
Performance Implications of NoCs on 3D-Stacked
Memories: Insights from the Hybrid Memory Cube

Ramyad Hadidi, Bahar Asgari, Jeffrey Young, Burhan Ahmad Mudassar, Kartikay Garg,
Tushar Krishna, and Hyesoon Kim

Georgia Institute of Technology

{rhadidi, bahar.asgari, jyoung9, burhan.mudassar, kgarg40}@gatech.edu

tushar@ece.gatech.edu hyesoon@cc.gatech.edu

Abstract—Three-dimensional (3D)-stacked memories, such as
the Hybrid Memory Cube (HMC), provide a promising solution
for overcoming the bandwidth wall between processors and
memory by integrating memory and logic dies in a single stack.
Such memories also utilize a network-on-chip (NoC) to connect
their internal structural elements and to enable scalability. This
novel usage of NoCs enables numerous benefits such as high
bandwidth and memory-level parallelism and creates future pos-
sibilities for efficient processing-in-memory techniques. However,
the implications of such NoC integration on the performance
characteristics of 3D-stacked memories in terms of memory
access latency and bandwidth have not been fully explored.
This paper addresses this knowledge gap (i) by characterizing
an HMC prototype using Micron’s AC-510 accelerator board
and by revealing its access latency and bandwidth behaviors;
and (ii) by investigating the implications of such behaviors
on system- and software-level designs. Compared to traditional
DDR-based memories, our examinations reveal the performance
impacts of NoCs for current and future 3D-stacked memories
and demonstrate how the packet-based protocol, internal queuing
characteristics, traffic conditions, and other unique features of
the HMC affects the performance of applications.

I. INTRODUCTION

In the past decade, the demand of data-intensive applications

for high-performance memories has pushed academia and in-

dustry to develop novel memories with larger capacity, higher

access bandwidth, and lower latency. To this end, JEDEC-

based memories (i.e., DDRx) have evolved to include three-

dimensional (3D)-stacked DRAMs, such as High Bandwidth

Memory (HBM) [1]. While such memories are compatible

with traditional architectures and JEDEC standards, they are

limited in terms of scalability and bandwidth, which is due to

their wide buses and the use of the standard DDRx protocol.

Therefore, a generation of 3D-stacked memories with packet-

based communication has been introduced and is currently

implemented in the Hybrid Memory Cube, or HMC [2].

Thanks in part to an internal packet-switched network and

high-speed serial links between the processor and memory

stack, this type of novel 3D-stacked memory exploits both

internal and external networks to extend its capacity and

scalability [3], [4]. The HMC consists of vertical memory

partitions called vaults and a logic layer that consists of

memory controllers (i.e., vault controllers), connected via an

internal network-on-chip (NoC) [5]. As our analysis shows,

the characteristics and contention of the internal NoC play an

integral role in the overall performance of the HMC.

Logic and memory integration within 3D stacks has mo-

tivated researchers to explore novel processing-in-memory

(PIM) concepts within the architecture of 3D-stacked mem-

ories using simulation [4], [6]–[15]. However, few researchers

have studied actual prototypes of memories similar to the

HMC [16]–[19]. In particular, to the best of our knowledge, no

experimental work has sought to characterize the bandwidth

and latency1 impacts of the internal NoC on the performance

of the HMC. In addition to understanding the performance

impacts of the NoC on applications, such characterizations

are also important for the design of PIM units built around

or inside the HMC. To gain further insights into the impacts

of the internal NoC on 3D-stacked memories, we evaluate

the performance characteristics of an HMC 1.1 [5] prototype.

We utilize a Xilinx FPGA and an HMC 1.1 on the Micron’s

AC-510 [20] accelerator board, which is mounted on an

EX-700 [21] PCIe backplane. Figure 1 presents the full-

stack overview of our FPGA-based evaluation system, which

includes user configurations, memory trace files, software,

driver, an FPGA, and an HMC.

Our analyses characterize access properties for both low-

and high-contention traffic conditions, for which we use two

combinations of software and digital designs (i.e., Verilog

implementations on the FPGA). Our results reveal (i) latency

and bandwidth relationships across various access patterns,

targeted to structural organizations of the HMC (i.e., vaults and

banks), (ii) latency distributions across the vaults of the HMC,

AC-510
EX700 PCIe Board

Configs/
Mem. Trace

Driver

So
ftw

ar
e

NoC

HMC

Vault

PC
Ie

 3
.0

 x
16

Host

FPGA

Vault
Vault

Logic Layer

Fig. 1: An overview of our system, and the NoC of the HMC.

1 Latency and round-trip time are interchangeably used in this paper.

99

2018 IEEE International Symposium on Performance Analysis of Systems and Software

0-7695-6375-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ISPASS.2018.00018

(iii) quality of service (QoS) within a particular access pattern,

and (iv) bottlenecks to occur within the HMC, associated

infrastructure, or within each access pattern. The contributions

of this paper are as follows:

• This is the first study, to the best of our knowledge, that

explores the impacts of the internal NoC of the HMC,

a prototype of packet-switched 3D-stacked memories, on

bandwidth and latency.

• It examines how the internal NoC behaves under low- and

high-contention traffic conditions, presents the concept of

QoS for 3D-stacked memories, and describes how future

systems and applications should incorporate the HMC to

achieve desirable performance.

• It presents a detailed analysis of the latency distribution

that is caused by the internal NoC of the HMC for

a specific access pattern and related consequences and

opportunities.

• It studies request and response bandwidth relationships

for various access patterns, determines the source of

bottlenecks, and presents solutions for avoiding them.

In the rest of this paper, we first review the HMC 1.1 speci-

fications in Section II and then introduce our infrastructure and

methodology in Section III. After that, Section IV presents and

analyzes the details of latency and bandwidth of the HMC with

various traffic conditions and the contribution of the NoC in

each scenario. Subsequently, Sections V and VI review related

work and present conclusions based on our analyses.

II. BACKGROUND

In this paper, we focus on the HMC 1.1 specification

(Gen2) [5], currently available for purchase. This section

presents background on the structure of the HMC and relevant

information on packet-based memories for our analyses.

A. HMC Structure

The HMC 1.1 consists of eight DRAM dies stacked on top

of a logic die, vertically connected by 512 Through-Silicon-
Vias (TSVs) [2]. As Figure 2 illustrates, the layers of the HMC

are divided into 16 partitions, each of which is called a vault
with a corresponding memory controller in the logic layer,

the so-called vault controller [22]. Each vault employs a 32-

byte DRAM data bus [5], enabled by 32 TSVs. A group of

Partition TSVs

Vault

DRAM Layers

Quadrant

Logic Layer

Bank
Bank

Fig. 2: 4 GB HMC 1.1 internal structure.

4K OS Page

Bank ID Quadrant ID
Vault ID in a QuadrantBlock Address

047911153233
…

Ignored

Fig. 3: Address mapping of 4 GB HMC 1.1 with block size of 128 B.

four vaults is called a quadrant, connected to an external full-

duplex serialized link, an eight- (half-width) or a 16-lane (full-

width) connection clocking at speeds of 10, 12.5, or 15 Gbps.

Thus, the maximum bandwidth of a two-link half-width HMC

device with a 15 Gbps link is:

BWpeak = 2 link × 8 lanes/link × 15Gb/s × 2 duplex = 60GB/s. (1)

The size of a DRAM layer in Gen2 (HMC 1.1) devices is 4 Gb.

Since HMC 1.1 has eight layers, the total size of it is 4 GB.

Moreover, each of the 16 vaults is 256 MB. As the size of

a bank is 16 MB [5], the number of banks in a vault and an

HMC 1.1 is 16 and 256, respectively. (A detailed comparison

between versions of the HMC is done in [19].)

The header of an HMC 1.1 request packet (see Section II-B

for more details) contains a 34-bit address field, but two

high-order bits are ignored in a 4 GB HMC. Figure 3 shows

the internal address mapping of HMC 1.1 for 128 B block

size configuration [5], as well as the low-order-interleaving
mapping of sequential blocks to vaults and then to banks

within a vault. For a block size of 128 B, an OS page, usually

4 KB, would be mapped to two banks over all 16 vaults, so that

accesses to a page utilize high bank-level parallelism (BLP).

The vault controllers, each controlling a vault that contains

a part of a page, are connected using an internal NoC (i.e.,

each external link can carry packets destined to any vault),

the characteristics of which impacts the overall bandwidth and

latency of a system.

B. Packet-Based Memories

Unlike memories with JEDEC-based bus interfaces (e.g.,

GDDR or HBM), HMC uses a packet-based interface to

transfer packets over data links. Packet-based memories ex-

ploit internal and external NoCs for scalability; vaults in an

HMC are connected internally and up to eight HMCs can

be connected via external links. As the HMC interface uses

high-speed serialization/deserialization (SerDes) circuits, these

networked implementations achieve higher raw link band-

widths than traditional, synchronous, bus-based interfaces.

Unlike traditional memories, the access latency of a packet-

based memory includes additional time for packet processing,

TABLE I: HMC request/response read/write sizes [5].

Type Request Response
Read Write Read Write

Data Size Empty 1∼8 Flits 1∼8 Flits Empty
Overhead 1 Flit 1 Flit 1 Flit 1 Flit

Total Size 1 Flit 2∼9 Flits 2∼9 Flits 1 Flit

100

���� �����	

��
�
�

��
��

��
��

��
�

��� ���

�����	

��
��

��
�

��
�
�

��
��

����������

������������

�����
�����
�����

�����

�

�

Fig. 4: (a) A flow packet (no data), and (b) a request/response packet
with 32 B of data.

such as packet creation, port arbitration, flow control and

serialization/deserialization [5]. These overheads are amortized

by using large numbers of queues and ports (up to nine in our

infrastructure) for sending/receiving packets, high BLP, and

high-speed transmission to and from the HMC.

Similar to IP-based networks, the communication of the

HMC is layered, which includes physical, link, and transaction

layers. The physical layer is responsible for serialization,

deserialization, and transmission while the link layer handles

low-level communication and flow control for packets over

high-speed physical connections. The transaction layer defines

request and response packets, their fields, and controls high-

level flow and retry. The HMC controller uses three types

of packets: flow, request, and response packets. Flow packets

do not contain a data payload (Figure 4a) while request and

response packets are used for performing data reads and

writes from and to the HMC (Figure 4b). 16-byte elements

that construct packets are called flits, and the size of the

data payload of each packet varies from one to eight flits.

The least-significant flit of packets is transmitted first across

the link. Flow control and integrity check of packets are

performed using dedicated fields in the one-flit head and

tail [5]. Accordingly, Table I shows each HMC transaction

size in flits.

III. METHODOLOGY

This section introduces our infrastructure for evaluating the

HMC 1.1 and includes details on its hardware, firmware (i.e.,

the digital design on the FPGA), and software.

A. Infrastructure

We utilize a Pico SC-6 Mini [23] machine that incorporates

an EX-700 [21] backplane, a PCIe 3.0 x16 board with 32 GB/s

bandwidth to the host. The EX-700 backplane can accommo-

date up to six AC-510 [20] accelerator modules, each of which

contains a Kintex Xilinx FPGA2 and a 4 GB HMC 1.1 (similar

to Figure 2). We utilize one AC-510 in our evaluations. The

HMC and the FPGA on an AC-510 module are connected with

two half-width (8 lanes) links operating at 15 Gbps, so the bi-

directional peak bandwidth is 60 GB/s, using Equation 1.

B. Firmware and Software

We use two combinations of firmware and software to

perform experiments, GUPS and multi-port stream implemen-

tations, shown in Figure 5. Each combination integrates a

custom logic on the FPGA and a software counterpart. First,

we describe the common components in the firmware on the

2 Part#: xcku060-ffva1156-2-e

FPGA. The FPGA uses Micron’s HMC controller [24] to

generate packets for the multi-port AXI-4 interface between

the FPGA and the HMC. On the software side, the Pico

API [25] and device driver are used for initializing the logic

on the FPGA and provide an environment, in which an

OS communicates with the FPGA. The Pico API provides

software methods to access the HMC through the FPGA with

a direct path for sending/receiving packets. However, because

the software runs at a lower rate on the host than on the

FPGA, this solution cannot fully utilize the bandwidth of

the HMC. Furthermore, since the maximum frequency of the

FPGA is low (187.5 MHz), to generate more requests, the

FPGA uses nine copies of the same module, called ports.

For measuring various statistics such as the total number of

read and write requests and the total, minimum, and maximum

of read latencies, each port contains monitoring logic that is

not in the critical path of accesses. Note that this monitoring

logic measures aggregate latencies of the HMC controller,

transceiver, data transmission on links, internal NoC, TSV

transmission, and DRAM timings. Detailed studies of these

latencies are performed by Hadidi et al. [19], upon which we

build our new measurements.

To observe the behavior of the NoC within the HMC with

various traffic patterns and contention levels, we utilize two

implementations as follows: (i) GUPS (Figure 5a), a vendor-

provided firmware that measures how frequently we can gen-

erate requests to random memory locations; and (ii) multi-port

stream implementation (Figure 5b), a custom firmware which

generates requests from memory trace files using Xilinx’s

AXI-Stream interface.

The GUPS implementation is best suited to investigate the

behavior of NoC under high contention while the multi-port

stream implementation performs the same task from a trace file

per port. For both implementations, the number of active ports

and their access patterns are configured independently. With

GUPS, each port has a configurable address generation unit

that is able to send read-only, write-only, or read-modify-write

requests for random or linear mode of addressing. By forcing

some bits of the generated addresses to zero/one by using

an address mask/anti-mask, a group of randomly generated

requests, each corresponding to a single response packet from

one bank, are mapped to a specific part of the HMC to create

all possible access patterns (i.e., from accessing a single bank

within a vault, to accessing all banks of all the vaults). To

perform experiments, for each port, we first set the type of

requests and their sizes, their mask and anti-mask, and next, we

activate the port. While the port is active, it generates as many

requests as possible for 10 seconds, and then it reports the

total number of accesses (read and write), maximum/minimum

of read latencies, and aggregate read latency back to the

host. In this paper, the type of requests is read only, unless

stated otherwise. Our current firmware implementations do not

support ACKs after writes, so accurate measurements of write

latency would only be possible with added monitoring logic

specifically for writes. We plan to address this limitation in

future work. However, since we are studying the internal NoC

101

����

��������

���	
	�
� �!�

�"##

��
��
�	

���
$�����%&#�'()

��
*+
(#

�����,���	���!- �!�.����
������!�/�!

���

��������	

���0'
�(
+�

�1
�

2'
�3�
45
�

���*6

��73�

��73�

��73�

��
�

�!
�4
��
��
/�
!

�!
�4
��
��
/�
!

��
��
��
4�
!�
33�
!

��
�&
��
�4
&

�
�4
���
!�4
8

�
!&�
��
9&

��
��

��
&��
�8

��
�3 ��
��
��
�4
&

�!
��
�!�
���
4

��
�&
��
�4
&

�
�4
���
!�4
8

�
!&�
��
9&

��
��

��
&��
�8

��
�3 ��
��
��
�4
&

�!
��
�!�
���
4

��
�&
��
�4
&

�
�4
���
!�4
8

�
!&�
��
9&

��
��

��
&��
�8

��
�3 ��
��
��
�4
&

�!
��
�!�
���
4

��
�&
��
�4
&

�
!&�
��
9&

��
��

��
&��
�8

��
�3 ��
��
��
�4
&

�!
��
�!�
���
4

��!���,:'.

�
�4
���
!�4
8

����

%&#�'2

(a)

����

��������

�73�����!��
	�!
�-
	��� �!

����

��
�

�	

���
$���
�����'��

��
��
��

�������73�����!��	�!
�-���!- �!
;����
���
��!�/
!

���

��������	

����'
��
��
�1
�

�'
�3�
45
�

�����

 �73�

 �73�

 �73�

!�
�

"!
�4
��

�
/

!

"!
�4
��

�
/

!

��
��
��
4�
!�
33

!

�#
#�
��

4
�

�
�4
���
!�4
8

$
!��
%

9�

��
�&

%#
��"
�8

��
�3 ��
��
��

4
�

�!
��
�!�
���
4

�#
#�
��

4
�

�
�4
���
!�4
8

$
!��
%

9�

��
�&

%#
��"
�8

��
�3 ��
��
��

4
�

�!
��
�!�
���
4

�#
#�
��

4
�

�
�4
���
!�4
8

$
!��
%

9�

��
�&

%#
��"
�8

��
�3 ��
��
��

4
�

�!
��
�!�
���
4

%#
��"
�8
��
��
3

��!����<';

�
�4
���
!�4
8

���

����'�
�
-�!'
"!��
�

��--�4#�
���&

$!�����������&

%#�����������&
%#���##!�����& �37

(�8��

(b)
Fig. 5: Firmware and software overview: (a) GUPS and (b) multi-port stream implementations.

of the HMC, any type of requests that consume resources will

reveal the behaviors, bottlenecks, and impacts of the NoC by

limiting the flow of packets to the HMC.

The multi-port stream implementation employs a multi-

threaded software that reads a memory trace file for each port

and populates buffers on the host. Then, by using Xilinx’s

AXI-Stream interface to each port (wrapped in a PicoStream

API call [25]), we efficiently transmit commands such as

access types, sizes, and data through their dedicated commu-

nication channel. After issuing requests and waiting for re-

sponses, each port transmits read data and their addresses back

to the host. In fact, the FPGA reads data continuously, such

that each port reads data from its dedicated channel in every

cycle. In both GUPS and multi-port stream implementations,

we calculate the average access latency of reads by dividing

the aggregate read latency by the total number of reads. We

calculate bandwidth by multiplying the number of accesses by

the cumulative size of request and response packets including

header, tail and data payloads (shown in Table I), and by

dividing it by the elapsed time.

IV. RESULTS

This section presents various detailed latency and bandwidth

analyses by utilizing various traffic conditions and access

patterns with GUPS and multi-port stream implementations.

A. High-Contention Latency Analysis

To achieve a broad perspective of the HMC properties, we

perform experiments that access various structural organiza-

tions in the HMC, such as vaults and banks. Figure 6 illustrates

the latency and bandwidth relationship for read-only accesses.

The lowest bandwidth for undistributed accesses (i.e., accesses

targeted to a bank) is 2 GB/s for 32 B requests, and the highest

bandwidth for the most distributed accesses (i.e., accessing

������

��
��

	

��

�

��

��	�������������

�
�
��
��

�

�
��

�
 � � � �� �
 �� �� ��
�

�

��	
���� ��	
��
� ��	
���� ��	
��
��

�����
��
�����
��
�����
���
�����

� �����
�������
��
����

 �����

Fig. 6: The relationship between latency and bi-directional bandwidth
for various access patterns and request sizes for read-only requests.

more than or equal to two vaults) is 23 GB/s for 128 B requests.

Note that, as Table I shows, read-only requests mostly utilize

response bandwidth, which has a cap of 30 GB/s. Accesses

to more than two vaults have a similar bandwidth, caused

by the limitation of the external link bandwidth between the

HMC and the FPGA. Moreover, accesses distributed over

eight banks, but within one vault, have the same 10 GB/s

bandwidth, limited by the maximum internal bandwidth of a

vault [26]. Figure 6 also shows that as the accesses become

less distributed, the latency of accesses increases. As the

figure depicts, access latency varies from 24,233 ns for 128 B

requests targeting a single bank, to 1,966 ns for 16 B requests

spread across more than two vaults. Less distributed access

patterns (e.g., one bank) have higher latency because they

benefit less from BLP. Furthermore, the latency of small

requests is always lower than that of large requests because (i)

the granularity of the DRAM bus within each vault is 32 B [5],

so data payloads larger than 32 B is split; and (ii) larger request

packets constitute more flits, so buffering and reordering of

packets cause higher latencies.
Figure 6 illustrates that large requests (e.g., 128 B) always

have higher bandwidth utilization than small requests (e.g.,

32 B) do. This is because (i) large packets utilize bandwidth

more effectively (i.e., less overhead), and (ii) small requests

quickly consume the maximum number of tags of outstanding

requests to the HMC. As Table I presents, each packet,

regardless of its data size, always has an overhead of one flit

(i.e., 16 B). For this reason, the bandwidth efficiency of read

responses with 16 B and 128 B data sizes are 16/16+16 = 50%
and 128/128+16 = 89%, respectively. Moreover, for retransmis-

sion of a packet (because of transmission failure, flow control,

or CRC failure), each port must track outstanding requests, so,

at a time, each port can handle a limited number of outstanding

requests. Small requests, compared to large requests, underuti-

lize this limited number of slots for transmitting smaller data,

which results in low bandwidth utilization. In summary, large

packet sizes utilize available bandwidth more effectively at the

cost of added latency. In addition, for reducing access latency,

accesses should be carefully distributed to exploit BLP and

avoid bottlenecks.

B. Low-Contention Latency Analysis
To examine low-contention latencies, we measure the access

latency of the HMC while limiting the number of random read

requests to be mapped within the 16 banks of a vault. Then,

for each number of read requests, we report average latency

102

���
���
���
���
���
���
���
���
���

� 	 �� �	 �� �	
�
	 �� �	 	� 		

��
��
�	

��
��

�

��
�����������������
�

��� ��� ��� ����

�

Fig. 7: The average latency of low-load accesses for various request
sizes for the number of requests in the range of one to 55.

across all vaults. To tune the number of accesses and the size of

request packets, we use the multi-port stream implementation.

Figure 7 depicts that as the number of requests in a stream

(stream in this context means a limited number of requests)

increases from one to 55, the average latency increases from

0.7 to 1.1μs for the request size of 16 B, and from 0.7 to 2.2μs

for the request size of 128 B. In other words, we observe two

behaviors: (i) When the number of request packets is small, the

size of request packet does not affect the latency; and (ii) when

the size of request packets is larger, the requests experiences

more variations in the latency. Since the flow control unit in

the infrastructure is only activated with a large number of

outstanding requests, we are certain that, as reported in [19],

approximately 547 ns of all latencies for the small number of

requests are spent on the FPGA and data transmission. Hence,

the contributing latency of the HMC under low load (i.e., no

load) is 100 to 180 ns, which includes the latency of DRAM

timings (tRCD + tCL + tRP is around 41 ns for HMC [4],

[26]), TSV transmission, vault controller, and internal NoC.

However, as the number of requests increases, with the similar

BLP, queuing delay in both the HMC (i.e., internal NoC and

vault controllers) and the FPGA increases, which results in an

order of magnitude higher delays. Note that since the HMC

utilizes a packet-switched interface to vault controllers in its

logic layer, the observed average latency of the HMC is higher

than that of traditional DDRx memories.

Figure 8 illustrates a wider range for the number of read

requests in a stream than what Figure 7 shows. In Figure 8,

we observe that when the number of requests increases up

to 100, average access latency increases linearly. After that,

the latency stays approximately constant when the number of

requests grows. By assuming a hypothetical queue for requests,

we infer that until the time that the queue is not full, the

latency of each request equals to its serving time plus its

��

���
��

���
��

���
��

���

�
� ��� �
� ��� �
� ���

��
��
�	

��
��

�

��
�����������������
�

��� ��� ��� ����

�

������������	��

Fig. 8: The average latency of low-load accesses for various request
sizes for the number of requests in the range of one to 350.

waiting time, which is the sum of the serving time of all

previous requests that are already in the queue. We can write

the average latency of n requests as
∑n

i=0(iS)/n, in which S
is the serving time of a request. Therefore, the latency seen

by each request is correlated to the number of requests in

the queue. In the region where latency remains constant, the

queue is always full, so the latency of a request equals to

it serving time plus the waiting time for all requests in the

queue (i.e., n = QueueSize). Thus, the linear region represents

a partially utilized system, and the constant region represents

a fully utilized system. Section IV-F provides further details

on bandwidth and bottlenecks. From the system perspective,

the linear region achieves a lower latency while providing

less bandwidth than that of the saturated region. Thus, based

on the sensitivity of an application to the latency, a system

may exploit these two regions to gain performance. To recap,

even for low-contention traffics, NoC and queuing delay

contribute significantly to the access latency of the HMC, and

subsequently, to the performance of applications.

C. Quality of Service Analysis

Similar to other networks, QoS of a packet-switched-

based memory refers to guaranteeing the required latency

or bandwidth for an application. In this section, we inspect

techniques to manage the resources in a packet-switched

memory to achieve required QoS. In particular, our goal is

to ascertain how latency varies within an access pattern (e.g,

accesses distributed in four vaults) as a result of the packet-

switched interface of the HMC, and subsequently, how this

will affect the QoS of applications. The effects of latency

variations on QoS are important because they impact latency-

sensitive applications [27], QoS guarantees [28], denial of

service [29], and multi-threaded and parallel architectures that

stall for the slowest thread (i.e., work imbalance). A packet-

switched memory, despite its high bandwidth (thanks in part to

�
�
�
�
�
�
�

	 � � � � � � �
 � �	 �� �� �� �� ��

��� ��� ��� ����

�
��
��

��
�	�

�
�

��
��
��

����
�������

(a)

�
�
�
�
�
�
�

	 � � � � � � �
 � �	 �� �� �� �� ��

��� ��� ��� ����

�
��
��

��
�	�

�
�

��
��
��

����
�������

(b)
Fig. 9: Maximum observed latency in accessing four vaults, three
of which are the same. Accessing vault numbers (a) one (3x) and
all vaults; and (b) five (3x) and all vaults. X-axis shows the vault
number for the vault that is different.

103

16
17

16
24

16
31

16
39

16
46

16
53

16
61

16
68

16
75

Latency (ns)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

V
au

lt
 N

u
m

b
er

0

0.05

0.1

0.15

0.2

(a) 16B

19
31

19
57

19
82

20
08

20
33

20
58

20
84

21
09

21
35

Latency (ns)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

V
au

lt
 N

u
m

b
er

0

0.05

0.1

0.15

0.2

0.25

(b) 32B

25
73

26
41

27
08

27
76

28
44

29
11

29
79

30
46

31
14

Latency (ns)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

V
au

lt
 N

u
m

b
er

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) 64B

38
94

39
45

39
96

40
46

40
97

41
48

41
98

42
49

43
00

Latency (ns)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

V
au

lt
 N

u
m

b
er

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) 128B

Fig. 10: The latency histograms of each vault in heatmaps for various request sizes of (a) 16, (b) 32, (c) 64, and (d) 128 B.

serialization, and high BLP in a small area), adds uncertainty

to access latencies. Therefore, as we will see, only optimizing

accessing patterns to the HMC in an application would not be

sufficient to guarantee a precise QoS.

In our experiments, as a case study, we use four ports

with the multi-port stream implementation to generate read

accesses to four vaults (targeting 1 GB in total). During the

experiments, three ports always access the same vaults, and

the fourth port iterates over all possible vaults. Figure 9a

and b illustrate the maximum observed latency for two series

of experiments, in which the three ports always access vault

number one and five, respectively. The figures depict when

the accesses of the fourth port are to the same vault as the

other ports (i.e., vault numbers one and five in Figures 9a

and b, respectively), the maximum observed latency increases

up to 40% relative to other accesses. Furthermore, when the

fourth port is not accessing the same vault, maximum observed

latency varies notably. For instance, the maximum variations

are around 200, 330, 400, 600 ns for 16, 32, 64, and 128 B

requests, respectively. Since DDR-memory accesses are under

80 ns, even variations of this order will disturb the performance

of a system and our assumptions.

In summary, even within the same access pattern, the NoC

causes considerable latency variations, which will have a

noticeable impact on QoS of an application, even when its

access patterns are optimized. Note that Figure 9 illustrates

results for only four ports, and if the number of ports (i.e.,

threads or applications) accessing one vault increases, the

latency variations would increase even more. This general

trend in latency helps to provide an approximate QoS for

various traffic conditions with diverse latency requirement.

For instance, in a case that we have five traffic streams, four

of which can be served in long latency, and one has high

priority and requires a fast service; the system can assign a

limited number of vaults to all four low-priority traffic streams,

and remaining vaults to the high-priority traffic. Therefore, the

QoS of all traffic streams would be satisfied. Such techniques

for managing QoS can be provided in the host-side memory

controller by real-time remapping, or by reserving resources.

D. High-Contention Latency Histograms Per Vault

To understand the impact of accessing various combinations

of vaults on performance, we extend the experiments of the

previous section, which accessed four vaults using the multi-

port stream implementation. For instance, accesses to four

consecutive vaults (e.g., 0, 1, 2, and 3) that share network

resources may have higher latency than accesses spread among

non-consecutive vaults (e.g., 0, 4, 8, and 12) do. To test this

hypothesis, we access all possible combinations of four dif-

ferent vaults (i.e., equal to 1820 combinations, or n!/k!×(n−k)!

for n = 16 and k = 4) with various request sizes and

calculate the average access latency among four vaults. Then,

we associate the derived average latency with every vault in

that combination.

Figure 10 illustrates our results for various sizes in heatmaps

in which a row represents the latency histogram of a vault.

In other words, in a row, the color of a rectangle represents

the normalized value of the number of accesses in that

latency interval against the total number of accesses to the

corresponding vault (i.e., 1820/4, or 455). As the figure shows,

each vault has a different latency behavior. For instance, in

��
��
��
��
��
��
�	
��

��

�����
������

��
��
�	
��
��
��

��
��

��
��
��
��
	

�� �

�
	�

�
��

�
���
���
���

�
�
�
�
�
	

��
 ��
 ��
 ��

���
��� ���	��
�
��������	

Fig. 11: The average and standard deviation of latency across all
vaults for various sizes in the four-vault access pattern.

104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vault Number

1617
1624
1631
1639
1646
1653
1661
1668
1675

L
at

en
cy

 (
n

s)

0

0.05

0.1

0.15

(a) 16B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vault Number

1931
1957
1982
2008
2033
2058
2084
2109
2135

L
at

en
cy

 (
n

s)

0

0.05

0.1

(b) 32B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vault Number

2573
2641
2708
2776
2844
2911
2979
3046
3114

L
at

en
cy

 (
n

s)

0

0.05

0.1

0.15

(c) 64B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vault Number

3894
3945
3996
4046
4097
4148
4198
4249
4300

L
at

en
cy

 (
n

s)

0

0.05

0.1

(d) 128B

Fig. 12: The vault histograms of each latency interval in heatmaps for various request sizes of (a) 16, (b) 32, (c) 64, and (d) 128 B.

Figure 10c, we observe that the histogram of vaults differs

substantially (e.g., vault numbers 5, 6, and 7). Although we

can investigate these figures in more detail, a quick takeaway

is that purely optimizing the general access patterns (in our

example, four-vault access pattern) of an application would

not guarantee a particular latency. In other words, Figure 10

presents a case study with a four-vault access pattern, in which

the only factor of variation is the number of the vault that

determines the physical location of a vault within the 3D stack.

Therefore, since other factors, such as access pattern, are the

same, we conclude that the NoC design of the HMC has a

significant impact on the observed latency variations.

As Figure 10 shows, for each request size, although all

the vaults have a similar average latency, the distribution of

latencies are different among vaults. For a better illustration,

Figure 11 depicts the average latency of all vaults and the

standard deviation for various packet sizes. We observe that the

standard deviation of latencies is 20, 40, 100, and 106 ns for

request sizes of 16, 32, 64, and 128 B, respectively. Note that

68% of a population is within (μ+σ, μ−σ), in which μ and

σ are average and the standard deviation of that population,

respectively. For a particular request size, while the average

latency per vault is similar, the distribution of it per vaults

covers a broad range. Compared to smaller request sizes, larger

request sizes have more variations in latency, because large

request sizes occupy larger buffer spaces than small request

sizes do. Also, large requests incur extra delays because of

reordering and packetizing. Therefore, small request sizes

are good candidates for guaranteeing a high QoS. However,

as discussed in Section IV-A, small request sizes have low

bandwidth efficiency and generally provide lower bandwidth

utilization than large request sizes.

In detail, we infer the following insights from Figure 10:

(i) Comparing the four subfigures, which indicate the latency

for various packet sizes, shows that when the size of requests

increases, the latency increases. For instance, the latency of

128 B accesses is in the range of 4μs, which is 2.5x higher

than for 16 B accesses. A recent paper [19] observes a similar

behavior in a limited experiment in accessing to a random vault

and conclude such variations is caused by the granularity of

32 B DRAM bus within a vault. (ii) The range of the latency

variations for 16, 32, 64, and 128 B accesses are 29, 76, 136,

and 203 ns, which indicates that the smallest requests have

more consistent latency, and the largest requests have more

variable latency. (iii) By comparing the latency of each vault

from the rows of each subfigure, we see that each vault has

a random behavior, and we cannot allocate a specific latency

to a vault based on its location (i.e., number). In other words,

the latency of each vault is impacted by many factors such

as access patterns and traffic pressure that the contribution of

the location of a vault is negligible. According to these three

insights, we deduce that important NoC parameters such as

the request size and routing protocol have more contributions

to the latency within an access pattern rather than physical

parameters such as the location of a vault do.

E. High-Contention Vault Histograms Per Latency Interval

To explore the contribution of vaults to high and low

latencies, each row of Figure 12 depicts contributing vaults for

each latency interval and illustrates the histogram of them. The

intensity of the color of a rectangle shows the normalized value

of the number of that particular appearance of the vault in that

latency interval against the maximum number of accesses in

that row. Figures 12a, b, c, and d, show colormaps for request

sizes of 16, 32, 64, and 128 B, respectively. In Figure 12a, we

observe that for gaining the lowest latency (i.e., lowest row),

we should avoid accessing vault numbers 9 to 12. In fact,

Figure 12 provides a guide for avoiding certain vaults that

incur high latencies, but it will not guarantee particular access

latencies for a specific vault (similar to the last subsection). For

instance, based on Figure 12c, vault number 2 has the highest

contribution to the lowest latency interval, and it similarly

105

	
�
�
�

�	
��
��
��
�

�	
��
��

� � � � � � �
 �

��
��

�
��
�	

��

�

��

�������
�����
�� �������
��������	�

�!
������ "
������ #
������ $
������ �
�����
"
����� #
����� $
����� �
����

	
�
�
�

�	
��
��
��
�

�	
��
��

� � � � � � �
 �
�������
�����
�� �������
��������	�

���
�!� ���
%$�

	
�
�
�

�	
��
��
��
�

�	
��
��

� � � � � � �
 �

��
��

�
��
�	

��

�

��

�������
�����
�� �������
��������	�

���
!#�

	
�
�
�

�	
��
��
��
�

�	
��
��

� � � � � � �
 �
�������
�����
�� �������
��������	�

���
�$"�

Fig. 13: Relationships between the number of active ports, request
bandwidth, and bandwidth for various request sizes.

has a high contribution for the highest latency. Therefore, the

conclusion that accessing only vault number 2 will guarantee

the lowest latency is not correct. However, in the same figure,

the chance of incurring lower latency increases by avoiding

vaults numbers 9 to 12. Even though we cannot reach a

unanimous conclusion about the latency of each vault and

the hierarchy of NoC in the HMC, which we discussed its

reasoning in the last subsection, we can conclude that the

effects of NoC and vault interactions are not trivial.

Based on the observations mentioned in the last paragraph,

we interpret that vaults almost equally contribute to high and

low latencies. Such behavior suggests two notions to the user

or designer of such packet-switched memories: (i) Since lowest

latency is obtainable from any vaults, a user may map the

memory footprint of an application to optimize other important

aspects of accessing these memories, such as access pattern,

or request size. In other words, the independence of latency to

the physical layout eases the memory mapping constraints;

and (ii) a desirable level of performance to an application

can be guaranteed by only understanding and following the

lowest and highest resulting latency in any access pattern. Note

that the uniformity of vault contributions in latency will be

sustainable even in a hierarchical connection of many stacks

in another interconnection network for creating a large-scale

memory. This is because each stack in this new network would

have similar characteristics.

F. Requested and Response Bandwidth Analysis

To further investigate potential networking bottlenecks and

bandwidth of the HMC, we use the GUPS implementation

to tune request rate by changing the number of active ports

from one to nine ports. The number of active ports is a

�
���
���
���
���
���
���

�� �� �� ��	
��
�����
�
��

��	

��

��

�
��

��
��
�

��
��

�

�

�����
��
���������

������
 ������

Fig. 14: The number of estimated outstanding requests in two- and
four-bank access patterns.

proxy for the requested bandwidth because it has a direct

relationship with the number of issued requests with the GUPS

implementation. Figure 13 presents the relationship between

the number of active ports and the response bandwidth for

various request sizes. In this figure, sloped lines determine

access patterns in which no bottleneck occurs. In contrast,

flat lines depict access patterns in which a bottleneck (e.g.,

vault bandwidth limitation) exists. As a recent work about

HMC characterization also mentioned [19], the factor that

limits the bandwidth utilization can be related to the packet-

switched network, such as the limited size of queues in the

vault controller or DRAM layers. We analyze the reasons of

saturation points by taking a deeper look at a vault controller,

which is basically a stationary system, receiving requests with

an arrival rate. Based on Little’s law, in such systems, the

average number of outstanding requests equals to the arrival

rate multiplied by the average time a request spends in the

system. To calculate the number of outstanding requests based

on the numbers represented in Figure 13, we measure the

latency at saturated points and multiply them by input rates,

and then divide the result by request size. The result of this

calculation illustrated in Figure 14 indicates that regardless of

request size, the maximum number of requests is 288 for two

banks and 535 for four banks, on average. Moreover, the linear

relationship between the number of outstanding requests and

number of banks suggests that a vault controller dedicates one

queue for each bank or for each DRAM layer.

As discussed in Section IV-A, we observe that accessing

eight banks within a vault saturates the internal 10 GB/s

bandwidth of a vault for request sizes of 16 and 32 B. In

addition, for 64 and 128 B request sizes, accessing four banks

saturates the internal bandwidth of a vault. Thus, within a

vault, depending on the size of requests, increasing BLP

to more than eight or four banks will not provide higher

bandwidth. In fact, as Figure 3 presents, for accessing a 4 KB

OS page in the HMC, requests are first spread over vaults

and then banks. Therefore, accessing a single page in this

configuration naturally avoids this bottleneck. We can extend

this insight to more than one OS pages that are sequentially

allocated in the address space. For instance, accessing more

than four sequentially allocated OS pages would invoke the

bottleneck of the internal bandwidth of vault. To effectively

utilize the limited bandwidth of vaults within the HMC,

application access patterns must be matched to increasing

vault-level and then bank-level parallelism.

106

Compared to traditional DRAM memories, the HMC sup-

plies a higher amount of bandwidth and concurrency due to

the high number of vaults and independent vault controllers.

Figure 13d exhibits this point by showing that for 128 B

requests, distributed access patterns to more than two vaults

quickly reach the bottleneck of the external bandwidth of two

links. This is a limitation of our particular HMC infrastructure

(two half links from the FPGA to the HMC), as the number

and width of the HMC links can be increased as can the speed

and efficiency of the FPGA infrastructure (i.e., HMC controller

and associated firmware). Since HMC uses bi-directional links,

issuing only read requests results in an asymmetric usage of

the available bandwidth. In other words, read requests only

fully utilize response bandwidth, and write requests only fully

utilize request bandwidth. Previous studies [17], [30] have

investigated this asymmetry, and proposed issuing a mix of

read and write requests to address it. In addition to optimizing

access patterns, applications should also balance the ratio of

read and write requests for effectively utilizing bi-directional

bandwidth of stacked-memory networks.

V. RELATED WORK

Previous works have characterized the HMC [16]–[18], [30],

from which Schmidt et al. [17] agreed with our measured

bandwidth and latency. Another work, [19], using the AC-

510 accelerator board, they characterized bandwidth of the

HMC and its relationship with temperature, power, and cooling

power. They deconstructed the contributing factors to the

latency, but they focused more on power and temperature. Al-

though these studies have explored emulated HMC and earlier

HMC prototype chips, they have not studied the performance

impacts of the internal NoC on the performance and QoS of the

HMC, and in general the impact of packet-switched networks

on the performance of 3D-stacked memories.

Other recent studies have focused on designing an efficient

NoC for the HMC. Zhan et al. [31] proposed solving issues

that show up in a NoC coupled with HMC, such as traffic

congestion, uncoordinated internal and external networks, and

high power consumption by co-optimizing networks that are

both inside each HMC and between cubes. Their proposed uni-

fied memory network architecture reuses the internal network

as a router for the external network, which allows bypassing of

remote accesses while also providing high bandwidth for local

accesses. The authors also proposed reducing communication

loads and using power gating to further decrease power

consumption for an overall 75.1% reduction in memory access

latency and a 22.1% reduction in energy consumption.

Azarkhish et al. [32] proposed a low latency AXI-

compatible interconnect, which provides the required band-

width for an HMC infrastructure so that it supports near

memory computation. Their simulation results show that the

main bottleneck for delivered bandwidth is the timing of

DRAM layers and TSVs. Also, their analysis on PIM traffic

with increased requesting bandwidth on the main links showed

that when the host demands less than 120 GB/s no saturation

occurs. In another work, Fujiki et al. [33] proposed a scalable

low-latency network by using a random topology based on the

length of communication path, using deadlock-free routing,

and memory-mapping in granularity of a page size. Their

full-system simulation models show that this method reduces

cycles by 6.6%, and that random networks with universal

memory access out-perform non-random localized networks.

VI. CONCLUSION

In this paper, we evaluate the internal NoC of the HMC,

a real-world prototype of a NoC-based, 3D-stacked memory.

From our experiments, we can provide the following insights

into the effects of the internal NoC of the HMC on the

performance of systems and applications.

• Large and small request sizes for packets provide a trade-

off between effective bandwidth and latency as a result

of buffering, packetization, and reordering overheads.

In contrast with traditional DDRx systems, this trade-

off enables tuning memory accesses to optimize either

bandwidth or latency. (Section IV-A, IV-D, and IV-F)

• As future memories become denser with more links and

vaults, queuing delays will become a serious concern

for packet-based memories, such as the HMC. Effective

solutions should focus on (i) optimizing queuing on

the host controller side and at vault controllers or (ii)

distributing accesses to improve parallelism, such as BLP.

(Section IV-B and IV-C)

• The internal NoC complicates QoS for memory accesses

because of meaningful variations in latency even within

an access pattern. On the other hand, it creates oppor-

tunities such as (i) smaller packets are ensured to have

improved QoS at a cost of reduced bandwidth or (ii)

high-priority traffics can be mapped to access their private

vaults. (Section IV-C, IV-D, and IV-E)

• Limited bandwidth within a vault means that mapping

accesses across vaults then banks is key to achieve better

bandwidth utilization and lower latency. (Section IV-A

and IV-F)

• The packet-based protocol creates an asymmetric bi-

directional bandwidth environment that applications

should be aware of and optimize for the proper mix

of reads and writes for effectively utilizing external

bandwidth. (Section IV-A, IV-F, and [17])

• Finally, the exact latency of a vault is impacted by many

factors such as access patterns and traffic conditions that

the latency contribution of the physical location of a vault

is negligible within an access pattern. This insight reduces

complexity and constraints of optimization and mapping

techniques. (Section IV-D and IV-E)

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable comments

and feedbacks for improving the paper. Our experimental

hardware is partially supported by Micron. This study was

supported in part by National Science Foundation under grant

number CCF-1533767.

107

REFERENCES

[1] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park,
J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin et al., “25.2 A 1.2V 8Gb
8-channel 128GB/s High-Bandwidth Memory (HBM) Stacked DRAM
with Effective Microbump I/O Test Methods Using 29nm Process and
TSV,” in International Solid-State Circuits Conference (ISSCC). IEEE,
2014.

[2] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Ar-
chitecture Increases Density and Performance,” in Symposium on VLSI
Technology (VLSIT). IEEE, 2012.

[3] T. Pawlowski, “Hybrid Memory Cube (HMC),” in Hot Chips Symposium
(HCS). IEEE, 2011.

[4] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric System
Interconnect Design with Hybrid Memory Cubes,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2013.

[5] HMC Consortium, “Hybrid Memory Cube Specification 1.1,” Retrieved
from hybridmemorycube.org, 2013, [Online; accessed 2017-10-10].

[6] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb, “Die Stacking (3D)
Microarchitecture,” in International Symposium on Microarchitecture
(MICRO). IEEE/ACM, 2006.

[7] J. Zhao, G. Sun, G. H. Loh, and Y. Xie, “Optimizing GPU Energy
Efficiency with 3D Die-Stacking Graphics Memory and Reconfigurable
Memory Interface,” in ACM Transactions on Architecture and Code
Optimization (TACO), vol. 10, no. 4. ACM, 2013.

[8] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact
of 3D-Stacked Memory+Logic Devices on MapReduce Workloads,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2014.

[9] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory,” in International Symposium on High-Performance
Parallel and Distributed Computing (HPDC). ACM, 2014.

[10] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-memory Accelerator for Parallel Graph Processing,” in International
Symposium on Computer Architecture (ISCA). ACM, 2015.

[11] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-
mar, O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping
(TOM): Enabling Programmer-Transparent Near-Data Processing in
GPU Systems,” in International Symposium on Computer Architecture
(ISCA). IEEE, 2016.

[12] L. Nai and H. Kim, “Instruction Offloading with HMC 2.0 Standard:
A Case Study for Graph Traversals,” in International Symposium on
Memory Systems (MEMSYS). ACM, 2015.

[13] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling Instruction-Level PIM Offloading in Graph Computing Frame-
works,” in International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2017.

[14] R. Hadidi, L. Nai, H. Kim, and H. Kim, “CAIRO: A Compiler-Assisted
Technique for Enabling Instruction-Level Offloading of Processing-In-
Memory,” ACM Trans. Archit. Code Optim., vol. 14, Dec. 2017.

[15] L. Nai, R. Hadidi, H. Xiao, H. Kim, J. Sim, and H. Kim, “CoolPIM:
Thermal-Aware Source Throttling for Efficient PIM Instruction Offload-

ing,” in International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2018.

[16] M. Gokhale, S. Lloyd, and C. Macaraeg, “Hybrid Memory Cube
Performance Characterization on Data-centric Workloads,” in Workshop
on Irregular Applications: Architectures and Algorithms (IA3). ACM,
2015.

[17] J. Schmidt, H. Fröning, and U. Brüning, “Exploring Time and Energy
for Complex Accesses to a Hybrid Memory Cube,” in International
Symposium on Memory Systems (MEMSYS). ACM, Oct. 2016.

[18] K. Z. Ibrahim, F. Fatollahi-Fard, D. Donofrio, and J. Shalf, “Charac-
terizing the Performance of Hybrid Memory Cube Using ApexMAP
Application Probes,” in International Symposium on Memory Systems
(MEMSYS). ACM, 2016.

[19] R. Hadidi, B. Asgari, B. Ahmad Mudassar, S. Mukhopadhyay, S. Yala-
manchili, and H. Kim, “Demystifying the Characteristics of 3D-Stacked
Memories: A Case Study for Hybrid Memory Cube,” in International
Symposium on Workload Characterization (IISWC). IEEE, 2017.

[20] PicoComputing, “AC-510 HPC Module,” http://picocomputing.com/
ac-510-superprocessor-module/, 2017, [Online; accessed 2017-10-10].

[21] PicoComputing, “EX700 Backplane,” http://picocomputing.com/
products/backplanes/ex-700/, 2017, [Online; accessed 2017-10-10].

[22] HMC Consortium, “Hybrid Memory Cube Specification 1.0,” Retrieved
from hybridmemorycube.org, 2013, [Online; accessed 2017-10-10].

[23] PicoComputing, “SC6-Mini,” http://picocomputing.com/products/
picocube/picomini/, 2017, [Online; accessed 2017-10-10].

[24] PicoComputing, “HMC Controller IP,” http://picocomputing.com/
productshybrid-memory-cube-hmc-controller-ip-2/, 2017, [Online; ac-
cessed 2017-10-10].

[25] PicoComputing, “Pico Framework,” http://picocomputing.zendesk.com/
hc/en-us, 2017, [Online; accessed 2017-10-10].

[26] Rosenfeld, Paul, “Performance Exploration of the Hybrid Memory
Cube,” Ph.D. dissertation, University of Maryland, College Park, 2014.

[27] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt, “QoS Policies and Architecture for
Cache/Memory in CMP Platforms,” in ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems,
vol. 35, no. 1. ACM, 2007.

[28] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the
ACM, vol. 56, 2013.

[29] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of
Memory Service in Multi-Core Systems,” in USENIX Security Sympo-
sium on USENIX Security Symposium. USENIX Association, 2007.

[30] P. Rosenfeld, E. Cooper-Balis, T. Farrell, D. Resnick, and B. Jacob,
“Peering over the Memory Wall: Design Space and Performance Anal-
ysis of the Hybrid Memory Cube,” Technical Report UMD-SCA-2012-
10-01, University of Maryland, Tech. Rep., 2012.

[31] J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang, and Y. Xie,
“A Unified Memory Network Architecture for In-Memory Computing in
Commodity Servers,” in International Symposium on Microarchitecture
(MICRO). IEEE/ACM, 2016.

[32] E. Azarkhish, C. Pfister, D. Rossi, I. Loi, and L. Benini, “Logic-Base
Interconnect Design for Near Memory Computing in the Smart Memory
Cube,” IEEE Transactions on VLSI Systems (VLSI), vol. 25, 2017.

[33] D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano, “Randomizing
Packet Memory Networks for Low-latency Processor-Memory Com-
munication,” in International Conference on Parallel, Distributed, and
Network-Based Processing (PDP). IEEE, 2016.

108

