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Abstract—Sparse computations dominate a wide range of ap-
plications from scientific problems to graph analytics. The main
characterization of sparse computations, indirect memory ac-
cesses, prevents them from effectively achieving high performance
on general-purpose processors. Therefore, hardware accelerators
have been proposed for sparse problems. For these accelerators,
the storage format and the decompression mechanism is crucial
but have seen less attention in prior work. To address this
gap, we propose Ascella, an accelerator for sparse computations,
which besides enabling a smooth stream of data and parallel
computation, proposes a fast decompression mechanism. Our
implementation on a ZYNQ FPGA shows that on average, Ascella
executes sparse problems up to 5.1x as fast as prior work.

Index Terms—Sparse, Stream Memory Access, FPGA.

I. INTRODUCTION

Matrix-vector algebra and more specifically sparse matrix-
vector multiplication (SpMV) have a wide range of appli-
cations in scientific problems, neural networks, and graph
analytics. In most of these fields, the matrices are signifi-
cantly sparse. Therefore, when running sparse computations
on general-purpose processors, most of the time and energy
are spent on data movement because of irregular and indirect
memory accesses. Several studies have advocated software
optimizations for CPUs [1], [2] and GPUs [3]-[5] to facilitate
the execution of sparse problems. However, even by employing
such optimizations, increasing performance is still limited by
power consumption. To address this, hardware accelerators
that co-optimize memory accesses and computations are more
attractive for accelerating sparse problems [6]-[13].

The source of performance improvements of hardware ac-
celerators for sparse problems is a combination of highly
parallel computations and high memory bandwidth utiliza-
tion. Highly parallel computations are implemented in fine
or coarse granularity. For instance, if the matrix operand
has blocks of non-zero elements, SpMV operation is divided
into many dense matrix-vector multiplications, each of which
parallelized in fine granularity. Such an approach suites block-
sparse storage formats. Since such a pattern appears in several
applications, the block-sparse storage formats [12], such as
blocked compressed sparse row (BCSR), are popular in recent
hardware accelerators for sparse problems [9], [10], [12], [13].
Although block-sparse storage formats increase locality in
memory accesses, they do not satisfyingly utilize memory
bandwidth and footprint, since a percentage of elements in
a block are zero. Therefore, alternatively utilizing more ag-
gressive storage formats, such as compressed sparse row and
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column (CSR and CSC) are used that are favorable for highly
scattered sparse data with no pattern in locality. In such a
case, the original matrix is parallelized in a coarse-grained
manner by splitting into smaller sparse operations. While
this approach utilizes memory bandwidth more efficiently, it
worsens irregular and indirect memory accesses.

The key challenge of preceding approaches is that they
either optimize the computation latency or the memory band-
width in isolation. However, to effectively accelerate sparse
problems, memory streaming and computation must be co-
optimized. To do so, we propose accelerating sparse computa-
tion by enabling parallel stream accesses to memory (Ascella).
Ascella is the first streaming accelerator for sparse problems,
which maintains a balance between compute latency and data
transfer by envisioning two insights: (i) using a storage format
that from one hand assures streaming only the non-zero values,
and from the other hand is easy to decompress; and (ii) propos-
ing a computation engine that follows the speed of memory
streaming. To enable the latter, the central building block
is optimizing the decompression mechanism, which is often
missed by prior work. To address this gap, Ascella avoids extra
accesses to local buffers, and provides deterministic parallel
accesses to local buffers. We implement Ascella on a ZYNQ
XC772020 FPGA. Our results show that the decompression
mechanism in Ascella helps executing SpMV up to 5.1x as
fast as prior work.

II. BACKGROUND & MOTIVATION

SpMV can be accelerated by parallelizing its dot products
using a multiplier array attached to an adder tree. This paper
builds an accelerator based on such a dot-product engine and
seeks to efficiently integrate it with stream memory accesses.

Ideal Streaming: To efficiently use a parallel engine to
process a stream of data blocks, ideally, the compute time
for each block should be the same as data transfer time. In
this case, streaming a block and processing it are pipelined
by buffering one block. As a result, block b — 1 (i.e., the
previous one) is always processed concurrently while block b
is streamed. Therefore, the total latency of SpMV would be:

blocks
Tiotal = Z mam(T'r};zemorva:o:ripute) (1

b=1
in which Tﬁmmory is the time to stream a block, and Tf(;ipute
is the time to process the previous block. This paper aims
to implement an ideal sparse accelerator on FPGA and uses
block RAM (BRAM) for the buffers. However, the proposed

ideas are general and not tight to FPGA.
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Fig. 1. The time steps for reading a sparse matrix compressed in CSR and BCSR formats and buffered in BRAM. We assume one read per cycle.

Related Work: Storage formats CSR and CSC have been
proposed for sparse problems to use memory bandwidth
efficiently. However, they result in indirect memory accesses.
To relax the indirect memory accesses, BCSR, an extension of
CSR is used in recent studies [9]-[13]. BCSR takes advantage
of the locality in the non-zero values in the sparse matrix.
However, even BCSR cannot satisfy the requirements of an
ideal streaming accelerator because its decompression still
creates a bottleneck. More specific storage formats such as
the diagonal format (DIA) [14] and Ellpack-Itpack (ELL) [15]
have been explored for cases when the non-zeros follow a
specific pattern. Such formats similarly suffer from the same
decompression problem.

The Challenge: Figure 1 uses an example to clarify the
decompression mechanisms of CSR and BCSR, the frequently
used storage formats. CSR uses three vectors (i.e., row indices,
column indices, and values) to represent a matrix. Row indices
indicate the number of elements in each row. Thus, for decom-
pressing a non-zero row, we need to first read one element of
row indices, and then, we read column indices and values as
required. As a result, the key challenge of CSR is that (i) an
overhead of one access to the buffers and one computation is
always required for all rows; and, (ii) to retrieve the column
indices and values, accesses to the buffers are sequential,
because we do not know in advance which elements of column
indices and values are going to be accessed. Thus, we cannot
partition and allocate those two vectors across the blocks of
BRAM to guarantee parallel reads. In summary, the latency to
process an L x W matrix (L: number of rows), is defined by
the overhead of accessing the buffer (I'zrans) Once per row,
and the latency of decompressing the non-zero rows (nnzr: #
non-zero rows), and applying dot product on them:

nnzr

=L xTeram + Z Taot + Tdceffmp.(r)
r=1

in which Ty, is the latency of the dot product. Because

of sequentially reading the elements of a non-zero row, the

latency of decompressing a row (Tdceffmp.(r)) depends on the
number of non-zero elements in that row (NN Z(r)) and the

; CSR .
latency to decompress a single non-zero value (¢ ;.05 ):
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Tiecomp.(r) = taceomp. X NNZ(r) 3)
If we stream the row indices and column indices using two
streamlines in parallel, the longer one defines the latency to
stream the L x W matrix as TS558, = maz(NNZ, L) X tp,,

in which NN Z is the length of column indices, L is the length
of row indices, and t,,, is the latency of streaming an element.

The decompression mechanism of BCSR is similar to CSR,
whereas instead of individual non-zero elements, we decom-
press the non-zero sub-blocks. In Figure 1, the size of sub-
blocks are 2 x 2. Therefore, the matrix includes three non-zero
sub-blocks. Similar to CSR, one access to the buffer per each
row of sub-blocks is always required. The advantage of BCSR
over CSR is that sub-blocks can be distributed over BRAM
blocks to be accessed in parallel. In summary, the latency to
process a L x W matrix partitioned into [ X w sub-blocks
is defined by the overhead of accessing the buffer (I'srans)
once per each row of sub-blocks (L/1), and the latency of
decompressing all rows of sub-blocks (NN Z R) and applying
dot product to each row of each sub-block:

I NNZR
= (7) X Tpram + Z (I X Tqot)

R=1
Note that regardless of the zero rows in the sub-blocks, we
always need to perform [ dot products for each R. The latency
of decompressing a row of sub-blocks (Td’iccoifz(R)) depends

on the number of non-zero sub-block in R (NNZ(R)) and

; BCSR .
the latency to decompress a single non-zero value (¢, 5, ):

x NNZ(R) )

As the length of row indices is always shorter than that of
column indices and values, the number of sub-block rows
(NNZR) and the size of sub-blocks define the memory
latency as TBCSE — | xw x NNZR X t,,.

memory

BCSR
Tcompute

+ Tiecom (R) &)

BCSR BCSR
Tdecomp.(R) =Ilxwx tdecomp.

III. ASCELLA

Key Insights & Solutions: To achieve the ideal streaming
accelerator for sparse problems, we propose Ascella, which
sustains a balance between computation latency and data
transfer rate. To do so, on one hand, Ascella avoids streaming
the unnecessary zero elements to efficiently use the memory
bandwidth; and, on the other hand, it provides fast computation
to keep following the speed of non-stop streaming. To enable
the latter, the key insight of Ascella is avoiding extra accesses
to the buffers, and providing deterministic parallel accesses to
them, which are the two main obstacles of using typical well-
known compressed storage formats (e.g., CSR and BCSR).

To avoid extra accesses to the buffers, and enable deter-
ministic parallel accesses to them, we use list-of-lists (LIL), a
storage format supported by SciPy library in Python. Figure 2
clarifies how using LIL reduces the number of cycles to
read compressed data and decompress the non-zero rows. As
Figure 2 shows, for each column of the original sparse matrix,
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Fig. 2. (a) Compressing a sparse matrix (matrix in Figure 1) using LIL storage
format and mapping the row indices and values to BRAM blocks. (b) Time
steps of reading row indices and values to decompress the non-zero rows.

LIL saves a list of row indices corresponding to each non-
zero value; as well as a list of all non-zero elements in that
column (i.e., values). Since the columns of values and row
indices can always be accessed in parallel, we can map them
(the columns) to different blocks of BRAM (e.g., to blocks
BO to B7 in Figure 2). As a result, no extra read is required
for determining the number of next read accesses. Thus, the
latency of processing an L x W matrix by using Ascella is:

Ascella Ascella
Tcompute = nngr X (TBRAI\/I + tdecgmp, + Tdot) + TBRA]\/I (6)

in which nnzr is the number of non-zero rows. As the
equation shows, creating a non-zero row takes the latency of
one BRAM access (since the accesses are inparallel), plus the
latency for creating the input of the dot product (tﬁesccjﬁg.). To
recognize the end of the non-zero rows, the time of one ad-
ditional BRAM-access is added. Note that T:g5ec!l¢ indicates
the end-to-end latency, but in reality, 7y,; can be hidden by
pipelining. Memory streaming time for Ascella is defined by
the number of non-zero rows (nnzr), the size of rows (i.e.,
W), and transferring one additional row for indicating the end
of non-zero rows as Tyseclle = (nnzr +1) X W X ty,.
Microarchitecture: To ideally stream data to a parallel dot-
product engine, the key component of Ascella is a lightweight
microarchitecture for creating a dense row (shown in Fig-
ure 3a), which connects the streamlines to the dot-product en-
gine. This microarchitecture implements deterministic parallel
accesses to BRAM and significantly reduces the decompres-
sion latency (i.e., tﬁesccjﬁg. in Equation 6) by just applying
a lightweight logical operation (i.e., AND) to generate ad-
dresses. At each step of decompression, we use read indices
to read the row indices ®. The minimum of row indices is
used to create a binary mask. The values corresponding to
ones in the mask are selected to participate in creating a dense
row ®. The mask is also used for updating the read indices @.
Figure 3b illustrates two steps of using the microarchitecture to
decompress two dense rows of the example matrix of Figure 2.
Effective Sizing: Because of two reasons, compressing and
transferring large units of data (e.g., the entire original matrix)
is not beneficial for neither Ascella nor our baselines. First,

although all compressed formats eliminate transferring a big
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Fig. 3. The microarchitecture of Ascella for decompression.

1 #pragma HLS ARRAY PARTITION variable=row_idx complete dim=2
2 #pragma HLS ARRAY PARTITION variable=values complete dim=2
function decompressAscella(A, readIdx[])
A in Ascella: row_ idx[HEIGHT][WIDTH]

values[HEIGHT ] [WIDTH]

w

minIdx = ©
for i=0 to WIDTH:
#pragma HLS pipeline
if readIdx[i)<HEIGHT & row_idx[readIdx[i]][i]<minIdx:
minIdx = row_idx[readIdx[i]][i];

® 9 o v

9 for i=0 to WIDTH:

10 #pragma HLS unroll
11 if row_idx[readIdx[i]][i] == minIdx:
12 drow[i] = values[readIdx[i]][i]

13 readIdx[i]++
14 L return drow

Fig. 4. The decompression mechanism of Ascella implemented in HLS.

portion of zeros, to satisfy the worst case, we need to allocate
a sufficient amount of BRAM for the buffers. Second, formats
such as CSR transfer one index for all rows, even for the zero
rows. Therefore, we apply all the techniques only on the non-
zero blocks of the original matrices. To choose an appropriated
size for such blocks, we explore the percentage of non-zero
rows in large (e.g., 8000x8) and small (e.g., 8x8) blocks. Based
on our experiments, on average, the percentage of non-zero
rows in a 8000x8 is 0.4%, which is approximately 47x as
low as that of 8x8 blocks. Therefore, we choose 8 x 8 (i.e.,
W, L = 8) blocks to apply Ascella, CSR, and BCSR.
Implementation: We implement Ascella and the baselines
using Xilinx Vivado HLS. We use relevant #pragrma as hints
to describe our desired microarchitectures in C++. The top
functions of all three implementations sequentially stream the
compressed non-zero blocks, and for each block, they call
SpMV function that iteratively creates dense rows (drow) and
calls dot product. The decompression function varies based
on the storage format. For CSR, since we cannot parallelize
the accesses to values and row indices, we apply pipeline
pragma to their for loop for latency optimization. For BCSR,
to make sure that the elements of sub-blocks are accessed in
parallel, we completely partition the values across the second
dimension of the array before calling the decompression
function. By doing that, we unroll the for loop and enable
parallel accesses to BRAM blocks. For Ascella (Figure 4),
since accesses to the columns of row indices (row_idx) and
values is parallelized, we partition both of them (lines 1 and 2)
before calling decompression. The minimum tree for Ascella,
and routing values from BRAM to drow are implemented by
pipeline (line 6) and unroll (line 10) pragma, respectively.

IV. RESULTS

Experimental Setup: We report latency and resource uti-
lization based on the implementation on ZYNQ XC7Z020
FPGA. The baselines and Ascella use similar memory stream
interfaces to communicate with an external DDR3 memory,
and utilize the same dot-product engine, and, only their de-
compression logic differ. Inputs and outputs of the accelerators
are transferred through the AXI stream interface. The clock
frequency is set to 100 MHz. All computations are 32-bit
integers. For BCSR, the sub-block size is four (i.e., [, w = 4).
We run SpMV on various-size matrices from the SuiteSparse
matrix collection [16], as listed in Table I, with applications
in scientific and graph problems.



TABLE I
MATRICES FROM THE SUITESPARSE MATRIX COLLECTION [16].

Dataset %Sparsity || Dataset % Sparsity
2cubes-sphere 0.016 ASIC-100k 0.009
GaAsH6 0.088 hollywood-2009 0.005
kron-g500-logn16 0.11 mono-500Hz 0.05
offshore 0.01 poisson3Db 0.031
road-usa 0.00001 scircuit 0.09
soc-LiveJournall 0.0029 thermomech-TC 0.07

Performance: The latency of a dot product of size eight
(Tyot = 100ns), streaming four bytes (f,, = 12ns), and
BRAM access (I'sray = 70ns) are similar for the baselines
and Ascella, but, the latency for decompressing a single non-
zero differs. Ascella, which concurrently decompresses the
elements of a nonzero row, spends tﬁjfjﬁg. = 15ns to
decompress an entire row, whereas CSR and BCSR spend
Gy, = tHSS = 11ns for decompressing a single non-
zero element, the latency of which are summed up to define
the total latency (Equation 3 and 5). Based on the distribution
of non-zero values in the input matrices, the latency for
streaming various blocks and to process them differs. However,
as Figure 5 suggests, the relation between memory latency and
compute latency follows a constant pattern, which depends on
the decompression mechanism.

As Figure 5a and b show, regardless of the differences in
computation and memory access time for CSR and BCSR,
their total latency is limited by computation. As Figure Sc
shows, using Ascella balances memory and computation
latency. Moreover, the storage format of LIL reduces the
maximum latency of streaming a block to 800 ns, because
it does not transfer extra row indices for zero rows that
occur frequently even in 8 x 8 block size. Note that if we
were to simply transfer the dense 8 x 8 blocks, without any
compression, latency would have been dominated by memory
latency of 12 x 64 = 768 ns per block. Figure 6 shows the
total latency of applying SpMV for all datasets normalized
to CSR. As Equation 1 shows, the latency of each timestep
is defined by the maximum of processing previous block and
streaming the current block. Thus, the total latency of BCSR
is the highest and that of Ascella is the lowest. On average,
Ascella executes SpMV 2.7x and 5.1x as fast as CSR and
BCSR, respectively.

Resource Utilization: Figure 7 shows the resource utiliza-
tion and the absolute size/units for each of the implementa-
tions. The utilization of BRAM is defined by the required
memory to buffer data and meta-data for one block of size
8 x 8. In the worst case, CSR requires vectors of size 8, 64,
and 64 for buffering row indices, column indices, and values,
respectively. Although BCSR in the worst case requires vectors
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(= c 2
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Fig. 5. The latency of memory and computation for a snapshot of non-zero
blocks for thermomech-TC dataset: (a) CSR, (b) BCSR, and (c) Ascella.
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of half size, for row and column indices, and the same-size
vector for values, since we partition and map the values to
different BRAM blocks, the tool allocates more 18 Kbit blocks
for values and one for each of the row and column indices,
even though each of the blocks are not fully utilized. Ascella
requires two vectors of size 64 to buffer indices and values,
both of which are partitioned and allocated to different BRAM
blocks. Since CSR does not implement any parallelism, it has
the lowest flip-flop and look-up table (LUT) utilization.
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Fig. 7. Resource utilization.

V. CONCLUSIONS & FUTURE WORK

We proposed Ascella, the first streaming accelerator for
sparse problems that streams the non-zero rows of sparse
matrices and processes them as they come at the same pace.
Ascella is a significant step towards accelerating larger scale
sparse problems as its storage format facilitates partitioning
large matrices and more importantly, it is supported in Python
libraries, which makes the implementation straightforward.
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