   <IdOps> 
              |   <IdOps> ':' <TypeExpr> 
 
<SetBinding> ::= <IdOp> ':' <TypeExpr> 
             |   <IdOp> 
             |   <Bindings> 
 
<Bindings> ::= '(' <BindingList> ')' 
<BindingList> ::= <Binding> ',' <BindingList> | <Binding> 
 
<Binding> ::= <TypedId> | '(' <TypedIds> ')' 
 
<Assignment> ::= <AssignArgs> <AssignmentGroup> <Expr> 
<AssignmentGroup> ::= ':=' | '|->' 
 
<AssignArgs> ::= Id '!' Number 
      |   Id 
             |   Number 
       |   <AssignArgPlus> 
<AssignArgPlus> ::= <AssignArg> <AssignArgPlus> 
                |   <AssignArg> 
 
<AssignArg> ::= '(' <ExprList> ')' 
     |   '̀' Id 
     |   '̀' Number 
 
<Selection> ::= <IdOp> '(' <IdOps> ')' ':' <Expr> 
            |   <IdOp> ':' <Expr> 
 
<TableExpr> ::= 'TABLE' <TableExprOption1> <TableExprOption2> <TableExprOption3> 
<TableEntryPlus> 'ENDTABLE' 
<TableExprOption1> ::= <Expr> | 
<TableExprOption2> ::= ',' <Expr> | 
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<TableExprOption3> ::= <ColHeading> | 
<TableEntryPlus> ::= <TableEntry> <TableEntryPlus> 
                 |   <TableEntry> 
 
<ColHeading> ::= '|[' <Expr> <ColHeadingGroupPlus> ']|' 
<ColHeadingGroupPlus> ::= <ColHeadingGroup> <ColHeadingGroupPlus> 
                       |  <ColHeadingGroup> 
<ColHeadingGroup> ::= '|' <Expr> | '|' 'ELSE' 
 
<TableEntry> ::=  <TableEntryGroupPlus> '||' 
<TableEntryGroupPlus> ::= <TableEntryGroup> <TableEntryGroupPlus> 
                        | <TableEntryGroup> 
<TableEntryGroup> ::= '|' <Expr> | '|' 'ELSE' 
 
<LetBinding> ::= <LetBindingGroup> '=' <Expr> 
<LetBindingGroup> ::= <LetBind> | '(' <LetBindList> ')' 
<LetBindList> ::= <LetBind> ',' <LetBindList> | <LetBind> 
 
<LetBind> ::= <IdOp> <BindingsAsterisk> ':' <TypeExpr> 
            | <IdOp> <BindingsAsterisk> 
<BindingsAsterisk> ::= <Bindings> <BindingsAsterisk> | 
 
<Arguments> ::= '(' <ExprList> ')' 
                                  !<ExprList> is already defined 
 
<TypedIds> ::= <IdOps> ':' <TypeExpr> '|' <Expr> 
             | <IdOps> ':' <TypeExpr> 
             | <IdOps> '|' <Expr> 
             | <IdOps> 
 
<TypedId> ::= <IdOp> ':' <TypeExpr> '|' <Expr> 
            | <IdOp> ':' <TypeExpr> 
            | <IdOp> '|' <Expr> 
            | <IdOp> 
 
<TheoryNames> ::= <TheoryName> ',' <TheoryNames> | <TheoryName> 
 
<TheoryName> ::= Id '@' Id <Actuals> 
               | Id '@' Id 
               | Id <Actuals> 
               | Id 
 
! SHIFT-REDUCE Correction ! 
<Name> ::= <NameHead> <Actuals> '.' <IdOp> 
       |   <NameHead> <Actuals> 
       |   <NameHead> '.' <IdOp> 
       |   <NameHead> 
<NameHead> ::= <IdOp> '@' <IdOp> | <IdOp> 
 
<Actuals> ::= '[' <ActualList> ']' 
<ActualList> ::= <Actual> ',' <ActualList> | <Actual> 
 
<Actual> ::= <Expr> | <TypeExpr> 



 

 72 

         |   <Actual> '̀' Id 
         |   <Actual> '̀' Number 
         |   <Actual> <Binop> <Expr> 
         |   <Actual> <Arguments> 
         |   <Actual> '::' <TypeExpr> 
         |   <Actual> 'WHERE' <LetBindingList> 
         |   <Actual> 'WITH' '[' <AssignmentList> ']' 
 
<IdOps> ::= Id ',' <IdOps> | <Opsym> ',' <IdOps> | <Opsym> | Id 
 
<IdOp> ::= Id | <Opsym> 
 
<Opsym> ::= <BinOp> | <UnaryOp> | <OpsymOthers> 
<OpsymOthers> ::= 'IF' | 'TRUE' | 'FALSE' | '[||]' 
 
<BinOp> ::= 'o' | 'IFF' | '<=>' | 'IMPLIES' | '=>' | 'WHEN' | 'OR' 
        | '\/' | 'AND' | '/\' | '&' | 'XOR' | 'ANDTHEN' | 'ORELSE' 
        | '̂' | '+' | '-' | '*' | '/' | '++' | '~' | '**' | '//' | '̂̂ ' 
        | '|-' | '|=' | '<|' | '|>' | '=' | '/=' | '==' | '<' | '<=' 
        | '>' | '>=' | '<<' | '>>' | '<<=' | '>>=' | '#' | '@@' | '##' 
 
<UnaryOp> ::= 'NOT' | '~' | '[]' | '<>' | '-' 
 
<FormulaName> ::= 'AXIOM' | 'CHALLENGE' | 'CLAIM' | 'CONJECTURE' | 'COROLLARY' 
               | 'FACT' | 'FORMULA' | 'LAW' | 'LEMMA' | 'OBLIGATION' 
        | 'POSTULATE' | 'PROPOSITION' | 'SUBLEMMA' | 'THEOREM' 
 
<Ids> ::= Id ',' <Ids> | Id 
Id = {Letter}{IdChar}* 
 
Number = {Number}+ 
 
 
{String Chars} = {Printable} - ["] 
String = '"' {String Chars}* '"' 
 
 
{IdChar} = {AlphaNumeric} + [_] + [?] 
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APPENDIX B. PVS Proof Scripts in BNF 

"Name"     = 'Enter the name of the grammar' 
"Author"   = 'Enter your name' 
"Version"  = 'The version of the grammar and/or language' 
"About"    = 'A short description of the grammar' 
 
"Start Symbol" = <Program> 
 
! ------------------------------------------------- Sets 
 
{ID Body}      = {Printable} - [()"|] - {Whitespace} 
{String Chars} = {Printable} - ["\] 
 
! ------------------------------------------------- Terminals 
 
Identifier    = {ID Body}+ 
StringLiteral = '"' ( {String Chars} | '\' {Printable} )* '"' 
 
! ------------------------------------------------- Rules 
 
<Program> ::= <TheoryProofList> 
 
<TheoryProofList> ::= <TheoryProofs> <TheoryProofList> 
                  | 
 
<TheoryProofs> ::= '(' '|' Identifier '|' <ProofList> ')' 
 
<ProofList> ::= <Proof> <ProofList> 
            | 
 
<Proof> ::= '(' '|' Identifier '|' <ProofBody> ')' 
 
<ProofBody> ::= StringLiteral <SingleCommand> <ManyCommands> 'NIL' 
 
<SingleCommand> ::= '(' Identifier <SubExpr> ')' 
                |   'NIL' 
 
<ManyCommands> ::=  '(' <CommandContainers> ')' 
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               |    'NIL' 
 
<CommandContainers> ::= <CommandContainer> <CommandContainers> 
                    |   <CommandContainer> 
                     
<CommandContainer> ::= '(' <ProofBody> ')' 
 
<SubExpr> ::= <Id> <SubExpr> 
          |   <ParenExpr> <SubExpr> 
          | 
 
<ParenExpr> ::= '(' <SubExpr>')' 
 
<Id> ::= Identifier 
     |   StringLiteral 
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APPENDIX C. Accessing the VAMP Explorer 

The VAMP Explorer can be accessed online at: 

http://www.natidea.com/projects/VAMPExplorer  

This link provides access to some of the preliminary prototypes as well as the latest 

functional version of the interface. 
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