Challenges in the Formal Verification of Complete State-of-the-Art Processors

Nathaniel Ayewah, Nikhil Kikkeri and Peter-Michael Seidel
Southern Methodist University, Computer Science and Engineering, Dallas, TX 75205
{ayewah,nikhil, seidel}@engr.smu.edu

Sven Beyer*
OneSpin Solutions GmbH, Munich, Germany
Sven.Beyer@onespin-solutions.com

Abstract

Research on formal hardware verification has made
steady progress in developing methodologies and tools that
try to cope with the growing complexities of systems. De-
spite of case studies that demonstrate the applicability of
formal methods to selected contemporary processor de-
signs, the current state in formal hardware verification is
far from being considered practical for systems of the com-
plexity of complete contemporary processor designs.

It is our goal to improve the practicality of current for-
mal verification methods for complete state-of-the-art pro-
cessor designs. The recent success in the complete formal
verification of the VAMP can be considered pioneering for
reaching design complexities close to this range. We dissect
the VAMP verification effort in detail with the goal to iden-
tify the main technical and organizational challenges and
the major productivity bottlenecks of the verification pro-
cess. This is done in particular to search for opportunities
of increased levels of automation. As part of our efforts we
are developing the VAMPEXxplorer, a tool that provides an
intuitive interface to the specification, the implementation
and the verification of the VAMP. The VAMPEXxplorer visu-
alizes the general implementation and verification structure
and improves accessibility to expert and non-expert users.

1. Introduction

Most current digital systems are far too complex to guar-
antee their correct design just by non-formal verification
techniques such as exhaustive simulation. Formal verifi-
cation techniques can, in principle, offer better scalability

*Work funded by the German Federal Ministry of Education, Science,
Research and Technology (BMBF) in the framework of the Verisoft [22]
project under grant 01 IS C38 while the author was with Saarland Univer-
sity, Saarbriicken, Germany

of the verification effort with the circuit size and it seems
that recent advances in formal verification methodologies
and tools have enabled the applicability to more practical
design options. Various projects have been successful in
showing the correctness of aspects of processor designs us-
ing formal techniques (e.g. [6,8,13,20,23]). However, most
studies focus on high-level descriptions or on selected sub-
components of a system and make idealistic assumptions
about some parts of the design. Details of the implemen-
tation are usually ignored and hardly any project design is
synthesized or fully implemented. Formal verification ef-
forts are also increasingly finding their way into commer-
cial design efforts (e.g. [1,7, 14, 16, 18]). But even if in
these cases the corresponding designs have an implemen-
tation, it is not usually the implementation that is formally
verified, but it is some high-level description or only parts
of the design. A full consideration of all system levels from
specification to a synthesizable implementation description
is necessary to consider it the complete verification of a pro-
cessor. The authors of [12] have been generalizing the lim-
itations of current verification techniques by stating that the
complete functional verification of microprocessor designs
could not even be achieved. Although this statement does
not hold in this generality as shown by the recent success
in the complete verification effort of the VAMP [2, 3], it is
generally assumed that complete formal verification is still
far from being considered practical for designs of the com-
plexity of contemporary microprocessors.

The complete formal verification of the VAMP can
be considered pioneering for reaching design complexities
close to this range. The VAMP has been verified using
PVS [17] with a high degree of interactive intervention. A
premier motivation in our analysis and presentation of the
VAMP verification effort is the search for opportunities of
increased levels of automation and the increased awareness
and communication about verified open source reference
designs and challenges in complete processor verification.

1
Proceedings of the 2005 International Conference on Computer Design (ICCD’05) CSFK/[PUQTER
0-7695-2451-6/05 $20.00 © 2005 IEEE SOCIETY

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 15, 2010 at 13:32 from IEEE Xplore. Restrictions apply.

As part of this effort we are developing the VAMPExplorer,
a tool that provides an intuitive interface to the specifica-
tion, the implementation and the verification of the VAMP.
The VAMPExplorer visualizes the general implementation
and verification structure and simplifies quick location and
comparison of code fragments for improved accessibility.

In Section 2 we provide a description of the implementa-
tion and proof of the VAMP. In Section 3 we overview alter-
native processor verification efforts and discuss their restric-
tions. In section 4 we dissect the challenges in the VAMP
verification effort. In section 5 we give a short overview
of our efforts in developing the VAMPExplorer, before we
finally conclude in section 6.

2. Description of the VAMP

For a detailed description of the VAMP, we refer to [2,3].
We think that the VAMP project [4] can be considered a ref-
erence project for processor verification for several reasons.

With the help of the theorem-prover PVS [17], the
VAMP is formally verified on the gate level, i.e., the veri-
fied PVS design is automatically translated to Verilog HDL
for synthesis on an FPGA. The complete sources of both
design and proofs are available online at the project web-
site [4]. The VAMP offers a full DLX instruction set [15]
with about 100 instructions including floating point exten-
sions. The implementation contains a Tomasulo scheduler
with reorder buffer supporting multiple results, issuing into
the reorder buffer, and reordering of instructions in execu-
tion units.

Design and verification are structured hierarchically re-
sulting in many verified modules. This means that the cor-
rectness criteria of the modules are not only what one thinks
they should be, but they formally are what is needed for the
complete verification of the VAMP. Correctness criteria for
modules that almost fit together are of no use. Just con-
sider the difference between i) an aeroplane with yourself
on board crashing due to some interplay of its modules that
was not foreseen by its engineers because it was not mod-
eled formally and ii) you safely landing at your desired hol-
iday resort.

The VAMP is not intended as a prototype that demon-
strates feasibility of new verification techniques. On the
contrary, the VAMP project “just” used slight refinements
of existing techniques and applied them in an engineering
process to the formal verification of a complete micropro-
cessor. We therefore suggest using modules of the VAMP
as benchmark suites for new verification methodologies in-
stead of some purely academic examples.

In the VAMP project, almost 90000 interactive proof
steps were carried out for about 2500 lemmas; the overall
design and verification effort was about eight man years.

The generated Verilog code of the VAMP contains 866

modules in more than 100000 lines of code. The PVS
sources of the design alone have roughly 10000 lines of
code. The VAMP contains more than 8800 register bits. The
Xilinx software reports an equivalent gate count of about
1.5 million. Note that this number also covers the instruc-
tion and data cache, i.e., 24 KB.With a cost of 4 gates per
memory bit, this results in about 0.8 million gates for mem-
ories, i.e., slightly more than half the overall gate count. As
a comparison, an Intel Pentium of the first generation has a
gate count of about 3.1 million including 16 KB of caches,
i.e., 0.5 million memory gates.

The overall correctness proof of the VAMP is structured
hierarchically. At the lowest level, there is the gate-level im-
plementation of the VAMP. About 5% of the overall proof
effort were spent on this step.

As anext step, complete execution units are verified and
abstracted from with uninterpreted functions. Carrying out
this module verification and replacing the execution units by
their specification function leads to an abstract implemen-
tation of the overall processor with uninterpreted functions
as execution units. More than 60% of the proof effort was
spent for the complex execution units.

The verification of a parameterized Tomasulo algorithm
cost about 15% of the verification effort. In the next step,
the actual data management of the pipeline is verified, i.e.,
the abstract pipeline implementation is mapped to a pro-
grammer’s model without interrupts which carries out one
instruction per step which was just as complex as the ver-
ification of the Tomasulo algorithm. In the final step with
about 3% of effort, interrupt support is added.

3. Other Processor Verification Projects

Most of the features of the VAMP have also been cov-
ered by other verification projects; however, these projects
usually focus on single modules, make heavy restrictions,
or use strong abstractions.

Many formal verification projects focus on Micropro-
cessors with in-order scheduling, one or several pipelines
including result forwarding, stalling, and interrupt mech-
anisms [6, 25]. The verification of the very simple, non-
pipelined FM9001 processor is reported in [5]. Using the
flushing method from [6] and uninterpreted functions for
modeling functional units, superscalar processors with mul-
ticycle execution units, exceptions and branch prediction
[25] have been verified by automatic BDD based methods.

The formal verification of Tomasulo schedulers with re-
order buffers for the support of precise interrupts [8, 10, 13,
19] is more complex. Using theorem proving, Sawada and
Hunt [11, 19, 20] show the correctness of an entire out-of-
order processor, precise interrupts, and a store buffer for the
memory unit. They also consider self-modifying code.

Except for the work on the FM9001 processor [5], none

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 15, 2010 at 13:32 from IEEE Xplore. Restrictions apply.

of the papers quoted above states that the verified design
has been implemented. A/l results cited above use several
simplifications and abstractions. The realized instruction
set is restricted to 11 instructions [19] or even only six [6].

Sometimes, non-implementable constructs are used in
the processors: e.g., Hosabettu et.al. [10] use tags from
an infinite set. The highly automated Tomasulo proof of
McMillan [13] neither covers multiple results sharing the
same tag, specialized execution units or reservation stations
nor direct issuing into the reorder buffer.

The verification of pipelines or Tomasulo schedulers
with instantiated execution units has not been reported apart
from the VAMP project [2,3]. Indeed, in [24] the authors
state: “An area of future work will be to prove that the cor-
rectness of an abstract term-level model implies the correct-
ness of the original bit-level design.”

4. Challenges in the Verification of the VAMP

The aim of the VAMP project was the design and veri-
fication of a complete state-of-the-art microprocessor with-
out any abstractions or restrictions. Most of the difficulties
faced in the course of the project stemmed from this fact.

Intense cooperation between the project members was
needed in oder to define interfaces between the modules
that not only looked good, but would actually allow for an
efficient design and their formal integration into the overall
correctness proof. Different modules were then designed
and verified in parallel. Since synthesis of the design had
been one of the initial project objectives, all these modules
had to be verified down to the gate level.

When all the different modules were integrated to the
VAMP proof, the full DLX instruction set with about 100
instructions was realized. Finally, the VAMP project also
carried PVS to its limits concerning complexity. Type
checking of the overall proof alone took two hours of CPU
time in 2003; actually rerunning all the proofs several days.

The VAMP project basically employed purely interac-
tive proofs in PVS with little use of strategies. However,
90000 interactive proof steps are obviously too much for
the VAMP project. We believe that with integration of the
right automated tools, at least three quarters of the interac-
tive proof steps will become obsolete since they seem triv-
ial. Only with this gain in productivity, the verification of
entire systems will become feasible, e.g., the combination
of hardware and system software needed in order to pro-
vide virtual memory to user processes [9]. We therefore
provide selected challenges for the automated verification
community at the VAMPExplorer website [21].

The VAMP design is cleanly modularized into the core,
the execution units, and the memory system. Therefore, it
is possible to plug in a different memory system or more
optimized execution units by only verifying their local cor-

VAMP Explorer A 2
HIERARCHICAL VIEW

_LOCAL VIEW SCHEMATIC VIEW

i sadetiN peanat] THEORY
BEGM

ascvt LBRARY.

IMPORTING ba s st aasii]

Figure 1. Screen-shot of the VAMPEXxplorer

rectness and combining it with the remaining part of the
original VAMP correctness proof. In addition, the memory
system and its proof is parameterized, e.g., on the associa-
tivity and size of the caches. Both the modularization and
the parameterization make the VAMP proof quite generic.

Since the proof is modularized, it is possible to switch
the VAMP core with some other scheduling algorithm.
Note, however, that this would also require the proof of a
gate-level implementation of the scheduling algorithm.

The VAMP uses the delayed PC scheme for instruction
fetch. Integrating branch prediction instead would require
a considerable effort on the core proof since the correct-
ness of instruction cancellation is proved for interrupts only
as the very last step of the overall proof. Cancellation due
to misprediction, however, happens frequently even without
interrupts, i.e., at the lowest level of the proof.

While the memory system is parameterized, there are
some extensions that would require a large effort. Consider,
e.g., non-blocking caches. On the other hand, for the addi-
tion of store buffers, the existing memory system could just
be re-used; some additional effort would only be needed to
show the correctness of forwarding from the store buffers.

As long as design optimizations keep the overall struc-
ture of the VAMP, an adaption of the proof is fairly easy to
carry out. However, re-balancing the design by introducing
an additional pipeline stage for timing reasons or power-
saving optimizations may require a huge proof effort.

5. The VAMPExplorer

The complexity of the VAMP project makes it difficult
to identify structural information or to navigate through
specific details. The goal is to establish the open source

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 15, 2010 at 13:32 from IEEE Xplore. Restrictions apply.

VAMP descriptions as a reference design for complete pro-
cessor verification to a broad audience and encourage mod-
ular verification of selected properties/components with al-
ternative, preferably automated, verification techniques. We
have a focus on providing an intuitive graphical interface
for identifying and navigating through VAMP theories and
their relations while allowing concurrent access and sum-
mary of different aspects (specification, PVS implementa-
tion, synthesized Verilog Implementation, properties and
related proofs) of a single component.

A high degree of automation is involved in the data and

(7]

(8]
(9]

(10]

M. Cornea-Hasegan. [A-64 floating point operations and
the IEEE standard for binary floating-point arithmetic. Intel
Technology Journal, Q4, 1999.

W. Damm and A. Pnueli. Verifying out-of-order executions.
In CHARME, pages 23—47. Chapman & Hall, 1997.

M. Hillebrand. Address Spaces and Virtual Memory: Spec-
ification, Implementation, and Correctnesss. PhD thesis,
Saarland University, Germany, 2005.

R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of
correctness of a processor with reorder buffer using the com-
pletion functions approach. In CAV, volume 1633 of LNCS,
pages 47-59. Springer, 1999.

property extraction from the PVS files and the preparation [11] W. A. Hunt and J. Sawada. Verifying the FM9801 microar-
of the dynamic hierarchical structural views. We chose to chitecture. IEEE Micro, pages 47-55, May-June 1995.
use Macromedia Flash as our web front-end because of its [12] S Mangel§dorf, Rj Grgtlas, R. Blumberg, and R. Bha-
broad web accessibility. The VAMPExplorer is available tia. Functional verification of the HP PA 8000 processor.
. Hewlett-Packard Journal, 1-13, 1997.
online at [21]. [13] K. McMillan. Verification of an implementation of Toma-
sulo’s algorithm by compositional model checking. In CAV,
6. Conclusion volume 1427 of LNCS. Springer, 1998.
[14] J. Moore, T. Lynch, and M. Kaufmann. A mechanically
It is our goal to improve the practicality of complete for- checked proof of the AMD5K86 floating point d1V.1s10n pro-
mal verification for complex state-of-the-art processors. For ‘%r;gg [EEE Transactions on Computers, 47(9):913-926,
this purpose we discuss the fietails and and the genera.liza— [15] S. M. Miiller and W. J. Paul. Computer Architecture. Com-
tion of challenges that occur in the complete formal verifica- plexity and Correctness. Springer, 2000.
tion effort of the VAMP as one of the pioneering examples [16] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally
in complete formal processor verification. We suggest the verifying IEEE compliance of floating-point hardware. Intel
use of the VAMP sources as a reference design and bench- Technology Journal, Q1, 1999.
mark suite for the (automatic) formal verification of compo- [17] S. Owre, N. Shankar, and J. M. Rushby. PVS: A proto-
nents as they are integrated in a complex modular processor type verification system. In CADE 11, volume 607 of LNA/,
design. For improved accessibility we develop the VAMP- pages 748-752. Springer, 1992. o
Explorer GUI for an intuitive access to the VAMP sources. [18] D. ,M' Russinoff. A case Smdy.m formalvverlﬁgmon of
Future work includes extensions of the VAMPExplorer to register-transfer logic with ACL2: The floating point adder
. o of the AMD Athlon processor. In FMCAD, volume 1954 of
enhanced automatically generated schematic views and the LNCS. Springer, 2000.
handling of even more complex proof structures [22]. [19] J. Sawada and W. A. Hunt. Processor verification with pre-
cise exceptions and speculative execution. In CAV, volume
References 1427 of LNCS. Springer, 1998.
[20] J. Sawada and W. A. Hunt. Verification of the FM9801 mi-
[1] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model CTOprocessor: An ,Out-Of_ord?r microprocessor ,m(.)dd with
Checking at IBM. In Formal Methods in Systems Design, speculative execu?lon, exceptlons‘, and self-modifying code.
pages 101-108. Kluwer Academic Publishers, 2003. Formal Methods in Systems Design, 20(2):187-222, March
[2] S. Beyer. Putting it all together — Formal Verification of the 2002. . .
VAMP. PhD thesis, Saarland University, Germany, 2005. [21] P.--M. Seidel and N. AyewaNh. The VAMP explorer. Website,
[3] S. Beyer, C. Jacobi, D. Kroning, D. Leinenbach, and 2005. ht.tp:/ / engr.smu:edu/ seidel/V. A.MPExpl.orer/ : .
W. Paul. Instantiating uninterpreted functional units and [22] The Verisoft Consor?“m- The Verisoft project. Website,
memory system: functional verification of the VAMP. In 2003. http:// WWW'Ver.ISOft'de' . .
CHARME, volume 2860 of LNCS. Springer, 2003. [23] M. Yelev. Cpmparatwe study of strategies for formal veri-
[4] S. Beyer, C. Jacobi, D. Leinenbach, and W. J. Paul. The fication of high-level processors. In ICCD, pages 119-124,
VAMP project. Website, 2003. http://www-wjp.cs.uni- 2004 .)
sb.de/projects/verification. [24] M. Velev and R. Bryant. Superscalar processor verification
[5] B. C. Brock and W. A. Hunt. The DUAL-EVAL hardware using efficient reductions of the logic of equality with un-
description language and its use in the formal specification interpreted functions to propositional logic. In CHARME,
and verification of the FM9001 microprocessor. Formal volume 1703 of LNCS, 1999.
[25] M. Velev and R. Bryant. Formal verification of superscale

Methods in System Design, 11:71-107, July 1997.

[6] J.Burch and D. Dill. Automatic verification of pipelined mi-
croprocessors control. In CAV, volume 818 of LNCS, pages
68-80. Springer, 1994.

microprocessors with multicycle functional units, exception,
and branch prediction. In DAC. ACM, 2000.

YF]',F.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 15, 2010 at 13:32 from IEEE Xplore. Restrictions apply.

COMPUTER
SOCIETY

