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Recommendation Systems Are Similar

-

. Accessed data

All users’ data and features of movies in memory
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Recommendation Systems Suggest us... .
What music to listen What movie to watch What books to read
<
= S =
Where to go What to learn What medicine to take
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Outline

» Main components and sparsity in recommendation system
» Prior near-memory processing approaches and their challenges
» Fafnir: our proposed efficient near-memory intelligent reduction tree

Main contributions
Architecture and implementation

» Experimental setup

» Performance evaluation
Latency
End-to-end inference speedup
Scalability
Power consumption

» Conclusions
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Main Components and Sparsity

7
Recommendation systems consist of
» Embedding tables, accessing to which is sparse!
Embedding Tables An embedding vector
VICTTTTITT]
V2]
V3T IITT]
VAT T TTT]
v5
)
vl to v6 are some embedding vectors we use in our example throughout this presentation.
We randomly color them in blue and yellow to distinguish them when we apply an operation on them.
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Main Components and Sparsity

7777777777777777777777777777 8
Recommendation systems consist of
» Embedding tables, accessing to which is sparse!
_ A memory unit
Embedding TabIesA/

VICTTTTTT]

p e seaess e

V3L T TTTTI LITTTTITT]

reduction ) query 2 output
VAT TTTTT] (v1+v3+v4+v5)
LITTTTTIT]
VS
V6
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Main Components and Sparsity
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Recommendation systems consist of
» Embedding tables, accessing to which is sparse!
» Neural networks
Embedding Tables
Vit b Neural networks
> e e | O3
V3L T TTTTI LITTTITT]
reduction ) query 2 output &
VAT T II1] :> (V1+V3+v4+v5) | \ A compute unit
LITTTTTIT]
s
v5 —
V6
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Data Movement Is a Big Challenge

Embedding vectors need to be constantly transferred from
memory units to the cores

Memory units Connections Cores
-« » ¢—> ¢—>

VICTTTTTT]

VLT T T TT]
V3T TTTTT]

VAT TTTTT]

v5
v6
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Near-Memory Processing (NMP)

Prior proposals suggest performing reduction near memory to
transfer less data from memory units to the cores

MemoriNMi®s Connections Cores
<< > ¢ —>

vi[IIT] T

vaLllL] Ho (v1+v2+v5+Vv6)

VLTI Tl d T D|||||||||
(v1+v3+v4+v5)

v5

V6 j:
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Prior NMP Solutions: TensorDIMM - §

Guarantees data movement reduction
» Example: transfers only two vectors instead of six

Challenge: Does not fully utilize row buffer locality

Memory units  NMP  Connections Cores
- e e e —

Ll s
(T
LTI

|
(.
|
MO | M || MO | O
M | M || ™M | s

\ﬁ

HEH

[

!
HE B2 BB BH

Y. Kwon, et al. “Tensordimm: A practical near-memory processing architecture for embeddings and tensor operations in deep learning,” in MICRO, 2019.
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Prior NMP Solutions: RecNMP

Fully utilizes row buffer locality

Challenge: Does not guarantee data movement reduction
» Example: still transfers six vectors (v1, v2, v3, v4, v5, v5+v6)

Memory units NMP  Connections Cores
<« > +—> — > ——>

VI

vaLLLL LT ] (v1+v2+v5+Vv6)

V3O TIITTr] L D|||||||||
D (v1+v3+v4+v5)

VACTTITITT [ S

v5

vé [TTTTTTT]Vv5+v6

L.Ke, et al. “Recnmp: Accelerating personalized recommendation with near-memory processing,” ISCA, 2020.
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Key Insight

We cannot process embedding vectors where they reside

» Because they are not co-located in memory!

We do not want to process embedding vectors in the processing cores
» Because it causes huge amount of data movement

We process embedding vectors while we gather them from
random locations of memory
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Fafnir — Main Contributions ' ;

Guarantees to reduce embedding vectors before sending them to cores

» Sooner (in the leaves) or later (in the root), the corresponding embedding vectors
meet within the tree and get reduced

Memory units_ Fafnir Cores
vicrrrrrrr] A\ featveal
vit+v3a
CITTTTTTT]
vaLLLL LT e (v1+v2+v5+Vv6)
VLT T TTTTT v1l+v6e |||||||||
LTI R (v1+v3+v4+v5)
VAT TTTTT] oo """"'
vB+v6
CITTT T
VL LTI
veLL I [T 11]
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Fafnir — Main Contributions

Does not require a caching mechanism

» Reads all the unique vectors in a batch of query and use them within the tree as many times as required

» Takes advantage of embedding vector locality across multiple queries and that locality is exploited in the
PE buffers through streaming operations

ql: vl,v2,v5,v6 Memory units, Fafnir Loores

< »
< »

q2:v1l,v3,v4,v5
V1[I

‘ V2T

_ V3T T v1+v2+¥54v8) | y1 and v5 are used in
viiql,q2 (v1+v3+v4+v5) | creating both vectors
v2:ql VATTTTTT [TTTT111]
v3: Qg2
va: q2 V5[
v5:ql, g2 veL L1 T 1111
v6: ql

HPCA'21 Georgia 77 h
Tech (7 CoOMparc

GTCAD Lab



--

19

Fafnir — Main Contributions

Runs sparse matrix-vector multiplication (SpMV) as well
» If all PEs always perform reduction and leaf PEs first apply multiplication

Sparse Matrix _ Fafnir

»
»

reduce

reduce

reduce
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Fafnir — Architecture

20

Based on their inputs, PEs decide whether to reduce or forward

_Memory units

v1[TTTTTT]

V2T T
V3T TTTTTT

J

1

VAT TTTTT]

VO[T TTTTT]
velL L [ [ [[1]

PE

PE

‘input A ‘ input B

=

header

)

)
) )
)

)

- {valueH indices q queries
FIFO nom FIFO gﬂ[ g’
( )
buffer A buffer B BL2]: i

I | BIm-1I

J( I )

Al0/]B Al1lB in-1/18
-1}

Compare
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Fafnir — Implementation

21

We connect 32 ranks with 31 PEs and implement them at 7nm ASAP as
» Four DIMM/rank chips: 0.282 mm?, 23.82 mW
» One channel chip: 0.121 mm?, 16.37 mW ) 492m

57Hum

DIMM12

il 1 ";' g T
lE i Ll
£} | it o

DIMM15 One DIMM/rank Chip
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Experimental Setup

23

We implement Fafnir on XCVU9P Xilinx FPGA and ASIC design at 7nm ASAP

' Recommendation |
System model

Real-world
datasets (Kaggle,

Testbench
(synthetic data) to
evaluate functionality

F

| (DLRM, DCN, ...) |

A

Terabyte, ...)

Sparse matrices

>

4

from SuiteSparse
Collection

Memory >
Traces

HPCA'21

C plus #pragma SYNopPsys
PR \'——»| RTL L | Netlist |
Hardware VIVADO' . :
DescriptioninC | | v ycadence
________ Microarchitecture [ Layout |
C plus injected [¥] Component : .
latencies | Latency \cadence
v | FPGA Resource | Timing and
Performance Utilization and |[«+— Power
Results Power Analysis
Georgia 7
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Experimental Setup
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We implement Fafnir on XCVU9P Xilinx FPGA and ASIC design at 7nm ASAP
We evaluate Fafnir for
» Recommendation systems
Models: DLRM and DCN
Data sets: Criteo Ad Kaggle and Terabyte
» SpMV on matrices from SuiteSparse data set
We compare with
» TensorDIMM (MICRO’19) and RecNMP(ISCA’20) for recommendation systems
» Two-Step (MICRO’19) approach for SpMV
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Evaluation — Latency

26

Time to respond to a single query including random accesses to 16 512-byte

vectors distributed over 32 ranks.
» Computation of Fafnir is 2.5x faster than prior work
» Memory access of Fafnir is 4.45x faster than TensorDIMM

800
0 Compute (Critical Path)

é 600 B Memory
G 400
g
.

0

TensorDIMM RecNMP Fafnir
Geqt i
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Evaluation — End-to-End Inference Speedup .

The impact of accelerating the embedding lookup on the overall inference time

RecNMP (Prior Work) Fafnir (Our work)
OFC Hl Other [CJEmbedding Lookup —Linear Speedup
) 1 [ — O 1 — — :
>~ =08 > = 0.8
o o™ N 2.7x e 3 N 4.1x
S 806 \— 8 806 \—
L o L — 8 o L
o 04 AN — o * 04 < =
8 8 \ . 8 8 \ . = —
v N Q0.2 ~—_| o N 0.2 T~
Q @© T Q @© \
EE o EE O
2 1 2 4 8 16 32 2 12 4 8 16 32

Based on DLRM on Kaggle #Ranks #Ranks

Prior work: L.Ke, et al. “Recnmp: Accelerating personalized recommendation with near-memory processing,” ISCA, 2020.
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Evaluation — Scalability

28
The impact of concurrent batch processing on scalability
Batch Size = 8 Batch Size = 16 Batch Size =32

o5 100 ?0100 ___ 100

o o o]0)

= = O

S 10 pre T 10 a 10 b

prd = ;

o , LTOM_RNMP = . | TDM_RNMP & | LTDM_RNMP

e Fafnir v Fafnir | © Fafnir
@) O 8

So01 B B 2 01 B B o 01 B B}
) D -

v T Q

Q S o

“0.01 “10.01 » 0.01

# Kaggle (+opt.) M Kaggle Terabyte (+opt.) O Terabyte & DCN (+opt.) ®DCN
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For a four-channel memory system
» ASIC implementation: 111.64mW
» FPGA implementation: 1.1W

mW (log) 0.3
1.0e+02 B Clocks [ Signals
O gO.ZS OLogic W BRAM
- 3.2e-01 2 = 0.2 m1/0
& O
© ©80.15
- 1.0e-03 e £
e 32 o1
> c
a8 L]
3.2e-06 0.05
0 ]
1.0e-08
Power distribution of a PE DIMM/Rank Node Channel Node
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Conclusions

Fafnir...

» Does not rely on spatial locality

» Minimizes data movement from memory to cores
» Fully utilizes row buffer locality

» Requires fewer connections

» Does not require costly caching mechanisms

» Is application to other application domains (e.g., SpMV)
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» Statistics of workloads for recommendation systems

» Sparse matrices for the evaluation of SpMV

» Mapping embedding tables for memory addresses

» The configurations of PEs
» The latency of PEs

» FPGA resource utilziaiton

» Locality in accesses to embedding tables

» Mechanisms of redundant memory accesses elimination and batch processing in Fafnir

» Detailed comparison of prior NMP solutions and Fafnir

» Various types of sparsity in recommendation systems
» Using Fafnir for SpMV
SpMV vs. embedding lookup

Vectorization

Compression format

Results
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Statistics of Workloads for Recommendation Systems

» The size of embedding vectors:
64 x 8 bytes = 512 bytes
The number of summations:
64 summations to reduce two vectors
An approximate compute intensity:
0.15 Flops/byte
The size of data sets:
Kaggle and Terabyte include 26 tables that we mapped to different ranks utilizing 208 GB
DCN includes 400GB data, we report results based on 256GB of it that fits in our 32 ranks
Memory size (our configuration):
4 x 16-GB DDR4 DIMM = 64 GB per a DIMM/Rank Node
4 x 64 GB = 256 GB total for the 32-rank system
» The number of queries in a batch:
16 queries per batch, each containing maximum 16 indices

v

v

v

v
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Sparse Matrices from SuiteSparse )

How sparse are the matrices we used for SpMV?

ID Name Dim.(M)' Density (%) Application
RE N reactome 0.016 0.025 Biochemical
RI rail582 0.056 1.2 Linear Prog.
HC hcircuit 0.1 0.004 Circuit Sim.
2C 2cubes__sphere 0.101 0.016 Electromagnetic
TH thermomech dK 0.2 0.006 Thermal
FR Freescale2 2.9 0.0001 Circuit Sim.
AM amazon(0601 0.4 0.002 Dir. Graph
WG web-Google 0.91 0.0006 Dir. Graph
RO roadNet-TX 1.3 0.0001 Unidir. Graph
KR  kron_g500-logn21 2 0.004 Unidir. Multiraph
WI  wikipedia-20070206 3.5 0.0003 Dir. Graph
LJ soc-LiveJournall 4.8 0.0002 Dir. Graph

! Dim.: dimension or the number of columns/rows of a square matrix.
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Mapping Embedding Tables to Memory Addresses N

The architecture of Fafnir
tree, consisting of DIMM/rank
and channel nodes and ASIC
designs at 7 nm for a PE and a
DIMM/rank node.

The mapping of embedding
tables to memory addresses.

DIMMO .-

/'77777777777“ﬁ7777777777\ i N il N

DIMM3

DIMM12 ... DIMM15

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

282um

Layout of a PE

) bIMM/Rank Node
.Channel Node

(a)

Pointer to Leaves

Layout of a DIMM/Rank Node

575um

716514132 ]1]0

HPCA'21

. |22|21]|20(19|18|17[16|15|14}13|12|11[10| 9 | 8
row column bank DIMM |[R.| CH. column
embedding table index table ID embedding vector
(b)
Georgia 7 h
Back =fh 7 comparc
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PE configuration

36

» The size of PE

The size of input buffers and the number of compute units is defined by the batch size
The number of outputs of each PE is limited by the batch size
The maximum number of outputs for a PE is min(nm, n+m, B) — n,m: input sizes, B: batch size

Each entry of input buffer contains 512B value + 10B header
10B header: 16 queries x 5-bit indices for identifying 32 tables = 16x5/8 = 10B

Each PE (at any level of tree) includes 16 compute units
Buffer sizes that are sum of all buffers (B: batch size)

Nod PE buffer (KB) Node buffer (KB)
ode
B=8 B=16 B=32 B=8 B=16 B=32
DIMM/Rank 32.4 64.8 129.5
4.6 9.3 18.5
Channel 13.9 27.8 55.5
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PE Latency

Cycles @200MHz for the components of the compute units of Fafnir based on FPGA
implementation:

Parallel paths (reduce or forward)
Compare Reduce I(1ger(11erat|ng the
Reduce (generating eader)
h I Forward
the value) Indices Queries
generation | generation
Per item (iteration) 12 3 4 3 16
Batch size = 8/16/32 N/A 32/64/128 29/53/101 N/A

~
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FPGA Resource Utilization

The number of units and the utilization for batch size of 16:

i’y 77
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DIMM/Rank Node Channel Node
Node Units Utilization (%) Units Utilization (%)
LUT 11800 1 7214 0.61
LUTRAM 192 0.03 96 0.02
FF 4646 0.2 3295 0.14
BRAM 68 3.15 26 1.2
HPCA'21 Back Gequln 7 compar‘ch
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Locality in Embedding Accesses

The percentage of
unique indices in

batches of queries:

Kaggle on DLRM

70
g max
o 50
2 I I
D 30
o\o min
10
8 16 32
Batch size

70 Terabyte on DLRM

- max -

S

o 50 }
c

> 30

X min

10
8 16 32
Batch size
90 DCN
(] max
> 70 I
o
‘c 50 l
; 30 } min
10
8 16 32
Batch size

— W 72
ﬁ :
5 s
- - . 3

-
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The number of memory accesses at different DIMMSs:

(a) Batch size =8

£l b o R LT
g 1 (b) Batch size = 16
% i ||n|FJ”lh}“nu”“p.mfuwfll.|.ILMHII“!“hmlm”WlM!“F . F !
g 32 (c) Batch size = 32
£ bl o bl bR 1111

PEInR/llthBABABABABABABABABABABABABABABAB
DIM 8191101111121 13114 /15|16

0 Average Kaggle [J Average Terabyte O Average DCN
® Min. Kaggle Min. Terabyte ® Min. DCN
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Detailed Mechanism of Fafni ‘
etalie ecnanism ot rarnir .
query d L ° ° PE Indices Queries Actions Indices  Query Indlces Query Indices  Query
% : ¢ . : e input A [50[83, 94 @1,94,26>  |[forward Kreducey [50 6397 (50,11 [94,26> |
queval e e i o input B ((11)32, 83, 77 | 50, 94, 26 _Hforward | reduce ] 11 ][32 83,77 |[50,11 |lo4,26 |
Emsgggrrwsg 5011 32 83 94 25 77 @ inputA [32] 11, 83, 77| 83, 26 |[reduce | reduce ]I;;>{:2 83 [11,77) |[e2.83 o6 ) |
' input B (8311, 32, 77| 50, 94 | 32, 26| |reduce |forward | reduce | Wi (32,83 [11,77 |83 /* 50,94 |[32.83 |26 |
Embedding /
Tables: input A M[SO, 83|50, 11, 26 } [forward | forward } |:’> [94 [50 83 u&{l HSO, 11,26 }
/
input A {26 [50, 11, 94 | 32, 83 |[forward | forward | 2s / |50, 11,94 |26 ls2,83 |
Lo @ @ @ @ inputB | 7711, 32, 83 |[forward | E> 1142 83
L1 EB &B (c) LO
PE - Queries Actions dices __~Query Indices Query PE Indices Indices
: S v — o . St o e
@) Headers: nputA [11 HSQ’ = ] lreduce 11,92, 8 ][77 ] input AE 32,83 |77 }Geduce) O (1,328 77j
- Inx. Queries 3 i 1[50” |94, 28 | foryar™_ 50,11 Jos,26 | 50,11 [|94,26 | [redbce || |50, 11,94, 26]
Queries: D _»11]32,83,77|50,94,26 | | =
ID [83 o | . aduce 32,83 |26 | [rebuce | >[32, 83,26 |
e e ) 2=
% 2 AR | ‘ reduce | forward | (11,32, 83 [77 32,83 [26 o4 [50.65 | freduce | [50.83,04 |
_ﬂ 8311, 32, 77 50, 94 | 32, 26] inputA| 94 ][50, 83|50, 11,26 | [forward | reduce || o4 |s0,83 | [04,26 [50,11 | InputB[94, 26 |50, 11 reduce | |50, 11,94, 26]
@ 94]50, 8350, 11, 26 } mputB u 50, 11,94 32,83 |[reduce |forward | 94,26 50,11 | [26  [32,83 | 26 32,83 | [reduce |  [02,83,26
2650, 11,94 | 32, 83 } (77 ][11,32,83 | [forward 77 [11,32, 83 ] (77 11,32,83) [reduce ||  [11,32,83,77|
(b) (77]11,32, 83 | (d) L1 (e) L2

(a) A batch of four queries that access random embedding vectors from eight embedding tables and a three-level
Fafnir tree (b) Extracting the unique indices of four queries and creating the headers of requests to be forwarded to

Fafnir. The steps of processing the four queries through the PEs at three levels of tree: (c) LO, (d) L1, and (e) L2.
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Comparing Prior NMP Solutions and Fafnir

Legend

(a) Baseline with no NDP

Memory Connections Cores
+— >

Mapping vectors to

(b) TensorDIMM
Memory

Mapping vectors to

NDP Connections Cores
+—r > ¢ —ra—>

Da computation unit for memory devices (DIMMs) memory devices (DIMMs) CT: 1/4 out1
reduction or concatenation |, 4 vBV5v4v3 v2vi CJ: 1/4 out2
Parameters H
m: # memory devices —J & >
c¢: number of cores m o & V1 ;"26 vi ;VZG

0 i +V5+v +V5+v
@ §vosors ot [ DHAEBRL ™ 3
q: # vectors in a query ou
n: # queries va oA out? o D—voutZ
Example ) v1+v3 H H H H H H Dm
m =4 FAd +V4+v5 & & ZV3
c=n=2 Lo +v4+v5

=8 v5 D
Section

General This example General This example

III.A,C Transferred data

(from memory/NDP to cores) nXxaqxyv 2x4x8=64 nxv 2x8=16
IILB Reading different vectors parallel ranks random rows

’ Reading a vector sequential columns parallel ranks
III.B Parallel compute at NDP N/A N/A v 8
[LB.C . NDP 0 0 nx(g-1)xv 2x(4-1)x 8 =48

-B,CScalar operations |, ..o x(g-1) x v 2x(4-1)x8=48 (m-1) x n concat. (4-1) x 2 = 6 concat.
II1.C DIMM-level parallelism No No
LD #Connec_tlons (excluding cxm ox4=8 cxm ox4-8

connections to memory)
HPCA'21 Back

e
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(c) RecNMP
NDP Connections _ Cores
> +—> < > >

Memory

Mapping vectors to
memory devices (DIMMs)

v1 T D
- L
2 COTTTIT < i
D v2 +V5+v6
v3 (T T[] > D_.ouﬂ
V4 CTTTTTTT] vA out2
D © v1+v3
& RY +v4+v5
5 Q
\'
Ve ]
General This example
min: n X v 6x8=48

max:nXxqxyv (counting v1 once)
parallel ranks

sequential columns
nx(g-1) xv(intheory) 2x(4-1)x8=48

min:0 / max: n x (g-1) x v 1x8=8

min: 0/ max: n x (g-1) x v 5x8=40
No

cxm 2x4=8

(d) Fafnir (our work)

Memory _NDP + Connections

—>

Mapping vectors to

memory devices (DIMMs)

vi

] p

v2 ’j \1::6)(\16
-

a
T

vs
v5
v6

To Cores

General This example
nxv 2x8=16
parallel ranks
sequential columns
nx(g-1)xv 2x(4-1)x8=48
X (g-1) xv 2x((4-1)x8=48
0 0
Yes
@2m-2)+c @x4-2)+2=8
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Sparsity in recommendation systems - )

» Compression of embedding vectors

Particular embedding vector’s dimension can scale with its query frequency?
» Compression of embedding tables

Hashing techniques or complementary partitions are used to reduce embedding table size
» Distribution of random accesses

In the 4-channel system, the probability of having a query with indices on the same channel: ~¥25%

» Level of sparsity in the accesses to embedding tables

number of min number max Density of Density of
DLRM embedding [embedding size - number of | batch size ¥ y . Sparsity (min) | Sparsity (max)
of indices L accesses (max) | accesses (min)
tables indices
RM1-small 8 1000000 20 80 256 0.256% 0.064% 99.744% 99.936%
RM1-large 12 1000000 20 80 256 0.171% 0.043% 99.829% 99.957%
RM2-small 24 1000000 20 80 256 0.085% 0.021% 99.915% 99.979%
RM2-large 64 1000000 20 80 256 0.032% 0.008% 99.968% 99.992%

LA.A. Ginart, et al. “Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems,” arXiv:1909.11810v3
2H.M. Shi, et al. “Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems,” arXiv:1909.02107v2
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SpMV vs. Embedding Lookup

43

For SpMV, we do not know where the non-zero values of the sparse matrix are located:

» the indices of the elements to be reduced are unknown -- indices themselves are
read from memory.

» we stream both data and indices through the tree.

SpMV Embedding lookup
Indices Unknown Known
The type of memory accesses Stream data and indices Stream data only
The function of Leaf PEs Multiplication with the vector operand Skip multiplications

HPCA'21
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SpMV using Fafnir -- vectorization

44

No vectorization (compute With vectorization:
units are underutilized):
Sparse matrix Sparse matrix
Ivectorize

vector same size as

PE - TPE- PE) ... ~~-emeQding vector
@ r — @ - Tree
VYV Y EEEEEEEE

A,
Element-wise Element-wise

operation operation

L‘¢¢¢ L
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SpMV using Fafnir — compression and iterations

45

We use list-of-list (LIL) compression format. If only n columns of the matrix fit in the Fafnir, we need to perform SpMV

in rounds and iterations: lteration 0 lteration 1 lteration m (last) .

Round:_ 0 1 r—1 r Round:,_0 r/n Final
Matrix T Matrix Matrix - Re§ult
(Sorted u - IR (Unsorted [+ -1 - | |(Unsorted & i
Indices): Indices): Indices): T i

: n n i
Multiply to : i
Vector: NN I Only Only . I
Reduce: ° Reduce: ¢y Reduce: v° | !

The number of required iterations and rounds per iterations for two vector sizes when the number of columns
increases up to 20 million:

S o Vector size: 1024 o Vector size: 2048

_28 o- ‘ ‘ 3 2 ‘ ‘ ‘

5SS o (o)

£33 28 g
8 55015 S 015 <
2850 & oo o
Q.wag’ 102!—L 102h
oS8c g 5¢ 5
oL E € .- &5 3
EBES .5 2 2 05 £
BEEE% ' 10°53 10° 5
g8sgsE “£ =

€ cc 0 : : 0 ‘
5333% o 5 10 15 Z 0 5 10 15
[HB (a) Number of columns 108 (b) Number of columns 108
' Georgia 7 h
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Results of SpMV using Fafnir

» Fafnir performs the first step more quickly.

46

Unlike the Two-Step algorithm, Fafnir does not rely on decompression mechanisms and is able to apply
SpMV on data as it is streamed from memory.

Instead of a chain of adders connected to multipliers, Fafnir uses the tree for the reduction.
» The Two-Step algorithm performs the merge steps more quickly.
For smaller matrices, Fafnir performs more quickly than larger ones.

RE RI HC 2C TH FR AM WG RO KR WI LJ

SpMV Speedup
Over Two-Step

o N b~ O

<
Application:

> < >
Graph

Scientific Comp.
(matrix inversion)

Two-Step: F. Sadi, et al. “Efficient spmv operation for large and highly sparse matrices using scalable multi-way merge parallelization,” in MICRO, 2019.
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