
HPCA 2020 Author’s Copy - Nov 2019

ALRESCHA: A Lightweight Reconfigurable
Sparse-Computation Accelerator

Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, Sudhakar Yalamanchili

ABSTRACT
Sparse problems that dominate a wide range of applica-
tions fail to effectively benefit from high memory band-
width and concurrent computations in modern high-
performance computer systems. Therefore, hardware
accelerators have proposed to capture a high degree of
parallelism in sparse problems. However, the unexplored
challenge for sparse problems is the limited opportunity
for parallelism because of data dependencies, a com-
mon computation pattern in several sparse problems, in
which the restricted parallelism and the need for high
bandwidth are two contradictory attributes that chal-
lenge performance optimization. Our key insight is to
extract parallelism by mathematically transforming the
computations to equivalent forms. The transforming al-
lows us to break down the sparse kernels into a majority
of independent parts and a minority of data-dependent
ones, and reorder these parts to gain performance. To
implement our approach, we propose a lightweight recon-
figurable sparse-computation accelerator (ALRESCHA).
To efficiently run the data-dependent and parallel parts
and to enable fast switching between them, ALRESCHA
makes two contributions. First, it implements a compute
engine with a fixed compute unit for the parallel parts
and a small reconfigurable engine to facilitate the execu-
tion of the data-dependent parts. Second, ALRESCHA
benefits from a locally-dense storage format, with the
right order of blocks and values to yield the order of
computations dictated by the transformations. The com-
bination of the lightweight reconfigurable hardware and
the locally-dense storage format enables uninterrupted
streaming from memory. Our experimental results of
running scientific and graph applications on various data
sets show that compared to GPU, ALRESCHA achieves
an average speedup of 15.6× for scientific sparse prob-
lems, and 8× for graph algorithms. Moreover, compared
to GPU, ALRESCHA consumes 14× less energy.

1. INTRODUCTION
Sparse problems have become significantly popular in
a wide range of applications, from scientific problems
to graph analytics. Since traditional high-performance
computing systems fail to effectively provide high band-
width for sparse problems, several studies have advo-
cated software optimizations for CPUs [1, 2, 3], GPUs [4,
5, 6, 7, 8], and CPU-GPU systems [9]. Besides, as the
effectiveness issue has coupled with approaching the
end of Moore’s law, specialized hardware for sparse
problems has become more attractive. For instance,
hardware accelerators have been proposed for sparse
matrix-matrix multiplication [10, 11, 12], matrix-vector
multiplication [13, 14], or both [15]. In addition, acceler-
ators for sparse problems have been proposed to reduce

memory-access latency or improve energy efficiency [16,
17, 18, 19, 20]. Further, utilizing approaches such as
blocking [21, 20] avoids indirect memory accesses.

The aforementioned hardware accelerators and software-
optimization techniques for sparse problems often focus
on a specific domain of application and take advantages
of the specific pattern in computations to improve per-
formance (more details in Table 2). However, flexibility
in the range of target applications is an important fea-
ture for a hardware accelerator. Such a flexibility is
not just for creating more generic accelerators; but, for
accelerating all the different kernels in a program to
effectively improve the overall performance.

In fact, unlike the assumptions of prior work, sparse
problems may involve two groups of kernels with con-
tradictory features: (i) highly parallizable and (ii) data-
dependent kernels. In such a case, the challenge is
that while the sparse problems require high bandwidth
and a high level of concurrency, the dependent com-
putations prevents benefiting from the available
memory bandwidth and the high level of con-
currency. In other words, the need for high bandwidth
and the limited opportunity for parallelism are two
contradictory attributes, which challenges performance
optimization. Such sparse problems have become a
major computation pattern in many fields of science.
For instance, a high-performance conjugate gradient
(HPCG) [22] benchmark is now a complement to the
high-performance Linpack (HPL).

To clarify the challenge, Figure 1a shows the particu-
lar data-dependency pattern in scientific sparse problem
(details in Section 2.1), which causes a performance bot-
tleneck. As the pseudo code shows, for col < row, the
computation of x[row] must wait for the previous el-
ements of x to be done. As a result, processing each
row of the matrix depends on the result of processing
the previous row and the rows cannot be parallelized.
Therefore, as Figure 1b shows, typically the rows of
the matrix are processed sequentially – even though
processing individual rows (i.e., a dot product) can be
parallelized. To extract more parallelism, a code opti-
mization such as row reordering or matrix coloring [8]
have been proposed to capture and run independent rows
in parallel. However, the effectiveness of such high-level
methods (i.e., in the granularity of instructions) depends
on the distribution of non-zero values in a matrix – e.g.,
a specific problem may not have independent rows.

The Key Insight: Our observation to resolve the
challenge is that the data-dependent operations rely
only on a fraction of the results from the previous opera-
tions. Thus, the key insight is to extract parallelism by
mathematically transforming the computation to equiv-
alent forms. Such transformations allows us to break
down the traditionally dependent parts into a

(a) An example of sparse problem with challenging parallelism:

(b) Approach 1:
Rows must me processed sequentially

A

i
i+1
i+2

DOT
product 1 update

DOT
product 2 update

x
i

i+1
x

x

…
…

S
eq

ue
nc

e
of

 d
at

a-
de

pe
nd

en
t c

om
pu

ta
tio

ns

By excluding this part, the
rest can run in parallel

DOT
product 3

Time

DOT product 1 DOT product 2 DOT product 3

Time

if col<row, must wait for
x[col] to be updated.

for row = 0 to number_of_rows
 for j=0 to nonzeros_in_row [row]
 if (col != row)
 sum += A_val[j] * x[A_col[j]]
 x[row] = sum / A_val[row]

(c) Approach 2 (ALRESCHA):
Rows can be processed in parallel

1

2

3

 Parallelizable DOT products.
A locally-dense storage format
is required to provide right blocks
of matrix A at right order.

 Parallelizable DOT products
on small various-size operands

 These are sequential operations on
small operands. Therefore, their latency
can be optimized by a fast hardware.

 Can be implemented by a
fast reconfigurable hardware to avoid
a latency bottleneck. They also require
fine-grained ordering of values in the
blocks of storage format.

2 3&

Figure 1: An example of sparse problems with
data-dependency patterns in its computations.
majority of parallel and a minority of dependent
operations. To do so, we exclude the dependency-
prone section of the matrix and run the rest in parallel
(i.e., we convert Figure 1b to Figure 1c). To implement
the key insight, we propose a lightweight reconfigurable
sparse-computation accelerator (ALRESCHA1), which
makes three contributions:

• Lightweight reconfigurability: After transform-
ing the computations, while the majority of oper-
ations will be highly parallelizable (¶ and ·), we
still need to execute a few data-dependent com-
putations ¸, albeit on small operands. During
runtime, the application repetitively switches be-
tween the three mentioned groups of operations
(i.e., between ¶ and ·/¸). The switching itself
must be fast enough to prevent a bottleneck. To
this end, the compute engine of ALRESCHA im-
plements quick reconfiguration during runtime by
integrating a fixed data path for ¶, and a small
and simple reconfigurable data path for · and ¸.

• Locally-dense storage format: To smoothly
stream sparse data, ALRESCHA proposes a stor-
age format in which the order of blocks and their
elements match the order of computations. As ¶
in Figure 1c illustrates, to enable parallel compu-
tation, the compute engine requires the ordered
blocks of matrix A to be streamed in the right
timing. Our proposed locally-dense format cap-
tures such an ordering to facilitate · and ¸. AL-
RESCHA integrates the locally-dense storage for-
mat with a data-driven execution model to elimi-
nate the streaming and decoding of meta-data.

1A binary star, the two stars of which orbit one another.

Preconditioned conjugate gradient (PCG):
p(0)=x;
r(0)=b-Ap(0);
for i=1 to m
 z=MG(r(i-1));
 a(i)=dot_prod(r,z);
 if i=1 then
 p=z;
 else
 p=a(i)/a(i-1)*p+z;
a(i)=a(i)/dot_prod(p,Ap);
x(i+1)=x(i)+a(i)p(i);
r(i)=r(i-1)-a(i)Ap(i);

if(depth < 3)
 SymGS();
 SpMV();
 MG(depth++);
 SymGS();
else
 SymGS();

for row = 0 to rows
 sum = b [row]
 for j=0 to nnz_in_row [row]
 col = A_col[j];
 val = A_val[j];
 if (col != row)
 sum = sum -val * x[col];
 x[row] = sum / A_diag[row];

Figure 2: An example of the PCG algorithm [22]
for solving a sparse linear system of equations
(i.e., Ax = b), including SpMV and SymGS.
• Generic sparse accelerator: The ability of AL-
RESCHA in accelerating distinct kernels, makes
it the first generic hardware accelerator for a wide
range of sparse applications from scientific to graph
applications whether or not they have data-dependent
compute patterns. For applications with no dis-
tinct kernels, ALRESCHA still offers high perfor-
mance by utilizing the proposed locally-dense stor-
age format and hence, avoiding meta-data transfer.

ALRESCHA accelerates a wide range of sparse kernels,
including sparse matrix-vector multiplication (SpMV),
symmetric Guass-Seidel (SymGS) smoother, Page rank
(PR), breadth-first search (BFS), and single-source short-
est path (SSSP). To evaluate ALRESCHA, we target a
wide range of datasets with various sizes. Comparing AL-
RESCHA with a CPU and a GPU platform shows that
ALRESCHA achieves an average speedup of 15.6× for
scientific sparse problems and 8× for graph algorithms.
Moreover, compared to a GPU, ALRESCHA consumes
14× less energy. We also compare ALRESCHA with
the state-of-the-art accelerators for sparse problems,
namely, OuterSPACE [15], an accelerator for SpMV,
GraphR [19], and a Memristive accelerator for scien-
tific problems [20]. Our experimental results on various
data sets show that comparing to state-of-the-art, AL-
RESCHA achieves an average speed up of 2.1×, 1.87×,
1.7× respectively, for scientific algorithm, graph ana-
lytics, and SpMV. The performance gain on data sets
with various distributions of non-zero values show s that
the gained benefits of ALRESCHA is independent from
specific patterns in data.

2. BACKGROUND
This section reviews the background and the character-
istics of the two key sparse problems.

2.1 Scientific Problems
A wide variety of physical-world phenomena, such as
sound, heat, elasticity, fluid dynamics, and quantum
mechanics, is modeled with partial differential equations
(PDE). To numerically process and solve them via digital
computers, PDEs are discretized to a 3D grid (e.g., using
27-stencil discretization), which is then converted to a
linear system of algebraic equation s: Ax = b, in which
A is the coefficient matrix, often very large for two or
higher dimensional problems (e.g., elliptic, parabolic, or
hyperbolic PDEs). Such a system of linear equations,

2

with a symmetric positive-definite matrix, can be solved
by iterative algorithms such as conjugate gradient (CG)
methods (e.g., preconditioned CG (PCG), which ensures
fast convergence by preconditioning). These methods
are specifically useful for solving sparse systems that are
too large to be solved by direct methods.

SymGS
63%

SpMV
31%

DOT
2%

Others
4%

Figure 3: The break-
down of execution time of
PCG on NVIDIA K20.

An example of the
PCG algorithm for solv-
ing Ax = b is shown in
Figure 2 [22]. The al-
gorithm updates the vec-
tor x in m iterations. As
Figure 3 shows, the ex-
ecution time of the al-
gorithm is dominated by
two kernels, SpMV and
SymGS [23, 8, 24]. The
remaining kernels, such
as dot product, consume
only a tiny fraction of the execution time and are so
ubiquitous that they are executed using special hardware
in some supercomputers.
To explore the characteristics of SpMV and SymGS,

we use an example of applying them on two operands, a
vector (b1×m) and a matrix (Am×n)1. Applying SpMV
on the two operands results in a vector (x1×n), each
element of which can be calculated as:

xj =
k∑

i=1
b[AT_indi]×AT_valij (1)

in which k, AT_val and AT_ind are the number of
non-zero values, the non-zero values themselves, and
the row indices of the jth column of AT , respectively.
Figure 4a shows a visualization of Equation 1. Since
the elements of the output vector can be calculated
independently, SpMV has the potential for parallelism.
On the other hand, each element of the vector result of
applying SymGS on the same two operands (i.e. vector
b1×m and a matrix Am×n) can be calculated as follows,
based on the Gauss-Seidel method [25]:

xt
j = 1

AT
jj

− (bj−
j−1∑
i=1

AT
ij×xt

i−
n∑

i=j+1
AT

ij×xt−1
i). (2)

b1⇥m

AT
m⇥n

x1⇥n

(a) SpMV (b) SymGS

b1⇥m

AT
m⇥n

xt�1
1⇥n

xt
1⇥n

jth jth

jth jth

Figure 4: Calculation of jth

element of output vector x by:
a) SpMV, and b) SymGS.

Figure 4b illus-
trates a visualiza-
tion of Equation 2
(i.e., the blue vec-
tors correspond to∑j−1

i=1 AT
ij × xt

i and
red vectors cor-
respond to

∑n
i=j+1 AT

ij×
xt−1

i). In fact, cal-
culating the jth ele-
ment of x at iteration
t (i.e., the orange ele-
ment of xt in Figure 4b) depends not only on the values
of x at iteration t−1 (i.e., the red elements of xt−1), but
also on the values of xt, which are being calculated in
1In the rest of the paper, all matrix As refer to this matrix.

1 1 4
1

1
1 2

A
B
C
D

A B C D

0 ∞ ∞ ∞
A B C D

A

B

C

D

1
1

1

4

2

1

Path length from A:Edges to C:
Initial:

0 1 2 3
A B C D

Final:

Edges from C:

1 1 1
1

1
1 1

A
B
C
D

A B C D
3 1 1 2
A B C D

Out degree:

0.25 0.25 0.25 0.25
A B C D

Initial rank:

0.83 0.83 0.37 0.67
A B C D

Final rank:

(a) (b)An example Graph

Figure 5: An example graph, its adjacency
sparse matrices, and the vector operands of two
graph algorithms: (a) SSSP and (b) PR.

the current iteration (i.e., the blue elements of xt). Such
dependencies in the SymGS kernel limit the parallelism
opportunity. Although some optimization strategies
have been proposed for employing parallelism [8], the
SymGS kernel can still be a performance bottleneck.

2.2 Graph Analytics
A common approach for representing graphs is to use
an adjacency matrix, each element of which represents
an edge in a graph. Figure 5 illustrates an example of
representing a graph as an adjacency matrix. Since in
many applications the graph is sparse , the equivalent ad-
jacency matrix includes several zeros. Graph algorithms
traverse vertices and edges to compute a set of properties
based on the connectivity relationships. Traversing are
implemented as a form of dense-vector sparse-matrix
operations. Such implementations are suited to the
vertex-centric programming model [26], which is pre-
ferred to the edge-centric model. The vertex-centric
model divides a graph algorithm into three phases. In
the first phase, all the edges from a vertex (i.e., a row
of the adjacency matrix) are processed. This process is
a vector-vector operation between the row of the matrix
and a property vector, varied based on the algorithm.
In the second phase, the output vector from the first
phase is reduced by a reduction operation (e.g., sum). In
the final phase, the result is assigned to its destination.

Three widely used graph algorithms are breadth-first
search (BFS), single-source shortest path (SSSP), and
page rank (PR). Additionally, since graphs are usually
sparse, SpMV is frequently used in graph applications.
Figure 5 shows example graphs, the adjacency matrices,
and the vector operands for the SSSP and PR algo-
rithms. For SSSP (Figure 5a), the vector containing
the lengths of nodes from node A is updated iteratively
by multiplying a row of the matrix by the path-length
vector and then choosing the minimum of the result
vector. After traversing all the nodes, the final values of
the vector indicate the shortest paths from node A to
all the other node s. PR (Figure 5b) iteratively updates
the rank vector, initialized by equal values. At each
iteration, the elements of the rank vector are divided by
the elements of the out-degree vector (i.e., the number
of out-going edges for each vertex), chosen by a row of
the matrix, and the result vector is reduced to a single
rank by adding the elements of the vector.

2.3 Common Features
While the sparse kernels used in both scientific and
graph applications are similar in having sparse-matrix
operands, some kernels (e.g., SpMV) exhibit more con-

3

Table 1: The properties of sparse kernels and corresponding dense data paths, implemented in
ALRESCHA. Depending on the type of kernel, the operation in phase 1 can use the three vector
operands at the same time or use just two of them.
Sparse Kernel Sparse Dense Data Paths Phase 1 (vector operation) Phase 2 Phase 3

Application vector operand1 vector operand2 vector operand3 operation (reduce) (assign)

SymGS PDE Solving D-SymGS/GEMV a row of the vector from the vector at multiplication sum apply operation with AT

coefficient matrix iteration (i-1) iteration (i) and bj and update vector
SpMV PDE solving GEMV a row of the vector from N/A multiplication sum sum and

and Graph coefficient matrix iteration (i-1) update the vector
Page Rank Graph D-PR a column of the out-degree the rank vector AND/division sum rank vector updateadjacency matrix vector of vertices at iteration (i-1)
BFS Graph D-BFS a column of the frontier vector N/A sum min compare and update

adjacency matrix distance vector
SSSP Graph D-SSSP a column of the frontier vector N/A sum min compare and update

adjacency matrix distance vector

0
0.5
1
1.5
2
2.5
3
3.5

0
0.5

1
1.5

2
2.5

3
3.5

NVID
IA Volta

 V100 (S
ummit)

NVID
IA Tesla

 V100 (S
ierra

)

NVID
IA Tesla

 P100

NVID
IA K80

NVID
IA K40

NVID
IA K20x

Intel X
eon Phi 7

250 68C

Intel X
eon Platin

ium 8160 24C

Intel X
eon Platin

um 8174 24C

Intel X
eon E5

-2670 12C

Intel X
eon E5

-2680-V
3

Pf
lo

ps
/S

ec

Fr
ac

tio
n

of
 P

ea
k

(%
)

Figure 6: (a) Performance of modern comput-
ing platforms ranked by the standard metric of
HPCG benchmark on GPUs and CPUs.

currency, whereas others (e.g., SymGS) have several
data dependencies in their computations. Regardless of
this difference, a common property of sparse kernels is
that the reuse distance of accesses to the sparse matrix
is high, while the input and output vectors of these ker-
nels are being reused frequently. Moreover, the accesses
to at least one of the vectors are often irregular.
The other common feature of these kernels is that

they follow the three phases of operations iteratively (see
Sections 2.1 and 2.2). Table 1 summarizes these phases
for the main sparse kernels, as well as the operands and
the operations at each phase. The sparse kernels calcu-
late an element of their result by accessing a row/column
of the sparse large matrix only once , and then reuse
one or two vector/s for the calculation of all output
vector elements. We benefit from these common fea-
tures to design an accelerator, flexible to run all the
mentioned sparse kernels without significant overhead.
ALRESCHA converts the sparse kernels to dense data
paths , listed in the second column of Table 1 (details
in Section 4.2.1).

3. MOTIVATION AND RELATED WORK
Sparse problems, either in compressed or sparse represen-
tations, face performance challenges. The compressed
formats are less efficient because they require storing,
transferring, and processing of zero values . Therefore,
sparse representations have been the more preferred
approaches, even though they still rely on transferring
meta-data and random memory accesses that limit per-
formance by memory-access latency. As the ratio of
compute-per-data-transfer of the sparse problem is low,
normally, we expect their performance to be directly
related to the memory bandwidth.

3.1 Ineffectiveness of CPUs and GPUs
To date, many software-level optimizations for CPUs [1,
2, 3], GPUs, [4, 5, 6, 7, 8], and CPU-GPU systems [9]
have been proposed. However, software optimizations
alone cannot effectively handle irregular data-dependent
memory references, a main characteristic of sparse prob-
lems. Irregular data-dependent memory references limit
the reach of software schemes and thus lead to poor per-
formance due to degraded bandwidth utilization. Fur-
thermore, optimizations for extracting more parallelism
and bandwidth such as matrix coloring [8] and block-
ing [21] have not been effective enough because of the
aforementioned reason. Figure 6 summarizes the per-
formance of running sparse scientific applications on a
range of GPUs. As the figure shows, they utilize only a
tiny fraction of the peak performance.

3.2 Previous Hardware Accelerators
The mentioned inefficiency challenges, along with ap-
proaching the end of Moore’s law, have provided the
motivation for migration to specialized hardware acceler-
ators for sparse problems. For instance, several hardware
accelerators have targeted sparse matrix-matrix multi-
plication [10, 11, 12], matrix-vector multiplication [13,
14], or both [15], which are key kernels in a wide range
of scientific and graph applications. A state-of-the-art
SpMV accelerator, OuterSPACE [15], employs an outer-
product algorithm to minimize the redundant accesses
to non-zero values of the sparse matrix. Despite the
significant speedup of OuterSPACE over the traditional
SpMV, it is not the most optimal approach when the
sparse matrix has spatial locality. Moreover, although
OuterSPACE increases the data reuse rate to reduce
accesses to memory, it produces random access to a local
cache. In another work, to be more efficient in utilizing
memory bandwidth, Song et al. proposed GraphR [19],
a graph accelerator, and Feinberg et al. proposed a
scientific problem accelerator [20], both of which use a
mid-point between compressed and sparse representa-
tions of sparse problems and process blocks of non-zero
values instead of individual ones. Blocked representa-
tion reduces randomness in memory accesses and the
amount of meta-data to be stored and transferred. In
other sparse-problem studies, to reduce memory-access
latency, Graphicionado [16], a graph-processing acceler-
ator, substitutes accesses to the memory hierarchy with
sequential accesses to scratchpad memory.
To compare the novel hardware approach and tech-

niques of ALRESCHA with the most recent efforts for

4

Table 2: Comparing state-of-the-art accelerators for sparse kernels.
GraphR [19] OuterSPACE [15] Memristive-Based Row Reordering ALRESCHAAccelerator [20] Matrix Coloring [8]

Application Domain Graph Graph (Only SpMV) PDE Solver PDE Solver Graph and PDE Solver

Hardware

Multi-Kernel Support 7 7 7 7 3

BW Utilization Low Moderate Low Moderate High

NOT Transferring Meta-data 7 7 7 7 3

Processing Type ReRAM Crossbar PEs Connected in Heterogeneous Memristive GPU Instruction Fixed Vector Processor and
a High-Speed Crossbar Crossbar a Small Reconfigurable Switch

Cache Optimizations N/A 7 N/A 7 3For Frequently-Used Vectors
Reconfigurability 7 Only for Cache Hierarchy 7 N/A 3

Techniques
Storage Format 4×4 COO CSR multi-size blocks (64×64, ELL 8×8 blocking with

128×128, 256×256, 512×512) fine-grained in-block ordering
Resolving Limited Parallelism N/A N/A 7

3 (Instruction-Level
3Limited by NNZ patterns)

Program including
SymGS(), SpMV(),
BFS(), SSSP(), and
PR() sparse kernels

Binary file including a
sequence of dense data paths
(i.e., GEMV, D-SymGS, D-BFS,

D-SSSP, and D-PR)

Matrix and vector operands in
compatible format

Memory of
ALRESCHA

Cofiguration table of
ALRESCHA

Results

HOST ACCELERATOR

program
interface

data
interface

Figure 7: Key components of ALRESCHA.
accelerating sparse problems, Table 2 summarizes their
properties. As the table lists, ALRESCHA is the
first reconfigurable sparse problem accelerator
for both scientific and graph applications, which
supports multi-kernel execution to resolve the limited
parallelism in fine granularity. As we explain in Sec-
tion 4.2, ALRESCHA also implements optimization such
as accesses to the vector operand of the sparse operation.

4. ALRESCHA
Figure 7 shows an overview of ALRESCHA, which is
reconfigured at runtime to support fast switching be-
tween dense data paths, the building blocks of sparse
kernels. Section 4.1 reviews the programming model of
ALRESCHA, and Section 4.2 shows how we implement
sparse kernels by converting them to a sequence of dense
data paths. Section 4.3 provides the details of the mi-
croarchitecture and design choices. Section 4.4 explains
how reconfigurability works and how switching between
the dense data paths occurs. Section 4.5 discusses the
proposed locally-dense storage format.

4.1 Programming Model
ALRESCHA is a memory-mapped accelerator that works
on its memory, which is accessible by the host only for
programming. The programming model of ALRESCHA
is similar to offloading computations from a CPU to a
GPU (the programming model itself is beyond the scope
of this paper). To program the accelerator, the host
launches sparse kernels of a sparse algorithm to the accel-
erator. To this end, the host (i) converts a sparse kernel
to a binary file (see convert algorithm in Section 4.2.1),
consisting of a sequence of dense data paths, and writes
them to the configuration table (example in Figure 8)
of the accelerator through the program interface (Fig-
ure 7); it then (ii) converts the sparse-matrix operand
to a locally-dense storage format (details explained in
Section 4.5) and writes the blocks of non-zero values into
the physical memory space of the accelerator through
the data interface (Figure 7). Each locally-dense block

corresponds to a dense data path.

4.2 Implementation of Sparse Kernels
To implement the sparse kernels of sparse algorithms (i.e.,
PCG and graph algorithms) with large sparse-matrix
operands, ALRESCHA breaks down the sparse kernels
into a sequence of dense data paths. Among them, the
sparse kernels with straightforward data dependencies
(i.e., SpMV, BFS, SSSP, and PR) are broken down
into a sequence of general matrix-vector multiplication
(GEMV), dense BFS (D-BFS), dense SSSP (D-SSSPs),
and dense PR (D-PR), respectively. These dense data
paths have the same functionality as their corresponding
sparse kernel; however, they work on non-overlapping
locally-dense blocks of the sparse-matrix operand and
overlapping sub-vectors of the dense-vector operand of
the main sparse kernel. On the other hand, the SymGS
kernel, the key computation of PCG algorithm with
complex data dependencies is broken down into a com-
bination of parallelizable GEMV and sequential dense
SymGS (D-SymGS) data paths.The conversion of Sparse
SymGS to GEMV and D-SymGS is based on the math-
ematical transformation, explained in Section 4.2.2. By
separating GEMV from D-SymGS data paths, we pre-
vent the performance from being limited by the sequen-
tial nature of the SymGS kernel.

4.2.1 Sparse Kernel to Dense Data Path Conversion
Algorithm 1 shows the procedure for converting a sparse
matrix to dense data paths. Based on the type of kernel,
its sparse matrix operand, and the hardware specifica-
tion (i.e., the number of ALUs in Figure 11a), the host
generates the configuration table, each row of which
specifies the type of data path, and information about
its operands (e.g., read and write address of cache). The
bits stored in the configuration table are used for config-
uring the configuration switch. For each dense data path,
besides its type (illustrated by one bit), an operand vec-
tor and its index (i.e., Inxin), the access order, and the
output index (i.e., Inxout) are stored. The Inxin and
Inxout indicate the read and write addresses of a cache
that contain the vector operands. All information in a
row of the table consumes 2

√
n+3 bits (as we assume

that the size of the vectors is n, indexing the input and
output requires

√
n bits).

5

PCG:

SymGSSpMV

dot
product

GEMV
D-SymGS
D-SymGS

GEMV
D-SymGS

7
4
7
3
9

-
1
4
-
7

left to right
right to left
right to left
left to right
right to left

Dense Data
Path Operand In

inx Access order Out
inx

xt
xt�1

1
2
3
4
5
6
7
8
9

96 7 82 3 4 51

xt�1

xt�1

xt�1

Figure 8: An example of converting the SymGS
kernel to the configuration table, consisting of
the sequence of dense data paths.

Algorithm 1 Convert Algorithm
1: function Convert(Anxn,ω, KernelType)

Anxn: sparse matrix, ω : block width
DP : Data path type
l2r: left to right, r2l: right to left

2: Inxin := 0, Inxout := 0
3: Blocks[] = Split(A,ω) // partitions A to ω × ω blocks
4: m = n/ω
5: for (i = 1, i < m,i + +) do
6: for (j = 1, i < m,j + +) do
7: if (nnz(Blocks[i, j])> 0) then
8: if KernelType ! = SymGS then
9: DP = KernelT ype.DataP ath
10: Inxin = i.ω, Inxout = j.ω
11: Order = l2r
12: Op = port1 // the operand vector
13: else
14: if (i! = j) then
15: DP = GEMV
16: Inxin = j.ω, Inxout = −1
17: Order = l2r
18: if (i > j) then
19: Op = port2 //which is xt−1

20: else
21: Op = port1 //which is xt

22: else
23: DP = D-SymGS
24: Inxin = j.ω, Inxout = (i + 1).ω
25: Order = r2l
26: Op = port2 //which is xt−1

27: Add2Table(DP,Op,Inxin,Order,Inxout)

The general rule of conversion for SymGS is to assign
GEMVs to non-diagonal non-zero blocks, and D-SymGS
to diagonal non-zero blocks of the sparse matrix. To de-
crease the frequency of switching between the two data
paths (GEMV and D-SymGS), ALRESCHA reorders
them so that it first runs all the GEMVs successively and
then switches the data path of D-SymGS. The distribu-
tive property of inner products in Equation 2 guarantees
the correctness of such reordering. As an example of
the outcome of Algorithm 1, Figure 8 shows the state
machine of PCG, equivalent to the algorithm in Figure 2,
which comprises three sparse kernels, two of which are
the focus of this paper and are launched to the accelera-
tor by the host. For each kernel, a configuration table
is generated by the host. The configuration table for a
SymGS kernel is shown in Figure 8. All the non-zero
blocks in the upper triangle of A have to be multiplied
by xt, and all of those in the lower triangle have to be
multiplied by xt−1.

4.2.2 Dense Data Path Implementation
ALRESCHA implements two classes of data paths. The

first class consists of D-BFS, D-SSSP, D-PR, and GEMV
with straightforward patterns of data dependencies. The
second class (e.g., D-SymGS) captures more complicated
sequential patterns.
Dense BFS, SSSP, PR, and GEMV: The dense

data paths work on locally dense blocks of A to capture
locality in accesses to the dense vector by taking ad-
vantage of spatial locality in the non-zero values of the
sparse matrix. If the sparse matrix includes blocks of
non-zero values of size n, ALRESCHA splits the vector
operands into chunks of size n, and at each cycle, it
fetches a chunck of the vector from a local cache instead
of fetching an individual element of the vector operand.
More specifically, a vector operation is applied on n ele-
ments of the vector operand and all the non-zero blocks
of A in a row. The approach of ALRESCHA for running
BFS, SSSP, PR, and SpMV provides two advantages: (i)
It guarantees locality of cache accesses (i.e., the values
in a cache line are used in succeeding cycles) , and (ii)
each element of an operand vector is fetched from the
cache only once per #cols/n.
Dense SymGS: SymGS is a matrix-vector opera-

tion with a sparse matrix operand A and three vector
operands, Ajj , b, and a combination of xt−1 and xt

(Equation 2). The three vectors respectively include
the diagonal of A, the right-hand side coefficient of the
Ax = b equations, and a combination of variables of
the equations computed in previous iterations (i.e., the
initial values) and the variables being computed in the
current iteration. Based on Equation 2, calculating an
output element of SymGS includes two inner products,
the sizes of which change when we move across the rows
of A to compute various variables of x. To enable using
a compute engine for both inner products, ALRESCHA
merges them by factoring out the subtraction as follows:

xt
j = (1

AT
jj

−bj)+(
j−1∑
i=1

AT
ij×xt

i +
n∑

i=j+1
AT

ij×xt−1
i). (3)

In other words, there is a single inner product of size
n, which is a common operation in all of the dense data
paths, and hence we can utilize the same computations,
used for other dense data paths. One operand of the
inner product is made by shifting xt into xt−1. This can
be implemented by just rotating the inputs of multipliers

x x x
+

+

x3 a03 x2 a02 x1 a01

+-

x x x
+

+

x0 a10 x3 a13 x2 a12

+-

x x x
+

+

x1 a21 x0 a20 x3 a23

+-

x x x
+

+

x2 a30 x1 a31 x0 a30

+-

a22 a11 a00a33 a33 a22 a11

a22a22 a11

b3 b2 b3

b3 b2 b1

x0 x1 x2 x3xt�1

Ajj

b

x0 x1 x2 x3xt

a22 a11 a00a33

b2 b1 b0b3

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

A

D-SymGS: step 1 (j=0) step 2 (j=1)

step 3 (j=2) step 4 (j=3)

b2 b1 b0b3

/ /

/ /

x0 x1

x2 x3

Figure 9: An example of D-SymGS. At each step
(i.e., j = 0 to 3), one xt

j is calculated based on
Equation 3. The new xt

j is then used in calculat-
ing the next element xt

j+1 at the next step. The
arrows between xt

0 to xt
3 indicate shifting them

one to the right at each step.

6

...

chip 1 chip 2 chip 8

M
em

or
y

ALU 1 ALU 2 ALU 8

Cache

R
ed

uc
tio

n
Tr

ee

RE 1 RE2 RE3 … RE 7

Fixed Interconnect (Tree Topology)

Config. Table

data

Cache

Processing Element

…
In

di
ce

s

64 Bytes
Dual-port SRAMWrite address generator

out inx
offset

access order

adrs

Read address generator
in inx
offset

adrs

R
ed

uc
e

En
gi

ne

+ <

Reg1 Reg2

pr
og

ra
m

ALU
in1
(mem)

in2
(cache)

 x ÷ +

in4
(ALU)

in3
(swt)

Reg1 Reg2

out
(ALU) pr

og
ra

m

Example Matrix

PE

PE PE

PE PE

LU
T

C
on

fig
.

inputs

FF

C
on

fig
ur

ab
le

Sw

itc
h

St
ac

k
FI

FO
s

PE

A B C

C B A

X Y Z

X Y Z

…

Data Interface

32 bits
5Gbps

32 bits
5Gbps

32 bits
5Gbps

(b) D-SymGS config

(c) GEMV config

64 bits

RECONFIG. COMPUTE UNIT

FI
XE

D
 C

O
M

PU
TE

 U
N

IT

(a) Overall microarchitecture

FCU

+

+

-

Ajj

b
/

xt
xt�1

stack
(link buffer)

x x x
+

+
+

x

C
ac

he
FI

FO
s

St
ac

k

(d) D-PR config

RCU

V
ec

to
r

O
pe

ra
ti

on

Memory

FCU

+

xt
xt�1

x x x
+

+
+

x

C
ac

he
St

ac
k

b/

RCU

Memory

FCU

+ / / /
+

+
+

/

C
ac

he
St

ac
k

RCU

Rank
Out-Degree

& && &

Memory
Da

ta

stack
(link buffer)

stack
(link buffer)

Figure 10: (a) The microarchitecture of ALRESCHA including the FCU for implementing common
computations, and the RCU for providing specific configuration for distinct dense data paths. And,
three example configurations for supporting: (b) D-SymGS, (c) GEMV, and (d) PR.
and pushing the xt

j into the first multiplier to be used
in calculating (j +1)th element of x.
To clarify the functionality of ALRESCHA for D-

SymGS, we use a simple example in Figure 9, for which,
we assume that the size of the problem fits the size of the
hardware (i.e., the number of multipliers), and that the
matrix A is dense. As Figure 9 illustrates, ALRESCHA
stores the diagonal of A in a separate vector and does the
subtraction with b in parallel with the inner products.
Note that separately storing the diagonal of A will help
utilize the memory bandwidth only for streaming the
operand of the inner product engine. At the first step,
one row of non-diagonal elements of A is multiplied by
xt−1

1 to xt−1
3 . In the second step, we need xt

0 instead of
xt−1

1 . However, the newly calculated xt
0, will not take

the place of kicked off xt−1
1 . As a result, we insert the

new variables by shifting the old one to the right. As
Figure 9 shows, while reading a row from A at each cycle,
the elements, belonging to the upper triangle of A are
reordered, while the elements in the lower triangle keep
their original orders. This is correlated with the orders
of the values in a dense block of the storage format,
shown in Figure 13 in Section 4.5.

4.3 Reconfigurable Microarchitecture
This section introduces the microarchitecture of AL-
RESCHA for accelerating the sparse kernels by pro-
viding their fundamental data paths (i.e., GEMV, D-
SymGS, BFS, SSSP, and PR). To deliver close-to-ideal
performance, the main idea behind the hardware of
ALRESCHA is to separate the fixed computation unit
(FCU) from the reconfigurable computation unit (RCU)
and configuring only the former for switching between
data paths (Figure 10). Configuring only a fraction of
the entire data path minimizes the configuration time.

The FCU streams only the dense blocks of the sparse
matrix (i.e., without any meta-data) from memory and
applies the required vector operation (i.e., phase 1 in
Table 1). The FCU includes ALUs and reduce engines

(REs) connected together in a tree topology , as shown
in Figure 10 , and form the reduction tree. The inter-
connections between the REs of the FCU are fixed for
all data paths and do not require reconfiguration. The
reduction tree is fully pipelined to yield the speed of
the streaming data from memory. One of the inputs
of ALUs (i.e., the matrix operand) is always streamed
from memory, and the other inputs (i.e., the vector
operands) come from the RCU. The former input of the
ALU requires a multiplexer because at runtime, its input
might need to be changed. For example, only for the
initialization of the D-SymGS data path does the input
come from the cache (i.e., xt−1), but after initialization,
it comes from a processing element of the RCU and
a forwarding connection between the multipliers. For
GEMV, for example, the ALU requires the multiplexers
to choose between xt−1 and xt during runtime.
The responsibility of the RCU is to handle the spe-

cific data dependencies of different kernels. The RCU
includes a local cache, buffers, processing elements (PE),
and a configurable switch, which determines the intercon-
nection between the units in the RCU. The configurable
switch is not a novel approach here and is implemented
similar to those of FPGAs and is directly controlled by
the content of a configurable table (Section 4.4). The
local cache stores the vector operands, which require
addressable accesses (e.g., xt−1, xt, and b), whereas the
buffers handle vectors, which require deterministic ac-
cesses. For instance, we employ first-in-first-out (FIFO)
for AT

jj and b, and use a first-in-last-out stack for the
link buffer. The link buffer establishes transmissions
between the dense data paths (Section 4.4). For data
path transmission, the reduce tree has to be drained,
during which the switch is reconfigured to be prepared
for the next data path. Therefore, the latency of config-
uration is hidden by the latency of draining the adder
tree. The PEs of the RCU are implemented by look-up
tables (LUTs) to provide multiplication, division, sum-
mation, and subtraction. Figure 10b, c, and d illustrate
the configuration of the RCU for performing D-SymGS,

7

7.08link

input from memory

xt�1 from cache

4.0 1.4 1.0 0.9 2.1 1.8

0.8 0.7 2.9

7.41 7.08

3.0 1.0 4.7

0.8 0.7 2.9

16.7 7.41 7.08

0.8 0.7 2.9

b

xt

input from memory

xt�1 from cache

1/Ajj

link

0.5 2.1 1.0

0.5 0.58 3.3

10.3 13.4 11.2

5.5 0.5 2.2

2.7 3.0 1.2

0.62 0.5 0.58

16.1 10.3 13.4

16.7 7.41

5.55 13.7 05.55 0 0

13.7 5.55 2.2

1.3 1.0 0.8

0.34 0.62 0.5

19.0 16.1 10.3

16.7

5.55 13.7 30.7

0.5 2.2 1.5

16.7 7.41 7.08

3.1 1.5 2.2 0.5 0.1 1.3 0.8 0.7 2.9
xt�1

17.8 21 18.214.519.016.110.313.411.2
b

0.3 1.0 2.1 0.5
2.7 1.7 1.2 3.0
1.0 1.3 2.0 0.8
0 0 0 1.6

0 0 4.0 1.4
0 0 0.9 2.1
0 0 3.0 1.0

1.7 2.6 0.3 0

1.8
4.7
0

1.0

0.20 0.5 1.50 3.0 1.0 4.70

1
2
3
4
9

GEMV data path:

D-SymGS data path:

1 2 3

4 5 6

Figure 11: Switching between GEMV and D-
SymGS data paths using the link stack.

CSR

ELL
BCSR

DIA

Low

High
Random

Common Pattern
in Scientific and

Graph Applications Diagonal

By
te

 /
N

N
Z

ALRESCHA

Structured

Figure 12: The spectrum of storage formats for
various types of sparse matrices (low is better).
GEMV, and PR data paths.

4.4 Reconfigurability
Applications with a sequence of distinct sparse kernels
for a portion of their computation benefit from recon-
figurability because they frequently switch between the
kernels. As a result, to satisfy high-speed and low-cost
reconfigurability, ALRESCHA implements a lightweight
reconfiguration, which indicates that only the configura-
tion of a small fraction of the compute engine is changed
frequently. This section shows how switching between
the dense data paths occurs.

4.4.1 Switching Between Data Paths
Switching between two data-dependent data paths is
performed using the link buffer (i.e., implemented as
the stack). During the runtime of a data path, the
intermediate results are pushed into the stack. Then, the
successive data path pops them up. Figure 11 presents
a numerical example for switching from GEMV to D-
SymGS data paths. During steps 1 to 3, the RCU is
configured to GEMV, and results are pushed into the
link. At step 3, while the reduce tree (i.e., here the adder
tree) is drained, the interconnect between the cache and
FIFO buffers in the RCU is reconfigured to D-SymGS.
This does not affect the pushes to the stack, so it can
be parallelized and its latency hidden. In steps 4 to 6,
values are popped from the link and consumed.

4.5 Storage Format
Depending on the distribution of non-zero values in a
sparse matrix, various storage formats can suit them.
Figure 12 compares four well-known formats based on

their meta-data per non-zero values. The compressed
sparse row (CSR), which stores a vector of column in-
dices and a vector of row pointers, locates all the non-
zero values independently. Therefore, it is the right
choice when the non-zeros do not exhibit any spatial
localities. On the other hand, when all the non-zeros
are located in diagonals, the diagonal format (DIA) [28],
which stores the non-zeros sequentially, could be the
best option. An extension to the DIA format, Ellpack-
Itpack (ELL) [29], is more flexible when the matrix has
a combination of non-diagonal and diagonal elements
(e.g., it is used for implementation of SymGS in GPUs).
However, such a format does not provide enough flexi-
bility for parallelizing rows because it does not sustain
the locality across rows. More importantly, the choice
of storage format should be compatible with the common
pattern in the majority of sparse applications. Therefore,
blocked CSR (BCSR) [21], an extension of CSR, which
assigns the column indices and row pointers to blocks
of non-zero values, is the right format.

BCSR is an appropriate format for scientific applica-
tions and graph analytics in terms of storage overhead.
But, the strategy of BCSR for assigning indices and
pointers, and the order of values, are not a good match
for smooth data streaming. The main requirement for
fast computation is the order of operations, which in
turn that dictates the data structures be streamed in the
same order. Thus, we adapt BCSR to a format with the
same meta-data overhead but that is compatible with
the reconfigurable microarchitecture of ALRESCHA.
Figure 13, illustrates our proposed locally-dense for-

mat for mapping an example sparse matrix to the phys-
ical memory addresses of ALRESCHA. The format fol-
lows the following rules: (i) The order of non-zero blocks
gives the higher priority to non-diagonal non-zero blocks
rather than to diagonal ones; (ii) the non-zero values be-
longing to the upper triangle of the diagonal blocks are
stored in the opposite order of their original locations in
the matrix (see the order of A, B, and C in Figure 13).
Accordingly, the difference between the indices of BSCR
and those of the ALRESCHA format is shown in Fig-
ure 13; (iii) for SymGS, as the diagonal of A is excluded

map to physical memory

ABC
D EF

X Y Z

Ph
ys

ic
al

 M
em

or
y

Sp
ac

e

A B C
D E F

X Y Z1
2
3
4
5
6
7
8
9

96 7 82 3 4 51

 BCSR:
col_index: { }
row_pointer: {1,3,4,6}

 ALRESCHA:
input_index: { }
output_index: {1,4,7}

1,7,4,3,7 7,4,7,3,9

same order of values

reverse order of values

Figure 13: Comparison of the BCSR and
the locally-dense format of ALRESCHA. The
col_index of BCSR and input_index of AL-
RESCHA are color-coded to show their corre-
sponding blocks in the matrix. ALRESCHA
uses the index of the last column for the in-
put_index of diagonal blocks.

8

Kind
NNZ

Name
Row/Col

Kind
NNZ

Name
Row/Col

Electromagnetic
1,647,264

2cubes_sphere
101,492

Fluid Dynamics
10,319,760

atmosmodm
1,489,752

Structural Prob.
17,277,420

CoupCons3D
416,800

Electromagnetic
89,306,020

dielFilterV3real
1,102,824

Fluid Dynamics
283,073,458

HV15R
2,017,169

Fluid Dynamics
3,599,932

ifiss_mat
96,307

Electromagnetics
406,084

light_in_tissue
29,282

Circuit Simul.
958,936

scircuit
170,998

Fluid Dynamics
21,005,389

StocF-1465
1,465,137

Electromagnetics
6,459,326

TEM152078
152,078

Structural Prob.
23,487,281

Transport
1,602,111

Fluid Dynamics
803,978

windtunnel_ev3D
40,816

Thermal Prob.
463,625

epb3
84,617

Chemistry Prob.
5,156,379

Si34H36
97,569

Chemistry Prob.
3,381,809

GaAsH6
61,349

Thermal Prob.
711,558

thermomech_TC
102,158

Materials Prob.
1,181,120

xenon1
48,600

Fluid Dynamics
2,374,949

poisson3Db
85,623

Materials Prob.
583,770

crystm
24,696

Circuit Simul.
954,163

ASIC_100k
99,340

Economic Prob.
596,992

finan512
74,752

Acoustics Prob.
1,660,579

qa8fm
66,127

Acoustics Prob.
5,036,288

mono_500Hz
169,410

Electromagnetic
4,242,673

offshore
259,789

Figure 14: Scientific application datasets attained from University of Florida SuiteSparse (SS) [27].

Table 3: Graph datasets.
Dataset row/col NNZ
com–orkut 3,072,441 234,370,166

hollywood–2009 1,139,905 1,139,905
kron-g500–logn21 2,097,152 182,082,942

roadnet–CA 1,971,281 5,533,214
LiveJournal 4,847,571 68,993,773
Youtube 1,134,890 5,975,248
Pokec 1,632,803 30,622,564

sx-stackoverflow 2,601,977 36,233,450

and stored separately in a local cache, we consider non-
square blocks on the diagonal (e.g., 3×4 instead of 3×3)
so that the the mapping of the non-diagonal element
of that block to the physical memory is adjusted; and
(iv) the indices of the input and output (i.e., meta data)
are not streamed from memory. They are stored only
in the configuration table and are used for reconfigura-
tion purposes. Therefore, the whole available memory
bandwidth is utilized for streaming payload.

5. PERFORMANCE EVALUATION
This section explores the performance of ALRESCHA
by comparing it with the CPU, GPU, and state-of-the-
art accelerators for sparse problems. We evaluate AL-
RESCHA for both scientific applications and graph an-
alytics. This section first introduces the data sets and
algorithms, and the experimental setup. Then, we ana-
lyze execution time and energy consumption.

5.1 Datasets and Algorithms
We pick real-world matrices with applications in scien-
tific and graph problems from the University of Florida
SuiteSparse Matrix Collection [27]. The matrices, shown
in Figure 14, are our datasets representing scientific
applications, including circuit simulations, electromag-
netic, fluid dynamics, structural, material, acoustics,
economics, and chemical problems, all of which can be
modeled by PDEs. As the figure shows, the non-zero
values have various distributions across the matrices.
For graph analytics, we choose the eight datasets, listed
in Table 3, along with their dimensions and non-zero
values. We run PCG, which includes the SymGS and
SpMV kernels, on the matrices listed in Figure 14, and
run BFS, SSSP, and PR on the matrices in Table 3. We
also run SpMV on both categories of datasets.

5.2 Baselines
We compare ALRESCHA with the CPU and GPU plat-
forms. The configurations of the baseline platforms are

Table 4: Baseline configurations.
GPU baseline

Graphics card NVIDIA Tesla K40c, 2880 CUDA cores
Architecture Kepler

Clock frequency 745MHz
Memory 12 GB GDDR5, 288 GB/s
Libraries Gunrock [30] and CUSPARSE

Optimizations row reordering (coloring) [8], ELL format
CPU baseline

Processor Intel Xeon E5-2630 v3 8-core
Clock frequency 2.4 GHz

Cache 64 KB L1, 256 KB L2, 20 MB L3
Memory 128 GB DDR4, 59 GB/s
Platforms CuSha [32], GridGraph [31]

listed in Table 4. For the CPU and GPU platforms,
we exclude disk access time. For fair comparisons , we
include the optimizations, such as row reordering and
suitable storage formats (e.g. ELL if necessary), pro-
posed for the CPU and GPU implementations. The
PCG algorithm and the graph algorithms running on
GPU are respectively based on the cuSPARSE and Gun-
rock [30] libraries. The graph algorithms running on the
CPU are based on the GridGraph [31] and/or CuSha [32]
platforms, whichever achieves better performance for a
specific algorithm.
Besides comparing with CPU and GPU, this section

compares ALRESCHA with the state-of-the-art hard-
ware accelerators, including OuterSPACE [15], which
is an accelerator for SpMV, GraphR [19], which is a
ReRAM-based graph accelerator, and the Memristive
accelerator for scientific problem [20]. To reproduce
their latency and power consumption numbers, we mod-
eled the behavior of the preceding accelerators based on
the information provided in the published papers (e.g.,
the latency of read and write operations for GraphR
and Memristive accelerator). We validate our numbers
based on their reported numbers for their configurations
to make sure our reproduced numbers are never worse
than their reported numbers. For fair comparison with
ALRESCHA, we assign all the accelerators the same
computation and memory-bandwidth budget – this as-
sumption does not harm the performance of our peers.

5.3 Experimental Setup
In our experiments, we convert the raw matrices to
the proposed locally-dense format using the convert
algorithm (i.e., the approach explained in Section 4.5)
implemented in Matlab. To do that, we examine block
sizes of 8, 16, and 32 for the range of the data sets and
choose the block size of eight because unlike the other

9

Table 5: ALRESCHA Configuration
Floating point double precision (64 bits)
Clock frequency 2.5 GHz

Cache 1KB, 64-Byte lines, 4-cycle access latency
RE latency 3 Cycles (sum: 3, min: 1)
ALU latency 3 Cycles
Memory 12 GB GDDR5, 288 GB/s

two, eight provides a balance between the opportunity
for parallelism and the number of non-zero values. We
model the hardware of ALRESCHA using a cycle-level
simulator with the configurations listed in Table 5. The
clock frequency is chosen to enable the compute logic to
follow the speed of streaming from memory (i.e., each
64-bit operands of ALU are delivered from memory in
0.4 ns, through the 32-bit 5 Gbps links.) To measure
energy consumption, we model all the components of
the microarchitecture using a TSMC 28nm standard
cell and the SRAM library at 200MHz. The reported
numbers include programming the accelerator.

5.4 Execution Time

5.4.1 Scientific Problems
Figure 15 illustrates the speedup of running PCG on
ALRESCHA over the GPU (i.e., an implantation, opti-
mized by row reordering [8] for extracting a high level of
parallelism) on the primary axis, along with the band-
width utilization on the secondary axis. The figure also
captures the speedup of the Memoristive-based hard-
ware accelerator [20]. On average, ALRESCHA provides
a 15.6× speedup compared to the best proposed opti-
mizations implemented on the GPU. The speedup of
ALRESCHA is approximately twice that of the most
recent accelerator for solving PDEs. To investigate the
reasons behind this observation, we plot memory band-
width utilization in Figure 15. As the figure shows,
the performance of ALRESCHA and the other hard-
ware accelerator for the 24 scientific datasets is directly
related to memory bandwidth utilization – mainly be-
cause of the sparse nature. Moreover, none of them fully
utilize the available memory bandwidth, because both
approaches use blocked storage formats, in which the
percentage of non-zero values in a block rarely reaches a
hundred percent. Nevertheless, we see that ALRESCHA
better utilizes the bandwidth, because it resolves the
dependencies in computations, which otherwise limits
bandwidth utilization.

0%

20%

40%

60%

80%

100%

1.0

10.0

2c
ub

es
_s

ph
er

e
AS

IC
_1

00
k

at
m

os
m

od
m

Co
up

Co
ns

3D
cr

ys
tm

03
di

el
FI

lte
rV

3r
ea

l
ep

b3
fin

an
51

2
G

aA
sH

6
HV

15
R

ifi
ss

_m
at

lig
ht

_i
n_

tis
su

e
m

on
o_

50
0H

z
of

fs
ho

re
po

iss
on

3D
b

qa
8f

m
sc

irc
ui

t
Si

34
H

36
St

oc
F-

14
65

TE
M

15
20

78
th

er
m

om
ec

h_
TC

Tr
an

sp
or

t
w

in
dt

un
ne

l_
ev

ap
3d

xe
no

n1

G
M

EA
N

Ba
nd

w
id

th
 U

til
iza

tio
n

Sp
ee

du
p

ov
er

 G
PU

 (l
og

. s
ca

le
) ALRESCHA Memristive-based Accel. ALRESCHA Memristive-based Accel.

15.6

7.3

Figure 15: Speedup for PCG algorithm on scien-
tific datasets, normalized to GPU (bar charts),
and bandwidth utilization (the lines). The
Memristive-based accelerator [20] is the state-
of-the-art accelerator for scientific problems.

0%

20%

40%

60%

80%

2c
ub

es
_s

ph
er

e
A

SI
C_

10
0k

at
m

os
m

od
m

Co
up

Co
ns

3D
cr

ys
tm

03
di

el
FI

lt
er

V
3r

ea
l

ep
b3

fin
an

51
2

G
aA

sH
6

H
V

15
R

ifi
ss

_m
at

lig
ht

_i
n_

ti
ss

ue
m

on
o_

50
0H

z
of

fs
ho

re
po

is
so

n3
D

b
qa

8f
m

sc
ir

cu
it

Si
34

H
36

St
oc

F-
14

65
TE

M
15

20
78

th
er

m
om

ec
h…

Tr
an

sp
or

t
w

in
dt

un
ne

l_
e…

xe
no

n1

G
M

EA
N

%
 o

f s
eq

ue
nt

ia
l c

om
pu

te Baseline ALRESCHA

Figure 16: The reduction of the sequential part
of the PCG algorithm by applying ALRESCHA.
The baseline shows the percentage of sequential
operations by row-reordering optimization.
To clarify the impact of resolving dependencies, on

overall performance, Figure 16 presents the percentage
of sequential computations in the GPU implementation,
versus that in ALRESCHA, which has an average of
23.1% sequential operations. As the figure suggests,
even in the GPU implementation that extracts the
independent parallel operations using row reordering
and graph coloring, on average 60.9% of operations
are still sequential. This is more than 60% for highly-
diagonal matrices and less than 60% for matrices with
a greater opportunity for in-row parallelism. Such a
trend identifies the distribution of locally-dense blocks
as another rationale for determining the speedups. More
specifically, when the distribution of non-zero values in
rows of the matrix offers the opportunity for parallelism,
the speedup over the GPU is smaller to when the non-
zeros are mostly distributed in the diagonal.

Insights: For multi-kernel sparse algorithms (e.g.
PCG) with dependent computations, we improve perfor-
mance by (i) extracting parallelizable dense data paths,
correlated with locally-dense blocks, (ii) reordering the
dense data paths and the values in the blocks to max-
imize reuse of data, and (iii) implementing them in a
lightweight reconfigurable hardware, all of which result
in fast switching not only between the distinct data paths
of a single kernel, but also between the sparse kernels.

5.4.2 Graph Analytics And SpMV
In this section, we explore the performance of AL-
RESCHA for algorithms that consist of one type of
sparse kernel and naturally have fewer dependency pat-
terns in their computations. The goal of this section is
to show that ALRESCHA is not just optimized for a spe-
cific domain and actually is applicable to accelerating
a wide range of sparse applications. First , we analyze
the performance of graph applications. Figure 17 illus-

1

10

co
m

-o
rk

ut
ho

lly
w

oo
d-

09
kr

on
-g

50
0-

lo
gn

21
ro

ad
ne

t_
CA

Liv
eJ

ou
rn

al
Yo

ut
ub

e
Po

ke
c

sx
-s

ta
ck

ov
er

flo
w

co
m

-o
rk

ut
ho

lly
w

oo
d-

09
kr

on
-g

50
0-

lo
gn

21
ro

ad
ne

t_
CA

Liv
eJ

ou
rn

al
Yo

ut
ub

e
Po

ke
c

sx
-s

ta
ck

ov
er

flo
w

co
m

-o
rk

ut
ho

lly
w

oo
d-

09
kr

on
-g

50
0-

lo
gn

21
ro

ad
ne

t_
CA

Liv
eJ

ou
rn

al
Yo

ut
ub

e
Po

ke
c

sx
-s

ta
ck

ov
er

flo
w

GM
EA

N
-B

FS
GM

EA
N

-S
SS

P
GM

EA
N

-P
R

Sp
ee

du
p

ov
er

 C
PU

(lo
g.

 sc
al

e) ALRESCHA GraphR GPU

BFS SSSP PR

184 92 56

15.7

7.7

27.6

Figure 17: Speedup for graph algorithms on
graph datasets over the CPU. GraphR [19] is
the state-of-the-art graph accelerator.

10

0.01

0.1

1

10

1

10

2cu
bes_

sp
here

ASIC
_100k

at
m

osm
odm

CoupCons3
D

cr
ys

tm
03

dielFI
lte

rV
3re

al
epb3

fin
an

512

GaA
sH

6

HV15R

ifis
s_

m
at

lig
ht_

in_tis
su

e

m
ono_500Hz

offs
hore

poiss
on3Db

qa8
fm

sc
irc

uit

Si3
4H36

St
ocF

-1
465

TEM
152078

th
erm

om
ech

_TC

Tra
nsp

ort

windtu
nnel_eva

p3d

xe
non1

co
m

-o
rk

ut

holly
wood-0

9

kr
on-g

500-lo
gn

21

ro
ad

net_
CA

Liv
eJo

urn
al

Youtu
be

Poke
c

sx
-st

ac
ko

ve
rfl

ow

GM
EA

N Si
entif

ic

GM
EA

N G
ra

ph

%
 L

at
en

cy
 o

f c
ac

he
 a

cc
es

s
(lo

g.
 s

ca
le

)

Sp
M

V
Sp

ee
du

p
ov

er
 G

PU
 (l

og
. s

ca
le

)

ALRESCHA OuterSPACE ALRESCHA OuterSpPACE

Scientific Graph

6.9
13.6

Figure 18: Speedup for running SpMV on scientific and graph datasets normalized to GPU (bar
charts), and the percentage of execution time devoted to cache accesses (the lines). OuterSPACE [15]
is the state-of-the-art SpMV accelerator.

1

10

100

2cu
bes_

sp
here

ASIC
_100k

at
m

osm
odm

CoupCons3
D

cr
ys

tm
03

dielFI
lte

rV
3re

al
epb3

fin
an

512

GaA
sH

6

HV15R

ifis
s_

m
at

lig
ht_

in_tis
su

e

m
ono_500Hz

offs
hore

poiss
on3Db

qa8
fm

sc
irc

uit

Si3
4H36

St
ocF

-1
465

TEM
152078

th
erm

om
ech

_TC

Tra
nsp

ort

windtu
nnel_eva

p3d

xe
non1

co
m

-o
rk

ut

holly
wood-0

9

kr
on-g

500-lo
gn

21

ro
ad

net_
CA

Liv
eJo

urn
al

Youtu
be

Poke
c

sx
-st

ac
ko

ve
rfl

ow

GM
EA

N

En
er

gy
 S

av
in

g
(lo

g.
 s

ca
le

) Normalized to CPU Normalized to GPU122 147 152 282169 128
74

14

Scientific Graph

Figure 19: Energy consumption improvement of ALRESCHA normalized to that of CPU and GPU.
trates the speedup of running BFS, SSSP, and PR on
ALRESCHA, a recent hardware accelerator for graph
(i.e., based on GraphR [19]) and GPU platform s, all
normalized to the CPU baseline. As the figure shows,
ALRESCHA offers average speedups of 15.7×, 7.7×,
and 27.6×, for BFS, SSSP, and PR algorithms over the
CPU platform, respectively. We achive this speedup by
avoiding the transfer of meta-data, reordering the blocks
for increasing data reuse, and improving the locality.

Figure 18 illustrates the speedup of running the SpMV,
a common algorithm of various sparse applications on
ALRESCHA and OuterSPACE [15] (i.e., the recent hard-
ware accelerator for the SpMV), normalized to the GPU
baseline. As the figure shows, ALRESCHA offers aver-
age speedups of 6.9× and 13.6× for scientific and graph
datasets. When running SpMV, all the data paths are
GEMV ; therefore, no transmission between data paths
is required. However, optimizations of ALRESCHA help
achieve greater performance. The key optimization here
is accesses to the cache to obtain frequent accesses to the
vector operand of SpMV. To show this, the secondary
axis of Figure 18 (i.e., the lines) plots the percentage of
the whole execution time for accesses to the local cache.
To perform an SpMV, OuterSPACE reads each element
of the vector operand, multiples it with all the elements
in a row of the matrix and then accumulates each of
the partial products, and writes them to their correct
corresponding element of the output vector. Hence, un-
like ALRESCHA, the compute engine of OuterSPACE
has to put the partial products in their right location in
the output vector, which may leads to lack of locality in
accesses to the cache.

Insights: For single-kernel sparse problems (e.g.,
SpMV), ALRESCHA gains speedup by (i)improving
the locality of cache accesses (i.e., consuming the values
in a cache line in succeeding cycles); (ii) increasing the

data reuse rate of not only the sparse-matrix operands,
but also the dense-vector operands, and (iii) avoiding
meta-data transfer and decoding.

5.5 Energy Consumption
A primary motive for using hardware accelerators rather
than using software optimizations is less energy consump-
tion. To achieve this goal, the techniques integrated in
the hardware accelerators have to be efficient. A source
of energy consumption is accesses to local SRAM-based
buffers or caches. That is, reducing the number of reads
and writes from and to local memories, by substituting
them with computation is beneficial. Figure 19 illus-
trates the energy consumption of ALRESCHA when
running the SpMV kernel, normalized to that of the
CPU and GPU baselines. As Figure 19 shows, on av-
erage, the total energy consumption improves by 74×
compared to the CPU and 14× compared to the GPU
platform. Note that the activity of compute units, de-
fined by the density of the locally-dense block, impacts
energy but not performance.

Insights: The main reasons for the low energy
consumption are the small reconfigurable hardware of
ALRESCHA in combination with utilizing a locally-
dense storage format with the right order of blocks and
values matched with the order of computation, thus
avoiding the decoding of meta-data, and reducing the
number of accesses to the cache and the memory.

6. CONCLUSION
We proposed ALRESCHA, a sparse problem accelerator
that quickly reconfigures the data path during runtime to
dynamically tune the hardware for distinct computation
patterns and enables using high-bandwidth memory at
low-cost for fast acceleration of sparse algorithms.

11

7. REFERENCES
[1] K. Akbudak et al., “Exploiting locality in sparse

matrix-matrix multiplication on many-core architectures,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 28, 2017.

[2] E. Saule et al., “Performance evaluation of sparse matrix
multiplication kernels on intel xeon phi,” in International
Conference on Parallel Processing and Applied Mathematics.
Springer, 2013.

[3] P. D. Sulatycke et al., “Caching-efficient multithreaded fast
multiplication of sparse matrices,” in Parallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the
First Merged International... and Symposium on Parallel
and Distributed Processing 1998. IEEE, 1998.

[4] S. Dalton et al., “Optimizing sparse matrixâĂŤmatrix
multiplication for the gpu,” ACM Transactions on
Mathematical Software (TOMS), vol. 41, 2015.

[5] F. Gremse et al., “Gpu-accelerated sparse matrix-matrix
multiplication by iterative row merging,” SIAM Journal on
Scientific Computing, vol. 37, 2015.

[6] W. Liu et al., “An efficient gpu general sparse matrix-matrix
multiplication for irregular data,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th
International. IEEE, 2014.

[7] K. Matam et al., “Sparse matrix-matrix multiplication on
modern architectures,” in High Performance Computing
(HiPC), 2012 19th International Conference on. IEEE,
2012.

[8] E. Phillips et al., “A cuda implementation of the high
performance conjugate gradient benchmark,” in
International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance
Computer Systems. Springer, 2014.

[9] W. Liu et al., “A framework for general sparse
matrix–matrix multiplication on gpus and heterogeneous
processors,” Journal of Parallel and Distributed Computing,
vol. 85, 2015.

[10] C. Y. Lin et al., “Design space exploration for sparse
matrix-matrix multiplication on fpgas,” International
Journal of Circuit Theory and Applications, vol. 41, 2013.

[11] L. Yavits et al., “Sparse matrix multiplication on cam based
accelerator,” arXiv preprint arXiv:1705.09937, 2017.

[12] Q. Zhu et al., “Accelerating sparse matrix-matrix
multiplication with 3d-stacked logic-in-memory hardware,”
in High Performance Extreme Computing Conference
(HPEC), 2013 IEEE. IEEE, 2013.

[13] A. K. Mishra et al., “Fine-grained accelerators for sparse
machine learning workloads,” in Design Automation
Conference (ASP-DAC), 2017 22nd Asia and South Pacific.
IEEE, 2017.

[14] E. Nurvitadhi et al., “A sparse matrix vector multiply
accelerator for support vector machine,” in Proceedings of
the 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems. IEEE
Press, 2015.

[15] S. Pal et al., “Outerspace: An outer product based sparse
matrix multiplication accelerator,” in 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018.

[16] T. J. Ham et al., “Graphicionado: A high-performance and
energy-efficient accelerator for graph analytics,” in 2016 49th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2016.

[17] J. Ahn et al., “A scalable processing-in-memory accelerator
for parallel graph processing,” ACM SIGARCH Computer
Architecture News, vol. 43, 2016.

[18] L. Nai et al., “Graphpim: Enabling instruction-level pim
offloading in graph computing frameworks,” in 2017 IEEE
International symposium on high performance computer
architecture (HPCA). IEEE, 2017.

[19] L. Song et al., “Graphr: Accelerating graph processing using

reram,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018.

[20] B. Feinberg et al., “Enabling scientific computing on
memristive accelerators,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2018.

[21] R. W. Vuduc et al., “Fast sparse matrix-vector
multiplication by exploiting variable block structure,” in
International Conference on High Performance Computing
and Communications. Springer, 2005.

[22] J. Dongarra et al., “Hpcg benchmark: a new metric for
ranking high performance computing systems,” Knoxville,
Tennessee, 2015.

[23] D. Ruiz et al., “The hpcg benchmark: analysis, shared
memory preliminary improvements and evaluation on an
arm-based platform,” 2018.

[24] V. Marjanović et al., “Performance modeling of the hpcg
benchmark,” in International Workshop on Performance
Modeling, Benchmarking and Simulation of High
Performance Computer Systems. Springer, 2014.

[25] G. H. Golub et al., Matrix computations. JHU press, 2012,
vol. 3.

[26] G. Malewicz et al., “Pregel: a system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. ACM,
2010.

[27] T. A. Davis et al., “The university of florida sparse matrix
collection,” ACM Transactions on Mathematical Software
(TOMS), vol. 38, 2011.

[28] Y. Saad, Iterative methods for sparse linear systems. siam,
2003, vol. 82.

[29] D. R. Kincaid et al., “Itpackv 2d user’s guide,” Texas Univ.,
Austin, TX (USA). Center for Numerical Analysis, Tech.
Rep., 1989.

[30] Y. Wang et al., “Gunrock: A high-performance graph
processing library on the gpu,” in ACM SIGPLAN Notices,
vol. 51, no. 8. ACM, 2016.

[31] X. Zhu et al., “Gridgraph: Large-scale graph processing on a
single machine using 2-level hierarchical partitioning,” in
2015 {USENIX} Annual Technical Conference
({USENIX}{ATC} 15), 2015.

[32] F. Khorasani et al., “Cusha: vertex-centric graph processing
on gpus,” in Proceedings of the 23rd international
symposium on High-performance parallel and distributed
computing. ACM, 2014.

12

	Introduction
	Background
	Scientific Problems
	Graph Analytics
	Common Features

	Motivation and Related Work
	Ineffectiveness of CPUs and GPUs
	Previous Hardware Accelerators

	ALRESCHA
	Programming Model
	Implementation of Sparse Kernels
	Sparse Kernel to Dense Data Path Conversion
	Dense Data Path Implementation

	Reconfigurable Microarchitecture
	Reconfigurability
	Switching Between Data Paths

	Storage Format

	Performance Evaluation
	Datasets and Algorithms
	Baselines
	Experimental Setup
	Execution Time
	Scientific Problems
	Graph Analytics And SpMV

	Energy Consumption

	Conclusion
	References

