
Click to edit Master subtitle style

Proposing a Fast and Scalable Systolic Array
for Matrix Multiplication

Bahar Asgari, Ramyad Hadidi, Hyesoon Kim

Matrix Multiplication 2

Matrix multiplication is the key operation in many applications
Example: convolution in neural networks

Systolic arrays perform matrix multiplication that
} Includes several similar operations (i.e., multiply and accumulation)
} Captures high data reuse rate

F

F

F

…

C

K F W

HC
F

F

* = W

HK

K

F 2.C

⇥ = K

W.H

W.H

F
2 .
C

Convolution:

Matrix
Multiplication:

Systolic Arrays for Matrix Multiplication 3

} Non-stationary
} None of the operands are stationary

An⇥m ⇥Bm⇥p = Cn⇥p

m

n

m

p

a MAC unit

B

A

Systolic Arrays for Matrix Multiplication 4

} Non-stationary
} None of the operands are stationary

} Phase 1:
} only processing
} Time steps: 1
}

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 5

} Non-stationary
} None of the operands are stationary

} Phase 1
} only processing
} Time steps: 2
}

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 6

} Non-stationary
} None of the operands are stationary

} Phase 1:
} only processing
} Time steps: 3
}

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 7

} Non-stationary
} None of the operands are stationary

} Phase 1:
} only processing
} Time steps: 4
}

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 8

} Non-stationary
} None of the operands are stationary

} Phase 1:
} only processing
} Time steps: 5
}

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 9

} Non-stationary
} None of the operands are stationary

} Phase 1:
} only processing
} Time steps: n + m

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 10

} Non-stationary
} None of the operands are stationary

} Phase 2:
} processing and offloading
} Time steps: n + m + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1

Systolic Arrays for Matrix Multiplication 11

} Non-stationary
} None of the operands are stationary

} Phase 3:
} only offloading
} Time steps: n + m + p - 2 + 1
}

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 2Phase 1

Systolic Arrays for Matrix Multiplication 12

} Non-stationary
} None of the operands are stationary

} Phase 3:
} only offloading
} Time steps: n + m + p - 2 + 2
}

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 2Phase 1

Systolic Arrays for Matrix Multiplication 13

} Non-stationary
} None of the operands are stationary

} Phase 3:
} only offloading
} Time steps: n + m + p - 2 + n
}

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 2Phase 1

Systolic Arrays for Matrix Multiplication 14

} Non-stationary
} None of the operands are stationary

} Phase 3:
} only offloading
} Time steps: 2n + m + p - 2
}

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 15

} Stationary
} One operand (here, B) is stationary

An⇥m ⇥Bm⇥p = Cn⇥p

m

n
m

p

a MAC unit

B

A

Systolic Arrays for Matrix Multiplication 16

} Stationary
} One operand (here, B) is stationary

Phase 1:
} only loading B
} Time steps: 1

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 17

} Stationary
} One operand (here, B) is stationary

Phase 1:
} only loading B
} Time steps: m - 1

An⇥m ⇥Bm⇥p = Cn⇥p

Systolic Arrays for Matrix Multiplication 18

} Stationary
} One operand (here, B) is stationary

Phase 2:
} loading B and processing
} Time steps: m - 1 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1

Systolic Arrays for Matrix Multiplication 19

} Stationary
} One operand (here, B) is stationary

Phase 3:
} only processing
} Time steps: m + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2

Systolic Arrays for Matrix Multiplication 20

} Stationary
} One operand (here, B) is stationary

Phase 3:
} only processing
} Time steps: m + m - 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2

Systolic Arrays for Matrix Multiplication 21

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2&3

} Stationary
} One operand (here, B) is stationary

Phase 4:
} processing and offloading
} Time steps: 2m - 1 + 1

Systolic Arrays for Matrix Multiplication 22

} Stationary
} One operand (here, B) is stationary

Phase 4:
} processing and offloading
} Time steps: 2m - 1 + 2

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2&3

Systolic Arrays for Matrix Multiplication 23

An⇥m ⇥Bm⇥p = Cn⇥p

} Stationary
} One operand (here, B) is stationary

Phase 4:
} processing and offloading
} Time steps: 2m - 1 + 3

Phase 1 &2&3

Systolic Arrays for Matrix Multiplication 24

An⇥m ⇥Bm⇥p = Cn⇥p

} Stationary
} One operand (here, B) is stationary

Phase 4:
} processing and offloading
} Time steps: 2m - 1 + n + p - 2

Phase 1 &2&3

Systolic Arrays for Matrix Multiplication 25

} Stationary
} One operand (here, B) is stationary

Phase 5:
} only offloading
} Time steps: 2m -1 + n + p - 2 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 4Phase 1 &2&3

Systolic Arrays for Matrix Multiplication 26

} Stationary
} One operand (here, B) is stationary

Phase 5:
} only offloading
} Time steps: n + 2m + p - 2

An⇥m ⇥Bm⇥p = Cn⇥p

Key Challenge 27

The systolic arrays proposed by prior work are not scalable:
} Their latency grows linearly with the size of the inputs
} Latency is the key metric for single-batch inference

An⇥m ⇥Bm⇥p = Cn⇥p

Stationary
Time steps: n + 2m + p - 2

Non-Stationary
Time steps: 2n + m + p - 2

Key Insight and Proposed Systolic Array 31

Matrix multiplication consists of
} Multiplication
} Additions

In optimized implementation
} Latency increases sublinearly with the input size

We propose a systolic array with separate
} Multiplier array
} Adder-tree array

Time steps: n + 2m + p - 2
m + log(m)

This can be done in log(m) for m numbers

m

n
m

p

a multiplier

B

A
an adder tree

Our proposed systolic array 32

One operand (here, B) is stationary

An⇥m ⇥Bm⇥p = Cn⇥p

m

n
m

p

a multiplier

B

A
an adder tree

Our proposed systolic array 33

One operand (here, B) is stationary

Phase 1:
} only loading B
} Time steps: 1

An⇥m ⇥Bm⇥p = Cn⇥p

Our proposed systolic array 34

One operand (here, B) is stationary

Phase 1:
} only loading B
} Time steps: m-1

An⇥m ⇥Bm⇥p = Cn⇥p

Our proposed systolic array 35

One operand (here, B) is stationary

Phase 2:
} loading B and multiplication
} Time steps: m - 1 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1

Our proposed systolic array 36

One operand (here, B) is stationary

Phase 3:
} multiplication and addition
} Time steps: m + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2

Our proposed systolic array 37

One operand (here, B) is stationary

Phase 3:
} multiplication and addition
} Time steps: m + 2

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2

Our proposed systolic array 38

One operand (here, B) is stationary

Phase 3:
} multiplication and addition
} Time steps: m + 3

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2

Our proposed systolic array 39

One operand (here, B) is stationary

Phase 3:
} multiplication and addition
} Time steps: m + 4

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2

Our proposed systolic array 40

One operand (here, B) is stationary

Phase 4:
} only addition
} Time steps: m + n + p - 2 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3

Our proposed systolic array 41

One operand (here, B) is stationary

Phase 4:
} only addition
} Time steps: m + n + p - 2 + 2

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3

Our proposed systolic array 42

One operand (here, B) is stationary

Phase 4:
} only addition
} Time steps: m + n + p - 2 + 3

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3

Our proposed systolic array 43

One operand (here, B) is stationary

Phase 4:
} only addition
} Time steps: m + n + p - 2 + log (m)

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3

Our proposed systolic array 44

One operand (here, B) is stationary

Phase 4:
} only addition
} Time steps: n + m + log(m) + p - 2

An⇥m ⇥Bm⇥p = Cn⇥p

Implementation 46

Tools and Devices:
} ZYNQ XC7z020
} Vivado HLS

Benchmark:
} DNNs (VGG16, VGGS, AlexNet, CifarNet, ResNet50)

Metrics:
} Latency
} Energy consumption

Results – Speedup and Energy Consumption 47

0

1

2

3

VGGS AlexNet CifarNet VGG16 ResNet50 GMEAN

sp
ee

d
up

 o
ve

r
no

n-
st

at
io

na
ry

Stationary Non-stationary Our proposed systolic array

Our proposed systolic array is
} 1.99x faster than non-stationary while consuming 2.12x less energy
} 1.83x faster than stationary while consuming 2.27x less energy

1.99 1.83

Conclusions 48

Systolic arrays have seen significant interest
} because of their unique interconnections that satisfies the unique requirement of data

reuse in matrix multiplication.

Although the systolic arrays in prior work offer high throughput, their
latency is not optimized

} Latency is the key factor for single-batch inference!

To optimize latency, we propose a new systolic array consisting of
separate multiplier and adder-tree arrays

} It is faster than both prior proposals when the size of the operands grows

