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Abstract—Matrix inversion is an essential and challenging
operation in several application domains, such as scientific
computing, social networks, and recommendation systems. Since
matrix inversion is a memory-bound task, it has the potential
of being implemented near memory to efficiently use high
memory bandwidth. However, data-dependency patterns in the
common matrix-inversion algorithms limit memory bandwidth
utilization. To minimize the negative impact of such dependen-
cies on performance, we propose matrix inversion acceleration
(Maia), a near-memory FPGA-based implementation of matrix
inversion that converts the mathematical dependencies to gate-
level dependencies thus reduces the critical-path latency. We
implement and evaluate Maia on a high-end Xilinx Ultrascale+
xcu280 FPGA connected to a high-bandwidth memory (HBM2),
targeting the data-center Alveo U280 boards. Maia performs
matrix inversion 4× faster than a baseline FPGA implementation
without the proposed techniques for resolving dependencies.

Index Terms—Near-Memory Processing, Matrix Inversion,
Memory Bandwidth.

I. INTRODUCTION

Inversion of matrices is an essential operation in several
scientific computing applications [1]–[3], such as model re-
duction, polar decomposition, optimal control and predic-
tion, statistics, dynamics analysis, and model reduction, as
well many data scientific applications [4]–[6] such as signal
processing, network analysis and collaborative recommenda-
tion. Various methods including Gauss-Jordan Elimination,
Cholesky Decomposition and Monte-Carlo exist to calcu-
late the matrix inversion. Unlike sparse matrix multiplica-
tion that can be accelerated using several recently proposed
techniques [7]–[9], the inversion of large matrices is a key
challenge as the time complexity of a numerically stable
procedures for matrix inversion is O(n3). Therefore, prior
studies have proposed optimized implementations for various
platforms. For instance, a study [10] implemented the Gauss-
Jordan algorithm for matrix inversion on GPUs, using the
inherent parallelism in the algorithm on the CUDA cores
by decomposing the matrix into columns, each of which
processed by a group of threads.

For further acceleration, hardware and FPGA implementa-
tions of the matrix inversion have been suggested [11]–[17].
For instance, a hardware implementation [17] improved the
pipelining in matrix inversion by implementing the lower-
upper (LU) decomposition method on systolic arrays – de-
composition techniques such as LU decomposition are used to
simplify the time-consuming matrix inversion. However, such
hardware and FPGA solutions are not scalable and are fast and
efficient only in small scales. The systolic-based solution [17],

for example, suffers from the scalability issues inherent with
systolic arrays. The other hardware-based solution for matrix
inversion is block-based approaches [1], [3], [18]–[20]. For
instance, a blocked-LU on network on chip [21] divides the
matrix into sub-matrices which are processed by processing
nodes connected in a mesh. In this method, improvement in the
execution time as a result of parallelism was offsetted by the
communication overhead between processing nodes. Another
work [3] uses a similar approach for parallelizing the matrix
inversion using Gauss-Jordan method by dividing the matrix
into several sub-matrices and then mapping each sub-matrix
to a processing core where main core performs the operation,
and the update process is parallelized.

The key operation behind matrix inversion is a reduction op-
eration that can potentially be parallelized. However, because
of data dependencies in the algorithm of matrix inversion,
the aforementioned GPU optimizations and FPGA imple-
mentations are not able to fully parallelize the inversion. In
addition, because of its low ratio of operations per byte, matrix
inversion is a memory intensive kernel that can potentially
take advantage of near-data processing if data dependencies
did not exist. To reduce the negative impact of such de-
pendencies, this paper proposes Maia1, a matrix inversion
accelerator near memory. Maia breaks down the mathematical
dependencies into smaller ones and implements them as gate-
level dependencies to reduce the critical-path latency. Maia
represents the resulted dependencies as a dependency graph
and implements it on an Ultrascale Xilinx FPGA connected to
a high bandwidth memory (HBM2). Maia proposes an optimal
scheme to partition the graph to reduce the total execution time
of the inversion algorithm. Maia also investigates the trade-off
between throughput and resource utilization of FPGA. Maia
performs matrix inversion 4× faster than an optimized baseline
FPGA implementation without the proposed techniques for
resolving dependencies.

II. CHALLENGE

In the following, we explore calculating the invert of A
using a decomposed matrix (i.e., the outcome of LU). LU
decomposition factors a matrix as the product of lower and
upper triangular matrices: A = LU . Therefore, in the follow-
ing, whenever A is used, it indicates a matrix consisting of L
and U . After decomposition, the inverse of A is calculated as

1Maia is a star in the constellation of Taurus.



for j = 0 to W

for i = 0 to W  
for k = 0 to i

IA[i][j] = IA[i][j] - A[i][k] * IA[k][j]

for i = W-1 to 0  
for k = i+1 to k 

IA[i][j] = IA[i][j] - A[i][k] * IA[k][j]

IA[i][j] = IA[i][j] / A[i][j]

Phase 1
Phase 2

Fig. 1. LU algorithm: calculating the inverse of A. In this paper, we
call this nested loop (which is a matrix-vector operation) an invert: IA =
invert(A, IA), which reads matrix A and the vector IA and updates IA.

A−1 = U−1L−1. The decomposition itself is more straight-
forward and parallelizable compared to the invert algorithm.
Therefore, this paper focuses on the invert algorithm to find the
performance bottleneck. Figure 1 lists a simple pseudo-code
for LU invert, which consists of an outer loop for traversing W
columns of A. The outer loop comprises two inner loops for
traversing A from top to bottom (i.e., phase 1) and bottom
to top (i.e., phase 2), respectively. At each of these inner
loops, an entire column of invert matrix, IA, and a triangular
of A are read, and simultaneously the same column of IA
is updated. As a results, the iterations of i are dependent.
Therefore, we must process the rows of A, sequentially. In
other words, reading and updating the same column of IA
potentially creates a data dependency that prevents further
parallelism and limits fully utilization of memory bandwidth.

In an optimized FPGA implementation, we can parallelize
the iterations of k by a factor of n. To this end, not only
do we unroll the iterations of k by a factor of n, but also we
interleave the elements of A into n partitions of BRAM, so that
we can access them in parallel. We pipeline these chunks of
size n. If each multiplication takes 2 cycles and the subtraction
and write operation take 1 cycle each, we can have a pipeline
as shown in Figure 2a. Such an optimized implementation is
our baseline implementation, in which the number of cycles
to process a rectangle of A depends on width of matrix (W)
and the parallelism factor (n). Since there is no pipeline or
parallelism across the rows, the total time to process W rows
is: 4+6+. . .+2(W/n+1). Figure 2b shows the invert latency
for various W and n. As illustrated, when W doubles, cycles
increases approximately 4×.
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Fig. 2. Baseline optimized implementation: (a) pipelining within each row,
but not across the rows; and (b) invert latency when W and n vary.
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2. Y’ = SpMV(A2, X)
3. Y  = invert(A3, Y’)
4. W’ = SpMV(A4, X)
5. W’’ = SpMV(A5, Y)
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Fig. 3. Key insight: Breaking the main invert on matrix A into parallizable
SpMV and small fast invert and representing their dependencies as a graph.

III. MAIA

Key Insight – To solve the key challenge and improve the
level of parallelism in an FPGA, we have to enable parallelism
across the rows or at least partial rows. To to do so, we
can break down matrix A into blocks as shown in Figure 3
left. Once we are done with processing A1, all rows in A2
can be processed in parallel. However, after that, we still
need to sequentially process all rows of A3. As a result,
even if we increase parallelism in processing some blocks
of A, the overall latency would be still limited by the same
number of sequential operations. Only if could we accelerate
the sequential blocks (e.g., A3) will this challenge be resolved.
Thanks to blocking, the sequential operations became small,
which allow us to implement them as a small optimized logic
with a fixed small latency. In other word, our key insight
is to implement the mathematical dependencies as gate-level
dependencies.

Partitioning – To implement our approach, after dividing
matrix A into blocks, we apply sparse matrix vector multipli-
cation (SpMV) on the squares and invert on the triangles. In
other words, the main large invert operation will be broken
down into several SpMVs and very small invert operations as
shown in Figure 3 middle. Although we increase the level of
parallelism and also accelerate the sequential operations, there
would be still dependencies in between the SpMV and invert
operations on blocks of A as shown in Figure 3 right. As long
as the dependencies are not violated, the small SpMVs can
be combined together to create a larger SpMV (e.g., nodes
4, 5, 7, and 8 as shown in Figure 4). Similarly, recursively,
two small invert nodes and one small SpMV can be combined
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Fig. 5. Granularity of Partitioning: the impact on (a) latency and (b)
underutilization of tree.
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Fig. 6. Partitioning schemes: the operation unit at hardware are (a) separate
SpMV and invert (Imp1), (b) invert + SpMV + invert (Imp2).

to create a larger invert (e.g., nodes 1, 2, and 3 as shown in
Figure 4). We call the process of breaking down the graph into
variable size kernel partitioning. Partitioning the tree into right
size SpMV and invert kernels is done by the software of Maia.
To run a partitioned graph, the hardware of Maia includes (i) a
fixed-sized dot product followed by a balanced reduction tree
and in which the largest SpMV fits; (ii) a fixed-sized small
invert engine in which one green invert node of Figure 3 fits.
The other sizes of SpMV would partially use the same tree,
and the other sizes of invert recursively use the invert engine
and the partial tree. An example of mapping the graph to the
tree is shown in Figure 4. In the following we explain the
granularity of partitioning (that defines the invert width) and
the shape of partitions both of which impact performance.

The size of invert kernel creates a trade-off between latency
and the underutilization of tree: while a smaller invert results
in a lower latency, it also results in more underutilization of
the tree. Figure 5a and Figure 5b respectively show the invert
latency and the underutiliziation of the tree, based on which we
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Fig. 7. Comparing two partitioning schemes: timeline of (a) implementa-
tion 1 and (b) implementation 2; block diagrams of (c) implementation 1 and
(d) implementation 2; and (e) the overall impact on execution time.

choose the size of 128 as the invert width. The simple scheme
of partitioning shown in Figure 4 is not necessarily the best
scheme. The reason is that if we extend that partitioning to
the phase 2 of the algorithm as shown in Figure 6a, one large
chain of dependencies will occur (nodes 6 to 13). Therefore,
we modify the partitioning into the implementation shown
in Figure 6b in which a unit of operation at hardware is
invert + SpMV + invert rather than separate SpMV and invert
kernels. As a result, as the timelines shown in Figure 7a and
Figure 7b clarify, one large SpMV can be overlapped with the
execution of two inverts, which reduces the overall time to
process phase 1 and 2. Since in implementation 2, we need to
perform parallel SpMVs (e.g., blocks 2 and 4, or blocks 12
and 14), in hardware we include two SpMV engines, one small
and one large as shown in Figure 7d. In both implementations
(Figure 7c and Figure 7d), phase 1 writes into a first-in-last-out
buffer (i.e., stack), from which phase 2 reads the intermediate
results. Figure 7e illustrates the overall impact of partitioning
scheme when the size of matrix (i.e., the number of columns)
increases. Implementation 2 achieves ∼ 1.7× for matrix size
of 4096. with only 3.4% increase in resource utilization –
which is small compared to the total 42.8% resource utilization
of implementation 1).

SpMV – In addition to partitioning, the implementation of
SpMV engine also plays a key role in the performance of
matrix inversion. In a baseline simple implementation, to use
a dot product and balanced adder tree for executing SpMV,
we can stream the sparse matrix from the memory (where it
is stored in a compressed format) through the tree. In such an
implementation that we call SpMV1, the distribution of non-
zero values in the original sparse matrix would determine the
load of tree, which would not be necessarily a balanced load
across the levels of the tree. In an alternative implementation
that we call SpMV2, we deploy a small load-balance unit in
the hardware. As Figure 8a shows, for a five-layer tree with 32
leaves, the load of the layers and in turn their processing time
increase more dramatically in SpMV1 compared to SpMV2
as we move from leaves (i.e., L0) to the root (i.e., L4). The
load imbalance of SpMV1 also causes non-deterministic total
processing time. As Figure 8b illustrates, the maximum latency
of SpMV1 can be ∼ 13× the minimum latency for various
distributions of the same degree of sparsity. Therefore, in the
best case, SpMV1 is 3.3× faster than SpMV2 and in the worst
case, it is 4.1× slower than SpMV2. The load distribution in a
tree also impacts the achievable throughput at a given BRAM
utilization since the required BRAM to buffer the inputs at
each level of the tree varies. Based on Figure 8c, to achieve a
close-to-peak throughput, SpMV1 requires buffering 128×128
rather than 64×64 for SpMV2. In other words, by utilizing the
same BRAM for buffering 64 × 64 inputs, SpMV2 achieves
4.3× higher throughput.

IV. RESULTS

Experimental Setup – We describe Maia in C++ and
use it as input to Vivado high-level synthesis (HLS) tool
to generate Verilog. After simulations in Vivado HLS, we
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use Vivado to synthesise and implement our hardware on
an UltraScale+ XCU280 Xilinx FPGA targeting the Alveo-
U280 data-center boards with a High Bandwidth Memory
(HBM2). The clock frequency is set to 450 MHz. We verify
the functionality of Maia using synthetic data as a testbench
for C/RTL co-simulation. The inputs to our hardware platform
are sparse matrices from SuitSparse [22] listed in Table I with
various densities (Density = 1 − Sparsity). In addition to
the analysis in the previous sections, here we compare the
execution time, resource utilization, and power consumption
of two configurations: Imp1+SpMV1 and Imp2+SpMV2.

Speedup – First, in Figure 9, we compare the execution time
of two optimized implementations of Maia (i.e., Imp1+SpMV1
and Imp2+SpMV2) normalized to the baseline optimized
implementation of matrix inversion in which parallelism and
pipelining is fully implemented withing the rows but not
across them (see Figure 2). As Figure 9 shows, as expected,
because of (i) more overlapped tasks (i.e., overlapping invert
and SpMV kernels) at hardware and (ii) better load balanced
among the level of reduction tree, Imp2+SpMV2 always work
more quickly than Imp1+SpMV1 – on average, 1.5× faster.
Depending on the pattern of sparsity which in turn defines the
opportunity for cross-row parallelism, pipelining, cuncurrency,
and load-balancing, Imp1+SpMV1 performs matrix inversion
2.2× and up to 2.9× faster than baseline where Imp2+SpMV2
provides a speedup between 2.8× to 4.8× over the baseline.

Resource Utilization – The greater speedup of
Imp2+SpMV2 comes at the cost of more recourse utilization.
As Figure 10 illustrates, compared to Imp1+SpMV1,
Imp2+SpMV2 utilizes more lookup tables (LUT), flip flops
(FF), and BRAM blocks because of the following reasons:
(i) although each compute unit is simpler in SpMV2, it uses
some additional resources to arrange data before sending
them to the compute units and balance the load; (ii) SpMV2
must also coordinate a synchronization across the compute
units since load balance could cause some synchronization in

TABLE I
MATRICES FROM SUITESPARSE [22]

Sparse Matrix Name Dimension (M) NNZ (M) Density (%)
2cubes sphere 0.101 1.647 0.01615

Freescale2 2.9 14.3 0.00017
N reasctome 0.016 0.043 0.01680

dwt 918 0.000918 0.0073 0.86624
hcircuit 0.1 0.51 0.00510

hugebubbles-00000 18.3 54.9 0.00002
rajat31 4.6 20.3 0.0001

thermomech dK 0.2 2.8 0.007
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Fig. 9. Speedup over the baseline: comparing the normalized execution
time of two configuration when n = 16, w = 1024, width = 128.
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Fig. 10. Resource Utilization: comparing the FPGA resource utilization of
(a) Imp1+SpMV1 and (b) Imp2+SpMV2.

computations; (iii) As the breakdown in Figure 10 shows, if
we fix the size of input buffers for SpMV1 and SpMV2 (we
set it to 64× 64), the Imp2+SpMV2 would still utilize higher
BRAM because of Imp2. As discussed in Figure 8, we can
devote larger buffers to SpMV2 to increase its throughput.

Power Consumption – As Figure 11a illustrates,
Imp2+SpMV2 consumes 1.8× less dynamic power compared
to Imp1+SpMV1, mainly because of signals and logic used
for more complex compute units in SpMV1. S As Figure 11b
shows, the static power consumption of both implementations
are almost the same. Therefore, in total, Imp2+SpMV2
consumes only 1.08× less power compared to Imp1+SpMV1.
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V. CONCLUSIONS

This paper proposed Maia, a fast and efficient FPGA
implementation for matrix inversion, an important operation
in widespread domains of scientific computing applications.
Maia is the first solution that resolves data dependencies
to enable near-memory processing for the memory-intensive
matrix inversion on a high-end FPGA platform consisting of
HBM2 memory to utilize its peak memory bandwidth.
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