
Click to edit Master subtitle style

Fafnir: Accelerating Sparse Gathering by Using
Efficient Near-Memory Intelligent Reduction

Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim,
Sung-Kyu Lim, and Hyesoon Kim

GTCAD Lab

Imagine we Were in Seoul for HPCA’21!

HPCA'21

2

GTCAD Lab

Seoul Tower

Bukchon Hanok Village
Gyeongbok-Gung

Bongeunsa

Itaewon

Honghae

Recommendation Systems Are Similar

HPCA'21

3

GTCAD Lab

Accessed dataAll users’ data and features of movies in memory

Seoul Tower

Bukchon Hanok Village
Gyeongbok-Gung

Bongeunsa

Itaewon

Honghae

Recommendation Systems Suggest us…

HPCA'21

4

GTCAD Lab

What music to listen What movie to watch What books to read

Where to go What to learn What medicine to take

Outline

HPCA'21

5

GTCAD Lab

} Main components and sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Outline

HPCA'21

6

GTCAD Lab

} Main components and sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Main Components and Sparsity

HPCA'21

7

GTCAD Lab

} Recommendation systems consist of
} Embedding tables, accessing to which is sparse!

An embedding vectorEmbedding Tables
v1

v2
v3

v4

v5
v6

v1 to v6 are some embedding vectors we use in our example throughout this presentation.
We randomly color them in blue and yellow to distinguish them when we apply an operation on them.

Main Components and Sparsity

HPCA'21

8

GTCAD Lab

} Recommendation systems consist of
} Embedding tables, accessing to which is sparse!

A memory unit

v1

v2
v3

v4

v5
v6

Embedding Tables

reduction

query 1 output
(v1+v2+v5+v6)

query 2 output
(v1+v3+v4+v5)

Main Components and Sparsity

HPCA'21

9

GTCAD Lab

} Recommendation systems consist of
} Embedding tables, accessing to which is sparse!
} Neural networks

v1

v2
v3

v4

v5
v6

Embedding Tables

reduction

query 1 output
(v1+v2+v5+v6)

query 2 output
(v1+v3+v4+v5) A compute unit

Neural networks

Data Movement Is a Big Challenge

HPCA'21

10

GTCAD Lab

} Embedding vectors need to be constantly transferred from
memory units to the cores

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output
(v1+v2+v5+v6)
query 2 output
(v1+v3+v4+v5)

Outline

HPCA'21

11

GTCAD Lab

} Sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Near-Memory Processing (NMP)

HPCA'21

12

GTCAD Lab

} Prior proposals suggest performing reduction near memory to
transfer less data from memory units to the cores

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output
(v1+v2+v5+v6)
query 2 output
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units CoresNMP

Prior NMP Solutions: TensorDIMM

HPCA'21

13

GTCAD Lab

} Guarantees data movement reduction
} Example: transfers only two vectors instead of six

} Challenge: Does not fully utilize row buffer locality

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output
(v1+v2+v5+v6)
query 2 output
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units CoresNMPMemory units NDP

v1v2v3v4v6v5
reduction

query 1 output
(v1+v2+v5+v6)query 2 output
(v1+v3+v4+v5)

reduction

query 1 output
(v1+v2+v5+v6)query 2 output
(v1+v3+v4+v5)

reduction

query 1 output
(v1+v2+v5+v6)query 2 output
(v1+v3+v4+v5)

reduction

query 1 output
(v1+v2+v5+v6)query 2 output
(v1+v3+v4+v5)

Y. Kwon, et al. “Tensordimm: A practical near-memory processing architecture for embeddings and tensor operations in deep learning,” in MICRO, 2019.

Prior NMP Solutions: RecNMP

HPCA'21

14

GTCAD Lab

} Fully utilizes row buffer locality
} Challenge: Does not guarantee data movement reduction

} Example: still transfers six vectors (v1, v2, v3, v4, v5, v5+v6)

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output
(v1+v2+v5+v6)
query 2 output
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units CoresNMP

reduction

query 1 output
(v1+v2+v5+v6)

v5+v6

L.Ke, et al. “Recnmp: Accelerating personalized recommendation with near-memory processing,” ISCA, 2020.

Key Insight

HPCA'21

15

GTCAD Lab

We cannot process embedding vectors where they reside
} Because they are not co-located in memory!
We do not want to process embedding vectors in the processing cores
} Because it causes huge amount of data movement

We process embedding vectors while we gather them from
random locations of memory

Outline

HPCA'21

16

GTCAD Lab

} Sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Fafnir – Main Contributions

HPCA'21

17

GTCAD Lab

} Guarantees to reduce embedding vectors before sending them to cores
} Sooner (in the leaves) or later (in the root), the corresponding embedding vectors

meet within the tree and get reduced

v1

v2
v3

v4

v5
v6

Memory units Cores

reduction

query 1 output
(v1+v2+v5+v6)
query 2 output
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units Cores

PE

PE

v1+v2

reduction

query 1 output
(v1+v2+v5+v6)v5+v6

PE
reduction

query 1 output
(v1+v2+v5+v6)

v1+v3

reduction

query 1 output
(v1+v2+v5+v6)v4+v5

reduction

query 1 output
(v1+v2+v5+v6)

query 2 output
(v1+v3+v4+v5)

reduce

reduce

reduce

forward

forward

reduce

reduction

query 1 output
(v1+v2+v5+v6)v1+v6

Fafnir

Fafnir – Main Contributions

HPCA'21

18

GTCAD Lab

} Does not require a caching mechanism
} Reads all the unique vectors in a batch of query and use them within the tree as many times as required
} Takes advantage of embedding vector locality across multiple queries and that locality is exploited in the

PE buffers through streaming operations

v1

v2
v3

v4

v5
v6

Memory units Cores

reduction

query 1 output
(v1+v2+v5+v6)
query 2 output
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units Cores

PE

PE

PE

Fafnir

v1 and v5 are used in
creating both vectors

q1: v1,v2,v5,v6
q2: v1,v3,v4,v5

v1: q1,q2
v2: q1
v3: q2
v4: q2
v5: q1, q2
v6: q1

v1+v2

v1+v3

reduction

query 1 output
(v1+v2+v5+v6)

reduction

query 1 output
(v1+v2+v5+v6)

v5+v6

reduction

query 1 output
(v1+v2+v5+v6)

v5+v4

query 2 output
(v1+v3+v4+v5)

reduction

query 1 output
(v1+v2+v5+v6)

Fafnir – Main Contributions

HPCA'21

19

GTCAD Lab

} Runs sparse matrix-vector multiplication (SpMV) as well
} If all PEs always perform reduction and leaf PEs first apply multiplication

PE

PE

PE

FafnirSparse Matrix

reduce

reduce

reduce

Fafnir – Architecture

HPCA'21

20

GTCAD Lab

} Based on their inputs, PEs decide whether to reduce or forward

v1

v2
v3

v4

v5
v6

Memory units Cores

PE

PE

Fafnir

PE

input A input B

n m

Compute
Unit

A
B

B[0]
A[0]

Compute
Unit

A
B

B[1]
A[1]

Compute
Unit

A
B

B[m-1]
A[n-1]

Merge

FIFO
buffer A

FIFO
buffer B

Compare

A[i].indices

for i=0 to n
 for j=0 to q

B[x].queries[j]

Reduce

A[i] B[x]

Forward

B[x]

out

value indices q queries
…

B[0]
B[1]
B[2]

header

B[m-1]

} We connect 32 ranks with 31 PEs and implement them at 7nm ASAP as
} Four DIMM/rank chips: 0.282 𝑚𝑚!, 23.82 𝑚𝑊
} One channel chip: 0.121 𝑚𝑚!, 16.37 𝑚𝑊

Fafnir – Implementation

HPCA'21

21

GTCAD Lab

PE

PE

PE

PE

PE

PE

PE

PE

PE

……

DIMM0

DIMM3

DIMM12

DIMM15

…
…

…
…

492µm

57
5µ

m

One DIMM/rank Chip

Outline

HPCA'21

22

GTCAD Lab

} Sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Experimental Setup

HPCA'21

23

GTCAD Lab

We implement Fafnir on XCVU9P Xilinx FPGA and ASIC design at 7nm ASAP

Experimental Setup

HPCA'21

24

GTCAD Lab

We implement Fafnir on XCVU9P Xilinx FPGA and ASIC design at 7nm ASAP
We evaluate Fafnir for

} Recommendation systems
} Models: DLRM and DCN
} Data sets: Criteo Ad Kaggle and Terabyte

} SpMV on matrices from SuiteSparse data set
We compare with

} TensorDIMM (MICRO’19) and RecNMP(ISCA’20) for recommendation systems
} Two-Step (MICRO’19) approach for SpMV

Outline

HPCA'21

25

GTCAD Lab

} Sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Evaluation – Latency

HPCA'21

26

GTCAD Lab

Time to respond to a single query including random accesses to 16 512-byte
vectors distributed over 32 ranks.

} Computation of Fafnir is 2.5x faster than prior work
} Memory access of Fafnir is 4.45x faster than TensorDIMM

0

200

400

600

800

TensorDIMM RecNMP Fafnir

La
te

nc
y

(n
s)

Compute (Critical Path)
Memory

Evaluation – End-to-End Inference Speedup

HPCA'21

27

GTCAD Lab

} The impact of accelerating the embedding lookup on the overall inference time

Based on DLRM on Kaggle

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16 32

In
fe

re
nc

e
la

te
nc

y
no

rm
al

ize
d

to
 b

as
el

in
e

#Ranks

FC Other

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16 32

In
fe

re
nc

e
la

te
nc

y
no

rm
al

ize
d

to
 b

as
el

in
e

#Ranks

Embedding Lookup Linear Speedup

2.7x 4.1x

RecNMP (Prior Work) Fafnir (Our work)

Prior work: L.Ke, et al. “Recnmp: Accelerating personalized recommendation with near-memory processing,” ISCA, 2020.

Evaluation – Scalability

HPCA'21

28

GTCAD Lab

} The impact of concurrent batch processing on scalability

0.01

0.1

1

10

100

Sp
ee

up
 o

ve
r R

N
M

P
(lo

g)

Batch Size = 8

Kaggle (+opt.) Kaggle
0.01

0.1

1

10

100

Sp
ee

up
 o

ve
r R

N
M

P
(lo

g)

Batch Size = 16

Terabyte (+opt.) Terabyte
0.01

0.1

1

10

100

Sp
ee

up
 o

ve
r R

N
M

P
(lo

g)

Batch Size = 32

DCN (+opt.) DCN

TDM
Fafnir

TDM TDM
Fafnir Fafnir

RNMP RNMP RNMP

Evaluation –Power Consumption

HPCA'21

29

GTCAD Lab

} For a four-channel memory system
} ASIC implementation: 111.64mW
} FPGA implementation: 1.1W

1.0e-03

3.2e-01

1.0e+02
mW (log)

3.2e-06

1.0e-08
Power distribution of a PE

0

0.05

0.1

0.15

0.2

0.25

0.3

DIMM/Rank Node Channel Node

Dy
na

m
ic

 P
ow

er

Co
ns

um
pt

io
n

(W
)

Clocks Signals
Logic BRAM
I/O

Outline

HPCA'21

30

GTCAD Lab

} Sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree

} Main contributions
} Architecture and implementation

} Experimental setup
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions

Conclusions

HPCA'21

31

GTCAD Lab

} Fafnir…
} Does not rely on spatial locality

} Minimizes data movement from memory to cores

} Fully utilizes row buffer locality

} Requires fewer connections

} Does not require costly caching mechanisms

} Is application to other application domains (e.g., SpMV)

Backup Slides

HPCA'21

32

GTCAD Lab

} Statistics of workloads for recommendation systems
} Sparse matrices for the evaluation of SpMV
} Mapping embedding tables for memory addresses
} The configurations of PEs
} The latency of PEs
} FPGA resource utilziaiton
} Locality in accesses to embedding tables
} Mechanisms of redundant memory accesses elimination and batch processing in Fafnir
} Detailed comparison of prior NMP solutions and Fafnir
} Various types of sparsity in recommendation systems
} Using Fafnir for SpMV

} SpMV vs. embedding lookup
} Vectorization
} Compression format
} Results

Statistics of Workloads for Recommendation Systems

HPCA'21

33

GTCAD Lab

} The size of embedding vectors:
} 64 x 8 bytes = 512 bytes

} The number of summations:
} 64 summations to reduce two vectors

} An approximate compute intensity:
} 0.15 Flops/byte

} The size of data sets:
} Kaggle and Terabyte include 26 tables that we mapped to different ranks utilizing 208 GB
} DCN includes 400GB data, we report results based on 256GB of it that fits in our 32 ranks

} Memory size (our configuration):
} 4 x 16-GB DDR4 DIMM = 64 GB per a DIMM/Rank Node
} 4 x 64 GB = 256 GB total for the 32-rank system

} The number of queries in a batch:
} 16 queries per batch, each containing maximum 16 indices

Back

Sparse Matrices from SuiteSparse

HPCA'21

34

GTCAD Lab

} How sparse are the matrices we used for SpMV?

Back

Mapping Embedding Tables to Memory Addresses

HPCA'21

35

GTCAD Lab
Back

DIMM3

PE PE
PE

Rank0 Rank1
…

Rank6 Rank7
DIMM0

PE PE
PE

Ch.0 Ch.1Ch.2 Ch.3

cores

012345678910111213141516171819202122…

embedding vector
columnrow column bank DIMM

table IDembedding table index
CH.R.

(b)

Pointer to Leaves

DIMM15

PE PE
PE

Rank24 Rank25
…

Rank30 Rank31
DIMM12

…… …

492µm

57
5µ

m

28
2µ

m

274µm

(a)

DIMM/Rank Node
Channel Node

Layout of a DIMM/Rank NodeLayout of a PE

The mapping of embedding
tables to memory addresses.

The architecture of Fafnir
tree, consisting of DIMM/rank

and channel nodes and ASIC
designs at 7 nm for a PE and a

DIMM/rank node.

PE configuration

HPCA'21

36

GTCAD Lab

} The size of PE
} The size of input buffers and the number of compute units is defined by the batch size
} The number of outputs of each PE is limited by the batch size
} The maximum number of outputs for a PE is min(nm, n+m, B) – n,m: input sizes, B: batch size
} Each entry of input buffer contains 512B value + 10B header

¨ 10B header: 16 queries x 5-bit indices for identifying 32 tables = 16x5/8 = 10B

} Each PE (at any level of tree) includes 16 compute units
} Buffer sizes that are sum of all buffers (B: batch size)

Node
PE buffer (KB) Node buffer (KB)

B=8 B=16 B=32 B=8 B=16 B=32

DIMM/Rank
4.6 9.3 18.5

32.4 64.8 129.5

Channel 13.9 27.8 55.5

Back

PE Latency

HPCA'21

37

GTCAD Lab

Cycles @200MHz for the components of the compute units of Fafnir based on FPGA
implementation:

Compare

Parallel paths (reduce or forward)

Reduce (generating
the value)

Reduce (generating the
header)

Forward
Indices

generation
Queries

generation

Per item (iteration) 12 3 4 3 16

Batch size = 8/16/32 N/A 32/64/128 29/53/101 N/A

Back

FPGA Resource Utilization

HPCA'21

38

GTCAD Lab

} The number of units and the utilization for batch size of 16:

Node
DIMM/Rank Node Channel Node

Units Utilization (%) Units Utilization (%)

LUT 11800 1 7214 0.61

LUTRAM 192 0.03 96 0.02

FF 4646 0.2 3295 0.14

BRAM 68 3.15 26 1.2

Back

Locality in Embedding Accesses
39

GTCAD Lab
Back

10

30

50

70

8 16 32

%
 U

ni
qu

e

Batch size

Kaggle on DLRM
max

min
10

30

50

70

8 16 32
%

 U
ni

qu
e

Batch size

Terabyte on DLRM
max

min 10
30
50
70
90

8 16 32

%
 U

ni
qu

e

Batch size

DCN
max

min

0
8

16
24
32

A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

0|1 2|3 4|5 6|7 8|9 10|1112|1314|1516|1718|1920|2122|2324|2526|2728|2930|31Average Kaggle Average Terabyte Average DCN
Min. Kaggle Min. Terabyte Min. DCN

DIMM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
4
8

12
16

0
2
4
6
8 (a) Batch size = 8

(b) Batch size = 16

(c) Batch size = 32
#m

em
or

y
ac

ce
ss

es
 p

er
 b

at
ch

PE Input

10

30

50

70

8 16 32

%
 U

ni
qu

e

Batch size

Kaggle on DLRM
max

min
10

30

50

70

8 16 32

%
 U

ni
qu

e

Batch size

Terabyte on DLRM
max

min 10
30
50
70
90

8 16 32

%
 U

ni
qu

e

Batch size

DCN
max

min

10

30

50

70

8 16 32

%
 U

ni
qu

e

Batch size

Kaggle on DLRM
max

min
10

30

50

70

8 16 32

%
 U

ni
qu

e

Batch size

Terabyte on DLRM
max

min 10
30
50
70
90

8 16 32

%
 U

ni
qu

e

Batch size

DCN
max

min

The percentage of
unique indices in
batches of queries:

The number of memory accesses at different DIMMs:

Detailed Mechanism of Fafnir

HPCA'21

40

GTCAD Lab
Back

0|1 2|3 4|5 6|7

0|1
2|3

4|5
6|7

root

L0

L1

L2

(a)

50 11 32 83 94 26 77

query a
query b
query c
query d

a 11, 32, 83, 77
b 50, 83, 94
c 50, 11, 94, 26
d 32, 83, 26

ID Indices 50 83, 94 | 11, 94, 26
11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26
83 11, 32, 77 | 50, 94 | 32, 26

Inx. Queries

94 50, 83 | 50, 11, 26
26 50, 11, 94 | 32, 83
77 11, 32, 83 (b)

Queries:

Headers:

PE Indices Queries

0|1

2|3

4|5

6|7

50 83, 94 | 11, 94, 26

11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26

83 11, 32, 77 | 50, 94 | 32, 26

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83

Actions
forward | reduce

forward | reduce

reduce | reduce

reduce | forward | reduce

forward | forward

forward | forward

forward

Indices Query
50 83, 94

11 32, 83, 77

50,11 94, 26

50,11 94, 26

Indices Query

32, 83 11, 77 32, 83 26

32, 83 11, 77 83 50, 94 32, 83 26

94 50, 83 94 50, 11, 26

26 50, 11, 94 26 32, 83

77 11, 32, 83

Indices Query

0|1
2|3

PE Indices Queries

4|5
6|7

50 83, 94

11 32, 83, 77

50,11 94, 26

32, 83 11, 77 | 26
83 50, 94

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83

Actions

reduce

reduce

forward

reduce
reduce | forward

forward | reduce

reduce | forward
forward

Indices Query

50, 83 94

11, 32, 83 77

50, 11 94, 26

50, 83 94

11, 32, 83 77 32, 83 26

Indices Query

94 50, 83 94, 26 50, 11

94, 26 50, 11 26 32, 83

77 11, 32, 83

root

50, 83 94

11, 32, 83 77

50, 11 94, 26

Indices Queries Actions Indices

32, 83 26

94 50, 83

94, 26 50, 11

26 32, 83

77 11, 32, 83

reduce

reduce

reduce
reduce

reduce

reduce

reduce

reduce

50, 83, 94

11, 32, 83, 77

50, 11, 94, 26

32, 83, 26

50, 83, 94

50, 11, 94, 26

32, 83, 26

11, 32, 83, 77

PE

input A

input B

input A

input B

input A

input B

input A

input A

input B

input A

input B

input A

input B

2

50 83, 94 | 11, 94, 26

11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26

83 11, 32, 77 | 50, 94 | 32, 26

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83

forward | reduce

forward | reduce

reduce | reduce

reduce | forward | reduce

forward | forward

forward | forward

forward

50 83, 94

11 32, 83, 77

50,11 94, 26

50,11 94, 26

32, 83 11, 77 32, 83 26

32, 83 11, 77 83 50, 94 32, 83 26

94 50, 83 94 50, 11, 26

26 50, 11, 94 26 32, 83

77 11, 32, 83

Query

50 83, 94

11 32, 83, 77

50,11 94, 26

32, 83 11, 77 | 26
83 50, 94

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83

reduce

reduce

forward

reduce
reduce | forward

forward | reduce

reduce | forward
forward

50, 83 94

11, 32, 83 77

50, 11 94, 26

50, 83 94

11, 32, 83 77 32, 83 26

94 50, 83 94, 26 50, 11

94, 26 50, 11 26 32, 83

77 11, 32, 83

root

50, 83 94

11, 32, 83 77

50, 11 94, 26

32, 83 26

94 50, 83

94, 26 50, 11

26 32, 83

77 11, 32, 83

reduce

reduce

reduce
reduce

reduce

reduce

reduce

reduce

50, 83, 94

11, 32, 83, 77

50, 11, 94, 26

32, 83, 26

50, 83, 94

50, 11, 94, 26

32, 83, 26

11, 32, 83, 77

(d) L1

(c) L0

(e) L2

2

3

Embedding
Tables:

Embedding
Vectors:

0 1 2 3 4 5 6 7

a c
4

Query
“a”

1

(a) A batch of four queries that access random embedding vectors from eight embedding tables and a three-level
Fafnir tree (b) Extracting the unique indices of four queries and creating the headers of requests to be forwarded to
Fafnir. The steps of processing the four queries through the PEs at three levels of tree: (c) L0, (d) L1, and (e) L2.

Comparing Prior NMP Solutions and Fafnir

HPCA'21

41

GTCAD Lab
Back

v1

v1

Mapping vectors to
memory devices (DIMMs)

out1

out2

v2
v3

v4

v5 v5

v6

v1

v2
v3

v4

v5
v6

Memory CoresConnections
(a) Baseline with no NDP

v1v2v3v4v6v5

Mapping vectors to
memory devices (DIMMs)

out1

out2

Memory CoresNDP Connections
(b) TensorDIMM

Mapping vectors to
memory devices (DIMMs)

out1

out2

v2

v5
+v

6 v5

v1

v2
v3

v4

v5
v6

Memory

To Cores

NDP Connections
(c) RecNMP

Mapping vectors to
memory devices (DIMMs)

v1

v2
v3

v4

v5
v6

Memory NDP + Connections
(d) Fafnir (our work)

Legend

Parameters
m: # memory devices
c: number of cores
v: vector size
q: # vectors in a query
n: # queries
Example
m = 4
c = n = 2
v = 8
q = 4

This exampleGeneral This exampleGeneral This example
min: n x v

max: n x q x v

This exampleGeneral
Section

III.A,C Transferred data
(from memory/NDP to cores)

Scalar operations |
0

n x (q-1) x v
0

2 x (4-1) x 8 = 48
n x (q-1) x v

(m-1) x n concat.
2 x (4-1) x 8 = 48

 (4-1) x 2 = 6 concat.
min:0 / max: n x (q-1) x v
min: 0 / max: n x (q-1) x v

1 x 8 = 8
5 x 8 = 40

n x (q-1) x v
0

2 x (4-1) x 8 = 48
0

NDP
coresIII.B,C

n x q x v 2 x 4 x 8 = 64 n x v 2 x 8 = 16 6 x 8 = 48
(counting v1 once)

: 1/4 out1
: 1/4 out2

General

n x v 2 x 8 = 16

a computation unit for
reduction or concatenation

(2m - 2) + c (2 x 4 - 2) + 2 = 82 x 4 = 8c x m2 x 4 = 8c x m2 x 4 = 8c x mIII.D #Connections (excluding
connections to memory)

III.B v 8 2 x (4-1) x 8 = 48 2 x (4-1) x 8 = 48N/A N/A n x (q-1) x v (in theory) n x (q-1) x vParallel compute at NDP

parallel ranks
sequential columns

random rows
parallel ranks

parallel ranks
sequential columns

parallel ranks
sequential columnsIII.B Reading different vectors

Reading a vector

v1

v3
v4

Cores

v1+v2
+v5+v6

v1+v3
+v4+v5

v1+v2
+v5+v6

v1+v3
+v4+v5

v1+v2
+v5+v6

v1+v3
+v4+v5

v1+v2

+v5+v6

v1+v3+v4+v5

NoNoNoIII.C DIMM-level parallelism Yes

Sparsity in recommendation systems

HPCA'21

42

GTCAD Lab

} Compression of embedding vectors
} Particular embedding vector’s dimension can scale with its query frequency1

} Compression of embedding tables
} Hashing techniques or complementary partitions are used to reduce embedding table size

} Distribution of random accesses
} In the 4-channel system, the probability of having a query with indices on the same channel: ~25%

} Level of sparsity in the accesses to embedding tables

DLRM
number of
embedding

tables
embedding size min number

of indices

max
number of

indices
batch size Density of

accesses (max)
Density of

accesses (min) Sparsity (min) Sparsity (max)

RM1-small 8 1000000 20 80 256 0.256% 0.064% 99.744% 99.936%
RM1-large 12 1000000 20 80 256 0.171% 0.043% 99.829% 99.957%
RM2-small 24 1000000 20 80 256 0.085% 0.021% 99.915% 99.979%
RM2-large 64 1000000 20 80 256 0.032% 0.008% 99.968% 99.992%

Back

1 A.A. Ginart, et al. “Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems,” arXiv:1909.11810v3
2 H.M. Shi, et al. “Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems,” arXiv:1909.02107v2

SpMV vs. Embedding Lookup

HPCA'21

43

GTCAD Lab

For SpMV, we do not know where the non-zero values of the sparse matrix are located:
} the indices of the elements to be reduced are unknown -- indices themselves are

read from memory.
} we stream both data and indices through the tree.

Back

SpMV Embedding lookup

Indices Unknown Known

The type of memory accesses Stream data and indices Stream data only

The function of Leaf PEs Multiplication with the vector operand Skip multiplications

SpMV using Fafnir -- vectorization

HPCA'21

44

GTCAD Lab
Back

No vectorization (compute
units are underutilized):

With vectorization:

Sparse matrix

PE

PE

PE

Element-wise
operation

…

Sparse matrix

PE PE

PE

Element-wise
operation

vectorize

…
vector same size as
embedding vector

SpMV using Fafnir – compression and iterations

HPCA'21

45

GTCAD Lab
Back

0 5 10 15
Number of columns 106

0

0.5

1

1.5

2

N
um

be
r o

f m
er

ge
 s

ta
ge

s

100

102

N
um

be
r o

f r
ou

nd
s

Batch size: 2048

0 5 10 15
Number of columns 106

0

0.5

1

1.5

2
N

um
be

r o
f m

er
ge

 s
ta

ge
s

100

102

N
um

be
r o

f r
ou

nd
s

Batch size: 1024

(a) (b)

0
5

10
15

N
um

be
r o

f c
ol

um
ns

10
6

0

0.
51

1.
52

Number of merge stages

10
0

10
5

Number of rounds

B
at

ch
 s

iz
e:

 4
09

6
nu

m
be

r o
f m

er
ge

 s
ta

ge
s

ro
un

ds
 in

 fi
rs

t i
te

ra
tio

n
ro

un
ds

 in
 fi

rs
t m

er
ge

 it
er

at
io

n
ro

un
ds

 in
 s

ec
on

d
m

er
ge

 it
er

at
io

n Vector size: 1024 Vector size: 2048

The number of required iterations and rounds per iterations for two vector sizes when the number of columns
increases up to 20 million:

…

Iteration 0

…

Matrix
(Sorted
Indices):
Multiply to
Vector:

…

0

Reduce:
Only
Reduce:

……
Matrix
(Unsorted
Indices):

Iteration 1

…

Iteration m (last)

…

Final
Result

Round: Round:

…
Matrix
(Unsorted
Indices):

Only
Reduce:

r/nrr � 1

n n n

0 1

We use list-of-list (LIL) compression format. If only n columns of the matrix fit in the Fafnir, we need to perform SpMV
in rounds and iterations:

Results of SpMV using Fafnir

HPCA'21

46

GTCAD Lab

} Fafnir performs the first step more quickly.
} Unlike the Two-Step algorithm, Fafnir does not rely on decompression mechanisms and is able to apply

SpMV on data as it is streamed from memory.
} Instead of a chain of adders connected to multipliers, Fafnir uses the tree for the reduction.

} The Two-Step algorithm performs the merge steps more quickly.
} For smaller matrices, Fafnir performs more quickly than larger ones.

Back

0

2

4

6
RE RI HC 2C TH FR AM WG RO KR WI LJ

Sp
M

V
Sp

ee
du

p
O

ve
r

Tw
o-

St
ep

Scientific Comp.
(matrix inversion) GraphApplication:

Two-Step: F. Sadi, et al. “Efficient spmv operation for large and highly sparse matrices using scalable multi-way merge parallelization,” in MICRO, 2019.

