PISCES: Power-Aware Implementation
of SLAM by Customizing Efficient
Sparse Algebra

Bahar Asgari, Ramyad Hadidi, Nima Shoghi Ghaleshahi, Hyesoon Kim
Georgia Institute of Technology

& é

7 comparch

Simultaneous Localization and Mapping (SLAM)

* A key real-time task in autonomous systems

» Categories of algorithms:
* Direct methods
* Indirect feature-based methods (e.g., EKF! and ORB?)
* Semi-direct and semi-dense methods

e Categories of implementations:

e Software
e Hardware with focus on

* Architecture
* Microarchitecture (.

1EKF: extended Kalman filter
2 ORB: oriented-fast and rotated-brief

Key Challenges and Our Observations

* Two aspects of SLAM create a performance bottleneck and increase
power consumption:

 The random accesses to the on-chip memory
* The high data-reuse rate of compute-intensive matrix operations

* The building blocks of SLAM consist of sparse computations that
e Cause the first aspect
* Worsen the second one

* We take advantage of the sparseness to jointly improve

* Latency
* Power consumption {0_

Sparse Matrix Algebra in EKF and ORB SLAM

* The sparseness is structured and has common attributes:
* A sequence of matrix operations on sparse operands
* The sparse operand captures fixed-size, small, and dense blocks of data
* The correlated dense blocks are scattered over deterministic related locations

* Example for EKF

¢

PISCES — Key Insights

* To efficiently improve SLAM performance, we propose Pisces that
* Aligns the dense blocks of sparse data that are processed together
* Maps them to adjacent locations of the on-chip memory
* Implements a chain of sparse operations as a sequence of dense operations
* Reads a dense block once and applies all processes before writing it back

* Example for EKF

Sparse operation Dense operation Dense operation
H P
¢ \
e - | |
| [
D mEX — W FEX =

il . ’ { ' 6

Pova X H 4y = Aunsy H' 354X Agxz = Baxa ®

PISCES — Microarchitecture

* Dense building blocks of Pisces and their latency:

Dense matrix operation A%XZ A4_X4XB4X2 AZX4XB4><2 AZXZ XBZ><4- or A4-><2 XBZXZ AZXZ + BZXZ
Latency (us) 0.06 0.66 0.33 0.58 0.09
* Pipelines and configurations for EKF and ORB:
< outer pipeline >
FPGA < inner pipeline—————»
init. map matrix matrix P]:>
oy S e T PLor T3 [o S spime mp
map i 5 i 5 : map
, | chunk 1 E 2= =T cunk 1 5
%____E____ E_ E_ __".'___B Legend:
- J S A a al =t P S ()BRAM
= map matrix matrix map s Logi
£ s = =S § L,
op.0 op.1 op.2 op.3 op4 op.b ki .
EKF update (n =5) 4B” AB+C AB™' AB AB" AB-C

ORB bundle adj. (n = 3) ABT ABT + ¢ AB™! ¢ - ABT N/A N/A
j

PISCES — Design Optimization

* An agent observes new landmarks and stops observing some of old ones
* We need to dynamically replace old landmarks with new ones
* Pisces exploits a simple compression scheme:

Default mapping: Compressed mapping:
0 1 2 3 4 5 .. 1T landmarks:(0 ' 3 | 4 |)

Evaluation Methodology

* Tools and system setup:
* PYNQ-z1 including Zynq XCZ020 FPGA
» Xilinx Vivado HLS to generate Pisces
e AXI stream interface
* 100MHz clock frequency

e Baselines:
* One-dimensional systolic array (1DSA):
* Faddeev systolic array (FSA)>
* eSLAM:
e Raspberry Pi 4 including Cortex-A72 ARM processor

* Benchmarks, algorithms, and datasets:
* For EKF: synthetic emulated environment
* For ORB: EuRoC dataset

1Tertei et al, Elsevier computers & electrical Engineering, 2016.
2Souza et al, Springer Journal of Signal Processing Systems, 2018.
3Liu et al, DAC, 2019.

Results — Resource Utilization and Power

* Pisces trades BRAM for FF and LUT to more efficiently consume the
power budget:

e 3.3x and 2.5x less power consumption compared to 1DSA and FSA.

EKF ORB
1DSA FSA Pisces EKF | eSLAM Pisces ORB | Available
BRAM(KDb) 756 297 252 78 180 2520
LUT 7824 3073 14472 56954 11898 53200
FF 4223 5176 16686 67809 12178 106400
DSP 32 2 75 111 114 220
Power(W) 1.302 0.986 0.384 1.936 0.292 N/A

1DSA: Tertei et al, Elsevier computers & electrical Engineering, 2016.
FSA: Souza et al, Springer Journal of Signal Processing Systems, 2018.
eSLAM: Liu et al, DAC, 2019.

¢

v 4

Results — Latency vs. Hardware Accelerators

* Power consumption is not the only concern about the prior hardware
accelerators

* Pisces executes EKF 11x and 7.4x faster than 1DSA and FSA

20 50
18 | =o—Pisces =o=1DSA =»—FSA 45 | =0—Pisces =o=1DSA —=»—FSA i !

i % /]

é 12 W’M ié: 20 30fps

> 10 Wmm s S 25
8 v 20

6 E; 15 60fps
2 3 5 et (
0 0

N 1D D N N N o

10 20 30 40 50 60 70 80 90 100 ﬂ%qmo,\wmggg

Map size # Landmarks 10 4

Results — Latency vs. Hardware Accelerators

* For ORB:

* eSALM extracts/matches the features 8x as fast as ARM implementation
 Pisces significantly reduces the latency of local and global bundle adjustment
* to meet real-time constraints, two approaches can be combined

Latency (s)

0.6
0.4
0.2

1.23
1.14

ARM
eSLAM

—

6.17
KA 6 15

ARM
eSLAM

MHO1 VR203
Feature Extraction/Matching @ Local Bundle Adjuctement (BA) & Global Bundle Adjustement (BA)

Pis.+eS. |

Conclusions

* The navigation of autonomous systems relies on SLAM.

* With advancement in sensor technologies, SLAM performance is becoming
a bottleneck for a faster and more accurate navigation.

* With a limited power budget in autonomous systems, performing the
compute-intensive SLAM in real time is the key challenge.

* We proposed Pisces, a new approach to accelerate SLAM.

* To improve power consumption and latency, Pisces

* Transforms the sparse matrix operations into a chain of fixed-size dense matrix
operations.

* Reduces the accesses to on-chip memory by enabling the data exchange between

the functions.
®

