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Simultaneous Localization and Mapping (SLAM)

* A key real-time task in autonomous systems

» Categories of algorithms:
* Direct methods
* Indirect feature-based methods (e.g., EKF! and ORB?)
* Semi-direct and semi-dense methods

e Categories of implementations:

e Software
e Hardware with focus on

* Architecture
* Microarchitecture (.

1EKF: extended Kalman filter
2 ORB: oriented-fast and rotated-brief



Key Challenges and Our Observations

* Two aspects of SLAM create a performance bottleneck and increase
power consumption:

 The random accesses to the on-chip memory
* The high data-reuse rate of compute-intensive matrix operations

* The building blocks of SLAM consist of sparse computations that
e Cause the first aspect
* Worsen the second one

* We take advantage of the sparseness to jointly improve

* Latency
* Power consumption {0_



Sparse Matrix Algebra in EKF and ORB SLAM

* The sparseness is structured and has common attributes:
* A sequence of matrix operations on sparse operands
* The sparse operand captures fixed-size, small, and dense blocks of data
* The correlated dense blocks are scattered over deterministic related locations

* Example for EKF
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PISCES — Key Insights

* To efficiently improve SLAM performance, we propose Pisces that
* Aligns the dense blocks of sparse data that are processed together
* Maps them to adjacent locations of the on-chip memory
* Implements a chain of sparse operations as a sequence of dense operations
* Reads a dense block once and applies all processes before writing it back

* Example for EKF
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PISCES — Microarchitecture

* Dense building blocks of Pisces and their latency:

Dense matrix operation A%XZ A4_X4XB4X2 AZX4XB4><2 AZXZ XBZ><4- or A4-><2 XBZXZ AZXZ + BZXZ
Latency (us) 0.06 0.66 0.33 0.58 0.09
* Pipelines and configurations for EKF and ORB:
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PISCES — Design Optimization

* An agent observes new landmarks and stops observing some of old ones
* We need to dynamically replace old landmarks with new ones
* Pisces exploits a simple compression scheme:

Default mapping: Compressed mapping:
0 1 2 3 4 5 .. 1T landmarks:( 0 ' 3 | 4 | )




Evaluation Methodology

* Tools and system setup:
* PYNQ-z1 including Zynq XCZ020 FPGA
» Xilinx Vivado HLS to generate Pisces
e AXI stream interface
* 100MHz clock frequency

e Baselines:
* One-dimensional systolic array (1DSA):
* Faddeev systolic array (FSA)>
* eSLAM:
e Raspberry Pi 4 including Cortex-A72 ARM processor

* Benchmarks, algorithms, and datasets:
* For EKF: synthetic emulated environment
* For ORB: EuRoC dataset

1Tertei et al, Elsevier computers & electrical Engineering, 2016.
2Souza et al, Springer Journal of Signal Processing Systems, 2018.
3Liu et al, DAC, 2019.



Results — Resource Utilization and Power

* Pisces trades BRAM for FF and LUT to more efficiently consume the
power budget:

e 3.3x and 2.5x less power consumption compared to 1DSA and FSA.

EKF ORB
1DSA FSA Pisces EKF | eSLAM Pisces ORB | Available
BRAM(KDb) 756 297 252 78 180 2520
LUT 7824 3073 14472 56954 11898 53200
FF 4223 5176 16686 67809 12178 106400
DSP 32 2 75 111 114 220
Power(W) 1.302 0.986 0.384 1.936 0.292 N/A

1DSA: Tertei et al, Elsevier computers & electrical Engineering, 2016.
FSA: Souza et al, Springer Journal of Signal Processing Systems, 2018.
eSLAM: Liu et al, DAC, 2019.
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Results — Latency vs. Hardware Accelerators

* Power consumption is not the only concern about the prior hardware
accelerators

* Pisces executes EKF 11x and 7.4x faster than 1DSA and FSA
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Results — Latency vs. Hardware Accelerators

* For ORB:

* eSALM extracts/matches the features 8x as fast as ARM implementation
 Pisces significantly reduces the latency of local and global bundle adjustment
* to meet real-time constraints, two approaches can be combined
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Conclusions

* The navigation of autonomous systems relies on SLAM.

* With advancement in sensor technologies, SLAM performance is becoming
a bottleneck for a faster and more accurate navigation.

* With a limited power budget in autonomous systems, performing the
compute-intensive SLAM in real time is the key challenge.

* We proposed Pisces, a new approach to accelerate SLAM.

* To improve power consumption and latency, Pisces

* Transforms the sparse matrix operations into a chain of fixed-size dense matrix
operations.

* Reduces the accesses to on-chip memory by enabling the data exchange between

the functions.
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