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Abstract-We evaluate and compare two approaches for noise 

reduction in speech processing. One model is a recently 

developed implementation of a cochlea model that is solved in the 

time domain and that accounts for the influence of hair cells 

outside the inner ear membrane. The other approach involves 

statistical de-noising techniques based on wavelets. Our results 

indicate that the cochlea model achieves a stronger performance 

in removing noise, but requires significantly more computational 

effort. We propose the implementation of a fused model 

combining features of the cochlea model with wavelet-based 

techniques to achieve improved noise reduction properties at 

smaller computational costs. 

I.   INTRODUCTION

The performance of current speech processing algorithms 

degrades drastically in the presence of noise. Successful 

processing of speech signals in noisy environments is of 

importance in numerous applications, including: medical 

applications (e.g., hearing aids and cochlea implants), speech 

recognition, telephony (e.g., hands-free telephones), and 

military applications (e.g., transmission of speech and 

surveillance). Our focus is the development of speech 

processing methods that are amenable to ultra-low power 

environments such as hearing aids, cochlea implants, and 

mobile phones.  

In this project, we compare and fuse two existing de-noising 

speech processing methods – one based on a cochlea model 

and the other based on wavelets – to achieve improved voice 

signal quality at low computational cost. The cochlea model 

simulates mechanical properties of the inner ear. The wavelet 

model provides time-frequency localization of the signal, 

making it possible to filter out noise. 

The proposed hybrid model builds on the qualities of the 

cochlea model and the computational performance of the 

wavelet models. It observes the response of the cochlea model 

to different wavelets and efficiently approximates the output 

of the cochlea model based on these observations. 

II.   OHC Model 

A.   The Structure of the Cochlea 
The cochlea is a spiral shaped structure located at the inmost 

section of the ear (Fig. 1). It contains two fluid-filled 

chambers separated by an elastic partition which contains the 

basilar membrane (BM). Sounds traveling through the 

chambers cause the BM to vibrate. This vibration stimulates 

auditory nerve fibers which carry signals to the brain [1]. 

There are around 15,000 hair cells attached to the BM (in 

the human ear). They are divided into two groups based on 

their functionality. One group, the inner hair cells, are 

connected to the nerve fibers. They transfer the mechanical 

motion of the BM into neural activity in the nerve fibers. The 

rest of the hair cells are called outer hair cells (OHC). They 

act as local-amplifiers that influence the mechanical response 

of the membrane to produce “high sensitivity and sharp 

tuning” [1]. This action allows the cochlea to adapt to the 

dynamic range of the incoming signal. Hearing-impairment 

has been associated with the loss of outer hair cells [2].  

B.   Modeling the Cochlea 

Cochlea models are useful for predicting the behavior of the 

cochlea. They simulate the vibration of the BM using 

equations that apply basic physical principles such as the 

conservation of mass and the dynamics of deformable bodies. 

Reference [2] provides details of an implementation of a 

cochlea model which specifically models the mechanical 

response of the BM taking into account the action of OHCs. 

We refer to this model from here on as the OHC Model.

The OHC Model is based on differential equations derived 

by considering the pressure on the BM as a result of the 

stimulating speech signal. Generally the pressure difference 

between the two chambers shown in Fig. 1 is  

 P = PT �  PV, (1) 

where PT and PV are the pressures in the scala tympani and 

Fig. 1. Cross Section of a Cochlea [2] 
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scala vestibulli respectively. The OHC Model introduces the 

behavior of the outer hair cells to modify the pressure on the 

BM:

 PBM = P + POHC. (2) 

The important output from the model is a matrix � �BM (x, t)

� which represents the displacement of different locations x on 

the BM over time t. This is used to calculate the velocities 

along the membrane which can serve as a representation of the 

speech signal stimulus. We refer to this as a location-time 
basilar membrane velocity representation (LTBMV-

representation). Integrating the velocities along the membrane 

reconstructs the original speech signal with reduced noise.  

Fig. 2 shows a visualization of the matrix of displacements. 

It shows that different sections of the BM resonate to different 

frequencies. The lower section numbers represent the base of 

the BM while the higher section numbers represent the apex of 

the BM. The signal arrives at the base from the outer ear and 

travels toward the apex. Higher frequencies resonate near the 

base while lower frequencies produce maximal displacement 

nearer the apex [1]. The outer hair cells help to reduce noise 

by essentially damping certain frequencies based on the 

dynamic range of the signal. 

C.   OHC Model Performance 

The OHC model uses a variable step trapezoidal method to 

solve the differential equations. This requires significant 

computational effort to execute multiple iterations for each 

time-step, improving the accuracy in each iteration. The OHC 

takes about 1000 seconds to process a 1-second speech signal. 

In the process, it goes through over 6 million iterations and 

performs over 200 million binary operations. Later, we will 

show that we can reduce this effort significantly by using 

wavelet analysis to approximate the LTBMV matrix. 

III.   WAVELET ANALYSIS

A.   Features of Wavelets 

A wavelet is a “small wave” with its energy concentrated in 

time [3]. Wavelets are used as basis functions for representing 

or decomposing signals, just as sinusoids are used as basis 

functions in Fourier analysis. Fourier analysis is useful for 

studying the frequency content of a signal. It results in a one-

dimensional array of coefficients which is localized in terms 

of frequency. This analysis allows to represent a long periodic 

signal using only a few frequency coefficient values. 

Sinusoids have infinite energy and hence do not allow for 

time localization in analyzing signals. Wavelets, on the other 

hand, have finite energy concentrated around a center and 

hence help uncover time-varying phenomena in the signal. 

Wavelet analysis results in a two-dimensional array of 

coefficients which is localized in terms of time and frequency. 

The original signal is reconstructed precisely by summing 

shifted and scaled versions the original basis wavelet (Fig. 3) 

weighted by the wavelet coefficients.. 

B.   Applications of Wavelets 
Probably the most poignant observation in wavelet analysis 

is that most of the energy of the signal is compacted into a few 

coefficients. This leads to applications in signal compression 

and denoising [4]. In both cases, small low energy coefficients 

are removed using a thresholding method leaving a 

compressed version of the signal. This lossy compression 

technique has been used in speech and image compression 

(e.g. the JPEG-2000 standard).  

Our interest is in denoising signals. When a signal with 

additive noise is analyzed using wavelets, most of the noise is 

relegated to small low energy coefficients [4]. The reduction 

of these low energy coefficients using a thresholding method 

leads to reduced noise in the signal. 

There are generally two thresholding methods: hard and soft 

thresholding. In both cases, the first step is to select a 

threshold value, Tn. In hard thresholding, all coefficients with 

magnitude below Tn are simply set to zero. In soft 

thresholding, each coefficient, c, is changed to  

sgn(c) � max(|c|–t, 0), (3) 

where sgn(c) is the sign of the coefficient [5]. In general, the 

threshold value, Tn, is chosen to be a multiple of the standard 

deviation of the coefficients. Parameter choices are usually 

made based on assumptions on the type of noise involved and 

on the percentage of the energy being removed.�

Fig. 3. A wavelet coefficient can be arranged on a level and position based 

on how its corresponding wavelet is scaled and shifted. Higher resolution 

levels capture finer details while lower levels indicate broad trends. 

Fig. 2. Visualization of LBTMV matrix 
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The effectiveness of thresholding depends on how well the 

wavelet compresses the energy of the original signal. Different 

wavelets are more or less suitable for different types of 

signals. References [3] and [4] discuss a variety of choices.  

C.   Wavelet Performance 

In our experiments, we use an implementation called 

wavethresh described in [5] and created for the R-statistical 

environment [6]. Wavethresh implements the efficient 

Pyramid Algorithm described by S. Mallat [7] for the 

computation of the wavelet coefficients with linear time 

complexity. For comparison with the OHC Model, the wavelet 

model de-noises the same 1-second signal described in Section 

II in less than 1 second. 

IV.   FUSED MODEL

A.   Method Formulation 

We formulate our method by studying the response of the 

OHC model when single normalized basis wavelet functions 

are chosen as input signals. An obvious observation is the way 

the frequency and time localization features of a wavelet are 

captured in the LTBMV matrix (Fig. 5-b). A more interesting 

observation is that the linearity property of wavelets seems to 

be captured in the matrix (Fig. 4). In other words, scaling and 

adding two wavelets corresponds to scaling and adding their 

respective matrices. (Shifting does not correspond as 

accurately, but we use it later to achieve some optimizations). 

This observation leads to a simple formulation. As a 

preprocessing step, we propose to create a characteristic

matrix for every coefficient position. (This can be done by 

using a single non-zero wavelet coefficient in an inverse 

wavelet transform (reconstruction), and then providing the 

result (time representation of a single normalized wavelet) to 

the OHC Model.) Then, during signal processing, a given 

signal is decomposed using wavelet analysis and the resulting 

coefficients are used to scale their corresponding characteristic 

matrices. Finally, the scaled characteristic matrices are added 

to produce the final LTBMV-representation of the de-noised 

signal. Initial experiments demonstrated that this method 

replicates the output of the OHC Model with very little error. 

B.   Method Shortcomings and Modifications 

The problem with the formulation described above is that it 

requires a large amount of space. For example, a signal with 

1024 samples generates a 1023�512 matrix which requires 

about 4 MB. Since the characteristic matrix must be generated 

from a wavelet in the same resolution (length) as the intended 

signal, each characteristic matrix is also 4 MB. The wavelet 

decomposition of the signal yields 1023 coefficients. As a 

result, our formulation requires 4 GB of storage space to hold 

all the characteristic matrices! This massive amount of data 

complicates implementation and makes a direct 

implementation inappropriate for real-time, low power 

environments. 

We are proposing to deal with the challenges of the direct 

implementation based on two observations. The first is that 

shifting a wavelet corresponds approximately to shifting the 

characteristic matrix. This approximation is less accurate at 

low resolution levels where the wavelet is longer and 

generates a response through most of the matrix. But at high 

resolution levels, where the wavelet is very brief and generates 

a very short response, this approximation is very accurate. We 

modify our method by adding a new feature – the shifting 

levels. In each of these levels, a single matrix corresponding to 

the coefficient at the midpoint of the level is generated and 

shifted. This allows us to reduce the number of matrices in our 

1024-sample example from 1023 to 21 with shifting levels 4 – 

9 (Fig. 5-a). 

The second observation is related to the first one. 

Considering that higher resolution level coefficients yield 

short responses in the LTBMV matrices, we observe that most 

of the matrix contains insignificant values that are less than 

1% of the largest value in the matrix. We ignore these values 

and store a smaller matrix that contains more significant 

values (Fig. 5). This reduces the size of the matrices in our 

1024-sample example from 1023�512 to 666�411 (2.1 MB) at 

level 4 and 95�105 (78 KB) at level 9.  

These two modifications (shifting and thresholding) allow 

the reduction of the storage requirement for our 1024-sample 

example from 4 GB to 64 MB – a 63-fold improvement! Of 
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OHCOHC
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+

…
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Fig. 4. Adding the matrices generated from individual wavelets results in a 

final matrix that can be used to reconstruct the output of the OHC Model. 

Levels 

0 – 3

Levels 

4 – 9

< 1%

(a) (b)
Levels 

0 – 3

Levels 

4 – 9

< 1%

(a) (b)

Fig. 5. Observations lead to optimized formulation in which high resolution 

levels only have one matrix which is shifted (a) and a subset of the matrix 

is used with small values removed (b). 
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course for longer signals larger characteristic matrices would 

be needed. This raises another problem: how can our 

formulation be changed to work with arbitrary length signals? 

(The length of the signal dictates the size of the characteristic 

matrices.)

Experiments indicated that simply concatenating the results 

of 1024-sample segments to create one large segment shows 

poor results. This is because, as is shown in Fig. 2, the 

response of a signal in the matrix “travels” down the BM from 

the base to the apex. Breaking a signal into disjoint segments 

does not reflect this flow. However, we observe that breaking 

the signal into overlapping segments better accounts for this 

phenomenon. This final modification is illustrated in Fig. 6. 

C.   Implementing the Fused Model 

The results in the next section demonstrate that the fused 

model formulation is comparable to the OHC Model in terms 

of accuracy, but requires considerably less computational 

effort. One issue that arises in implementing the method is 

how to determine the parameters and their impact on the 

model’s performance. Some of our parameter choices were 

arbitrary or as a result of observation. More work will need to 

be done to determine guidelines for optimal choices. 

Many of the parameters have to be set during the 

preprocessing step and cannot be changed in real time. These 

include decisions on the use of the wavelet filter for creating 

characteristic matrices, the segment lengths, the choice of 

shifting levels, the thresholding methodology for the 

characteristic matrices and all parameters of the OHC Model 

(including the sampling rate of the signal). Parameters that can 

be chosen at run time include for example the overlap and the 

wavelet thresholding method (if the wavelet decompositions 

for the noisy signal are to be thresholded). 

V.   RESULTS

A.   Performance Measures 

The primary measure for evaluating our model outputs is the 

Signal-to-Noise Ratio (SNR) measured in decibels (dB) and 

defined as: 

��
�

�
��
�

	



N

S

P

P
SNR 10log10 , (4) 

where PS and PN are a measure of the power in the signal and 

the noise respectively. In the experiments that follow, we 

focus on the increase in SNR (SNR�):

SNR� = SNR(sdenoised) – SNR(snoisy), (5) 

where snoisy is the original noisy signal and sdenoised is the output 

of one of the models. We also consider the root mean square 

error (RMS):

n

E
RMS N
 , (6) 

where EN is the energy of the noise in a given signal. (The 

noise in a signal is derived by subtracting the original noise 

free signal from the given signal.) To appreciate how much 

noise is being removed, we introduce a Noise Reduction Ratio 
(NRR) based on the RMS error:  

NRR = RMS(snoisy) / RMS(sdenoised), (7) 

For example if the RMS error is reduced from 0.2 to 0.1, 

then NRR is 2 and half of the noise has been removed. 

We also observe the running times of these models. Other 

evaluation criteria which are not included in this report 

include: 

� perceived audio quality in psychological experiments, 

� latency between when a signal enters a model and 

when an output can be perceived, and 

� size and power consumption of hardware 

implementation. 

B.   Experiment Parameters and Results 

We experimented on two speech signals described in Table 

I. The signals were contaminated with two kinds of noise. 

White noise contains all the frequencies a person can hear in 

approximately equal amounts. It sounds like it has more high 

frequency content because higher octaves have more 

frequencies than lower octaves. Pink noise compensates for 

this by reducing the volume of frequencies at higher octaves. 

In our experiments, we use a Daubechies wavelet provided 

by wavethresh – “DaubLeAsymm”, “filter 9” – with “soft” 

thresholding of all coefficients below 85th percentile [5]. (This 

wavelet gave the best results among all the wavelets provided 

by wavethresh in initial experiments.) The Fused model uses 

this wavelet to generate the characteristic matrices and to 

decompose the signals to be processed. We run the Fused 

model twice. In the first run we use all the wavelet 

Break up signal into overlapping segments

1024 Samples

OHC

1023 Coefficients

� (Scaled/Shifted Matrices)

Wavelet Decomposition

Matrix Generation

Signal Reconstruction

Noisy Signal

Add to reconstructed signal

Break up signal into overlapping segments

1024 Samples

OHCOHC

1023 Coefficients

� (Scaled/Shifted Matrices)

Wavelet Decomposition

Matrix Generation

Signal Reconstruction

Noisy Signal

Add to reconstructed signal

Fig. 6. In the final formulation, the signal is divided into overlapping 

segments. The non-overlapping portion of each reconstructed signal is 

concatenated to the reconstruction derived from previous segments. 
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decomposition coefficients for the given signal to calculate the 

final LTBMV-matrix. In the second run we threshold the 

coefficients (using the method used in the wavelet model). 

Tables II and III summarize the results. The best results 

occur when the wavelet decomposition of the signal is 

thresholded before running the Fused Method. Fig. 7 and Fig. 

8 illustrate that the Fused Model (without thresholding) 

generates results that are very similar to the output of the OHC 

model. But, as Table III shows, the Fused Model is up to 23 

times faster than the OHC Model, although the 

implementation has not yet been optimized and is run within 

the R-stat interpreter environment. 

VI.   APPLICATIONS AND CONCLUSIONS

Noise reduction tools have many applications in speech 

processing as mentioned in the introduction. One important 

application is in hearing aids. Hearing aids are the primary 

tool for assisting individuals with hearing loss due to a 

damaged cochlea. But since hearing aids amplify the sound 

without regard to the level (volume) of the original signal, 

background noise also gets amplified. Improving the SNR is 

important to make hearing aids more comfortable. It has been 

shown that improving the SNR by 1 dB can improve 

intelligibility by 7% to 19% [8].  

The Fused model can be used in concert with other 

techniques such as binaural processing and speech recognition 

to provide enhanced speech processing. However, more 

research is needed to decide the parameters that deliver 

optimal performance and results. Research is also needed to 

evaluate the complexities of implementing this model in 

hardware and performing real time speech processing. 
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TABLE II

RESULTS OF 3 EXPERIMENTS 

TABLE I

SUMMARY OF SIGNALS USED IN EXPERIMENTS 

104,70444.1 KHz2.374 secLong Signal

20,99344.1 KHz476 msShort Signal

SamplesSample RateDuration

104,70444.1 KHz2.374 secLong Signal

20,99344.1 KHz476 msShort Signal

SamplesSample RateDuration

2.517.671.835.264.2612.50Fused 
(with thresholding)

1.905.561.795.042.608.29Fused 
(no thresholding)

1.895.171.020.192.397.51Wavelet

1.935.711.563.842.758.78OHC

NRRSNR�NRRSNR�NRRSNR�

Experiment 3
a

Long Signal, White Noise

Experiment 2
a

Short Signal, Pink Noise

Experiment 1
a

Short Signal, White Noise

2.517.671.835.264.2612.50Fused 
(with thresholding)

1.905.561.795.042.608.29Fused 
(no thresholding)

1.895.171.020.192.397.51Wavelet

1.935.711.563.842.758.78OHC

NRRSNR�NRRSNR�NRRSNR�

Experiment 3
a

Long Signal, White Noise

Experiment 2
a

Short Signal, Pink Noise

Experiment 1
a

Short Signal, White Noise

a
Each experiment is conducted 5 times with varying amounts of noise. The average SNR� and NRR is recorded.

106 sec2438 sec2 secLong Signal

22 sec509 sec< 1 secShort Signal

FusedOHCWavelet

106 sec2438 sec2 secLong Signal

22 sec509 sec< 1 secShort Signal

FusedOHCWavelet

TABLE III 

MODEL RUNNING TIMES 

Signal to Noise Ratio Comparison

-5.0

0.0

5.0
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35.0

Noisy Signals
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R
 (

d
B

)

Noisy -1.5 3.5 8.5 13.5 18.5

OHC 7.4 12.2 17.4 22.3 27.3

Wavelet 7.3 11.9 16.2 20.4 24.4

Fused 6.8 11.8 16.9 21.8 26.8

Fused (th) 12.5 17.1 21.2 25.2 29.1

1 2 3 4 5

Fig. 8. Experiment 1: Detailed SNR Results 

Root Mean Square Error Comparison
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S
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r

Noisy 0.182 0.103 0.058 0.032 0.018

OHC 0.066 0.038 0.021 0.012 0.007

Wavelet 0.066 0.039 0.024 0.015 0.009

Fused 0.070 0.040 0.022 0.013 0.007

Fused (th) 0.037 0.021 0.013 0.008 0.005

1 2 3 4 5

Fig. 8. Experiment 1: Detailed RMS Error Results 
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