
focus

�	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

deve l op ing s c i en t i f i c s o f t war e

Understanding
the High-Performance-
Computing Community:
A Software Engineer’s Perspective

Victor R. Basili and Daniela Cruzes, University of Maryland, College Park,
and Fraunhofer Center for Experimental Software Engineering-Maryland

Jeffrey C. Carver, Mississippi State University

Lorin M. Hochstein, University of Nebraska-Lincoln

Jeffrey K. Hollingsworth and Marvin V. Zelkowitz, University of Maryland,
College Park

Forrest Shull, Fraunhofer Center for Experimental Software Engineering-Maryland

Computational
scientists developing
software for HPC
systems face
unique software
engineering issues.
Attempts to transfer
SE technologies to
this domain must
take these issues
into account.

F
or the past few years, we’ve had the opportunity, as software engineers, to ob-
serve the development of computational-science software (called codes) built for
high-performance-computing (HPC) machines in many different contexts. Al-
though we haven’t studied all types of HPC development, we’ve encountered a

wide cross-section of projects. Despite these projects’ diversity, several common traits exist:

Many developers receive their software train-
ing from other scientists. Although the scien-
tists often have been writing software for many
years, they generally lack formal software en-
gineering (SE) training, especially in managing
multiperson development teams and complex
software artifacts.
Many of the codes aren’t initially designed to
be large. They start small and then grow on the
basis of their scientific success.
Many development teams use their own code
(or code developed as part of their research
group).

For these reasons (and many others), development

■

■

■

practices in this community differ considerably
from those in more “traditional” SE.

We aim here to distill our experience about
how software engineers can productively engage
the HPC community. Several SE practices gener-
ally considered good ideas in other development
environments are quite mismatched to the HPC
community’s needs. For SE researchers, the keys
to successful interactions include a healthy sense of
humility and the avoidance of assumptions that SE
expertise applies equally in all contexts.

Background
A list of the 500 fastest supercomputers (www.
top500.org) shows that, as of November 2007, the

	 July/August 2008 I E E E S o f t w a r E 	 �

most powerful system had 212,992 processors. Al-
though a given application wouldn’t routinely use
all these processors, it would regularly use a high
percentage of them for a single job. Effectively using
tens of thousands of processors on a single project is
considered normal in this community.

We were interested in codes requiring nontrivial
communication among the individual processors
throughout the execution. Although HPC systems
have many uses, a common application is to simu-
late physical phenomena such as earthquakes, global
climate change, or nuclear reactions. These codes
must be written to explicitly harness HPC systems’
parallelism. Although many parallel-programming
models exist, the dominant model is MPI (message-
passing interface), a library where the programmer
explicitly specifies all communication. Fortran re-
mains widely used for developing new HPC soft-
ware, as do C and C++. Frequently, a single system
incorporates multiple programming languages. We
even saw several projects use dynamic languages
such as Python to couple different modules written
in a mix of Fortran, C, and C++.

In 2004, Darpa launched the High Productiv-
ity Computing Systems program (HPCS, www.
highproductivity.org) to significantly advance HPC
technology by supporting vendor efforts to de-
velop next-generation systems, focusing on both
hardware and software issues. In addition, Darpa
also funded researchers to develop productivity
evaluation methods that measure scientific output
more realistically than does simple processor utili-
zation, the measure used by the Top500 list. Our
initial role was to evaluate how newly proposed
languages affect programmer productivity. In addi-
tion, one of us helped conduct a series of case stud-

ies of existing HPC projects in government labs to
characterize these projects and document lessons
learned.

The HPCS program’s significance was its shift in
emphasis from execution time to time-to-solution,
which incorporates both development and execution
time. We began this research by running controlled
experiments to measure the impact of different par-
allel-programming models. Because the proposed
languages weren’t yet usable, we studied available
technologies such as MPI, OpenMP, UPC (Unified
Parallel C), Co-Array Fortran, and Matlab*P, us-
ing students in parallel-programming courses from
eight different universities.1

To widen this research’s scope, we collected
“folklore”—that is, the community’s tacit, un-
formalized view of what’s true. We collected it
first through a focus group of HPC researchers,
then by surveying HPC practitioners involved in
the HPCS program, and then by interviewing a
sampling of practitioners including academic re-
searchers, technologists developing new HPC
systems, and project managers. Finally, we con-
ducted case studies of projects at both US govern-
ment labs2 and academic labs.3

The development world
of the computational scientist
To understand why certain SE technologies are a
poor fit for computational scientists, it’s important
to first understand the scientists’ world and the con-
straints it places on them. Overall, we found that
there’s no such thing as a single “HPC community.”
Our research was restricted entirely to computa-
tional scientists using HPC systems to run simula-
tions. Despite this narrow focus, we saw enormous

Table 1
HPC community attributes

attribute Values Description

Team size
Individual This scenario, sometimes called the “lone researcher” scenario, involves only one developer.

Large This scenario involves “community codes” with multiple groups, possibly geographically distributed.

Code life

Short A code that’s executed few times (for example, one from the intelligence community) might trade less devel-
opment time (less time spent on performance and portability) for more execution time.

Long A code that’s executed many times (for example, a physics simulation) will likely spend more time in develop-
ment (to increase portability and performance) and amortize that time over many executions.

Users

Internal Only developers use the code.

External The code is used by other groups in the organization (for example, at US government labs) or sold commer-
cially (for example, Gaussian, www.gaussian.com)

Both “Community codes” are used both internally and externally. Version control is more complex in this case
because both a development and a release version must be maintained.

�	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

variation, especially in the kinds of problems that
people are using HPC systems to solve. Table 1
shows four of the many attributes that vary across
the HPC community.

the goal of scientists
is to do science, not execute software

One possible measure of productivity is sci-
entifically useful results over calendar time.
This implies sufficient simulated time and
resolution, plus sufficient accuracy of the
physical models and algorithms. (All quotes
are from interviews with scientists unless
otherwise noted.)

[Floating-point operations per second]
rates are not a useful measure of science
achieved.—user talk, IBM scientific users
group conference4

Initially, we believed that performance was of
paramount importance to scientists developing
on HPC systems. However, after in-depth inter-
views, we found that scientific researchers focus
on producing publishable results. Writing codes
that perform efficiently on HPC systems is a
means to an end, not an end in itself. Although
this point might sound obvious, we feel that
many in the HPC community overlook it.

A scientist’s goal is to produce new scientific
knowledge. So, if scientists can execute their
computational simulations using the time and re-
sources allocated to them on the HPC system, they
see no need for or benefit from optimizing the per-
formance. They see the need for optimization only
when they can’t complete the simulation at the de-
sired fidelity with the allocated resources. When
optimization is necessary, it’s often broad-based,
not only including traditional computer science
notions of code tuning and algorithm modifica-
tion but also rethinking the underlying mathemat-
ical approximations and potentially fundamen-
tally changing the computation. So, technologies
that focus only on code tuning are of somewhat
limited utility to this community.

Computational scientists don’t view perfor-
mance gains in the same way as computer scien-
tists. For example, one of us (trained in computer
science) improved a code’s performance by more
than a factor of two. He expected this improve-
ment would save computing time. Instead, when he
informed the computational scientist, the scientist
responded that the saved time could be used to add
more function—that is, to get a higher-fidelity ap-
proximation of the problem being solved.

Conclusion: Scientists make decisions based
on maximizing scientific output, not program
performance.

Performance vs.
portability and maintainability

If somebody said, maybe you could get 20
percent [performance improvement] out of
it, but you have to do quite a bit of a rewrite,
and you have to do it in such a way that it
becomes really ugly and unreadable, then
maintainability becomes a real problem. …
I don’t think we would ever do anything for
20 percent. The number would have to be
between 2x and an order of magnitude. …
Readability is critical in these codes: describe
the algorithms in a mathematical language as
opposed to a computer language.

Scientists must balance performance and develop-
ment effort. We saw a preference for technologies
that let scientists control the performance to the
level needed for their science, even by sacrificing
abstraction and ease of programming. Hence their
extensive use of C and Fortran, which offer more
predictable performance and less abstraction than
higher-level programming languages.

Conversely, the scientists aren’t driven entirely
by performance. They won’t sacrifice significant
maintainability for modest performance improve-
ments. Because the codes must run on multiple cur-
rent and future HPC systems, portability is a ma-
jor concern. Codes must run efficiently on multiple
machines. Application scientists aren’t interested in
performing machine-specific performance tuning
because they’ll lose the benefits of their efforts when
they port the code to the next platform. In addition,
source code changes that improve performance
typically make code more difficult to understand,
creating a disincentive to make certain kinds of per-
formance improvements.

Conclusion: Scientists want the control to in-
crease performance as necessary but won’t sacrifice
everything to performance.

Verification and validation
for scientific codes

Testing is different. … It’s very much a qual-
itative judgment about how an algorithm is
actually performing in a mathematical sense.
… Finally, when the thing is working in a satis-
factory way—say, in a single component—you
may then go and run it in a coupled applica-
tion, and you’ll find out there are some fea-

Scientists want
the control
to increase

performance
as necessary

but won’t
sacrifice

everything to
performance.

	 July/August 2008 I E E E S o f t w a r E 	 �

tures you didn’t understand that came about
in a coupled application and you need to go
back and think about those.

Simulation software commonly produces an ap-
proximation to a set of equations that can’t be
solved exactly. You can think of this development
as a two-step process: translating the problem to
an algorithm and translating the algorithm to code.
You can evaluate these approximations (mapping a
problem to an algorithm) qualitatively on the basis
of possessing desirable properties (for example, sta-
bility) and ensuring that various conservation laws
hold (for example, that energy is conserved). The
approximation’s required precision depends on the
nature of the phenomenon you’re simulating. For
example, new problems can arise when you inte-
grate approximations of a system’s different aspects.
Suddenly, an approximation that was perfectly ade-
quate for standalone use might not be good enough
for the integrated simulation. Identifying and evalu-
ating an algorithm’s quality is a challenge. One sci-
entist we spoke with said that algorithmic defects
are much more significant than coding defects.

Validating simulation codes is an enormous
challenge. In principle, you can validate a code by
comparing the simulation output with a physical
experiment’s results. In practice, because simula-
tions are written for domains in which experiments
are prohibitively expensive or impossible, validation
is very difficult. Entire scientific programs, costing
hundreds of millions of dollars per year for many
years, have been built around experimental valida-
tion of large codes.

Conclusion: Debugging and validation are qual-
itatively different for HPC than for traditional soft-
ware development.

Skepticism of new technologies

I hate MPI, I hate C++. [But} if I had to
choose again, I would probably choose the
same.

Our codes are much larger and more com-
plex than the “toy” programs normally used
in [classroom settings]. We would like to see
a number of large workhorse applications
converted and benchmarked.

The scientists have a cynical view of new technol-
ogies because the history of HPC is littered with
new technologies that promised increased scien-
tific productivity but are no longer available. Some

of this skepticism is also due to the long life of
HPC codes; frequently, a code will have a 30-year
life cycle. Because of this long life, scientists will
embrace a new technology only if they believe it
will survive in the long term. This explains MPI’s
widespread popularity, despite constant grumbling
about its difficulty.

Scientific programmers often develop code such
that they can plug in different technologies to evalu-
ate them. For example, when MPI was new in the
1990s, many groups were cautious about its long-
term prospects and added it to their code alongside
existing message-passing libraries. As MPI became
widely used and trusted, these older libraries were
retired. Similar patterns have been observed with
solver libraries, I/O libraries, and tracing tools.

The languages being developed in the Darpa
HPCS program were intended to extend the fron-
tiers of what’s possible in today’s machines. So, we
sought practitioners working on very large codes
running on very large machines. Because of the
time they’ve already invested in their codes and
their need for long-lived codes, they all expressed
great trepidation at the prospect of rewriting a code
in a new language.

Conclusion: A new technology that can coexist
with older ones has a greater chance of success than
one requiring complete buy-in at the beginning.

Shared, centralized computing resources

The problem with debugging, of course, is
that you want to rerun and rerun. The whole
concept of a batch queue would make that a
week-long process. Whereas, on a dedicated
weekend, in a matter of hours you can pound
out 10 or 20 different runs of enormous size
and understand where the logic is going wrong.

Because of HPC systems’ cost, complexity, and
size, they’re typically located at HPC centers and
shared among user groups, with batch scheduling
to coordinate executions. Users submit their jobs
to a queue with a request for a certain number of
processors and maximum execution time. This in-
formation is used to determine when to schedule
the job. If the time estimate is too low, the job will
be preemptively terminated; if it’s too high, the job
will wait in the queue longer than necessary.

Because these systems are shared resources,
scientists are physically remote from the comput-
ers they use. So, potentially useful tools that were
designed to be interactive become unusably slow
and are soon discarded because they don’t take

�	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

into account the long latency times of remote
connections. Unfortunately for scientists, using
an HPC system typically means interacting with
the batch queue.

Debugging batch-scheduled jobs is also tedious
because the queue wait increases the turnaround
time. Some systems provide “interactive” nodes
that let users run smaller jobs without entering the
batch queue. Unfortunately, some defects mani-
fest themselves only when the code runs on large
numbers of processors.

Center policies that use system utilization as
a productivity metric might exacerbate the prob-
lem of the queue. Because utilization is inversely
proportional to availability, policies that favor
maximizing utilization will have longer waits.5
As a counterexample, Lincoln Laboratories pro-
vides interactive access to all users and purchases
excess computing capacity to ensure that users’
computational needs are met.2

Conclusion: Remote access precludes the use of
certain software tools, and system access policies
can significantly affect productivity.

Mismatches between
computational science and SE
Repeatedly, we saw that SE technologies that don’t
take the scientists’ constraints into account fail or
aren’t adopted. The computer science community
isn’t necessarily aware of this lesson. Software
engineers collaborating with scientists should un-
derstand that the resistance to adoption of unfa-
miliar technologies is based on real experiences.
For example, concepts such as CMMI aren’t
well matched to the incremental nature of HPC
development.

object-oriented languages

Java is for drinking.—parallel-programming
course syllabus

Developers on a project said, “we’re going to
use class library X that will hide all our array
operations and do all the right things.” … Im-
mediately, you ran into all sorts of issues. First
of all, C++, for example, was not transport-
able because compilers work in different ways
across these machines.

OO technologies are firmly entrenched in the SE
community. But in the HPC community, C and For-
tran still dominate, although C++ is used and one
project was exploring the use of Java. We also saw

some Python use, although never for performance-
critical code.

Fortran-like Matlab has seen widespread adop-
tion among scientists, although not necessarily in
the HPC community. To date, OO hasn’t been a
good fit for HPC, even though the community has
adopted some concepts. One reason for the lack of
widespread adoption might be that OO-based lan-
guages such as C++ have been evolving much more
rapidly than C and Fortran in recent years and are
therefore riskier choices.

Conclusion: More study is needed to identify
why OO has seen such little adoption and whether
pockets exist in HPC where OO might be suitable.

frameworks

If you talk about components in the Com-
mon Component Architecture or anywhere
else, components make very myopic deci-
sions. In order to achieve capability, you
need to make global decisions. If you allow
the components to make local decisions,
performance isn’t as good.

Frameworks provide programmers a higher level of
abstraction, but at the cost of adopting the frame-
work’s perspective on how to structure the code.
Example HPC frameworks include

Pooma (Parallel Object-Oriented Methods and
Applications), a novel C++ OO framework for
writing parallel codes that hides the low-level
details of parallelism, and
CCA (Common Component Architecture), for
implementing component-based HPC software.

Douglass Post and Richard Kendall tell how Los
Alamos National Laboratory sought to modern-
ize an old Fortran-based HPC code using Pooma.6
Even though the project spent over 50 percent of its
code-development resources on Pooma, the frame-
work was slower than the original Fortran code. It
also lacked the flexibility of the lower-level parallel
libraries to implement the desired physics.

The scientist in our studies don’t use frame-
works. Instead, they implement their own abstrac-
tion levels on top of MPI to hide low-level details,
and they develop their own component architecture
to couple their subsystems.

Of all the multiphysics applications we encoun-
tered, only one used any aspect of CCA technol-
ogy, and one of that application’s developers was
an active member of the CCA initiative. When we

■

■

Scientists
have yet

to be convinced
that reusing

existing
frameworks

will save them
more effort
than building

their own
from scratch.

	 July/August 2008 I E E E S o f t w a r E 	 �

asked scientists about the lack of reuse of frame-
works such as Pooma, they responded that such
frameworks force them to adapt their problem to
the interface supported by the framework. They
feel that fitting their problem into one of these
frameworks will take more effort than building
their own framework atop lower-level abstractions
such as MPI.

For many frameworks, a significant barrier to
their use is that you can’t integrate them incremen-
tally. As we noted earlier, a common risk-mitigation
strategy is to let competing technologies coexist
with a code while they’re under evaluation. How-
ever, the nature of many frameworks makes this
impossible.

Conclusion: Scientists have yet to be convinced
that reusing existing frameworks will save them
more effort than building their own from scratch.

Integrated development environments

IDEs try to impose a particular style of
development on me, and I am forced into a
particular mode.—US government laboratory
scientist7

We saw no use of integrated development environ-
ments (IDEs) such as Eclipse because they don’t fit
well into the typical workflow of a scientist run-
ning a code on an HPC system. For example, IDEs
have no facilities for submitting jobs to remote HPC
queues. IDEs also don’t support debugging and
profiling for parallel machines. The Eclipse Parallel
Tools Platform project (www.eclipse.org/ptp) is at-
tempting to provide this functionality.

In addition, although Eclipse supports HPC
languages such as Fortran and C/C++, they’re sec-
ond-class citizens in the Eclipse ecosystem, which
focuses on Java-related technologies. Whether the
larger HPC-system community will adopt these
technologies is an open question.

Conclusion: Unless IDEs support remote execu-
tion on batch-queued systems, HPC practitioners
won’t likely adopt them.

But well-matched technologies are adopted

We’re astrophysicists, which seems to mean
we disdain good software engineering prac-
tices until we get bit … hard … >10 times.
Nevertheless, we are starting to learn the im-
portance of source control, regression testing,
code verification, and more.8

We were using CVS until a few months ago.
Now we migrated to Subversion. We’ve had
version control since day 1.

FlashTest, the tool for nightly regression test-
ing of Flash, has been generalized to be usable
with any code that uses steps similar to Flash
in building.9

Roccom is an innovative object-oriented,
data-centric integration framework devel-
oped at CSAR [the Center for Simulation of
Advanced Rockets] for large-scale numerical
scientific simulation.10

Scientists do embrace some SE techniques and
concepts, when they’re a good fit. Every multi-
developer project we encountered used a version
control system such as CVS or Subversion to co-
ordinate changes. We also saw some use of re-
gression-testing methods, including tests across
platforms and compilers. We saw extensive re-
use-in-the-small, in the form of reusing exter-
nally developed libraries such as preconditioners,
solvers, adaptive mesh refinement support, and
parallel I/O libraries.

On multiphysics applications involving in-
tegration of multiple models maintained by in-
dependent groups, the scientists devoted much
effort on software architecture for integrating
these components, including using OO concepts.
In one case, they explicitly used an OO language,
C++. In another case, they implemented an OO
architectural framework using a non-OO lan-
guage—Fortran 90.

Conclusion: Scientists working on large proj-
ects see the value of an architectural infrastruc-
ture, but they’re more disposed to build their
own.

What SE can do to help scientists
So, how can we software engineers best apply our
knowledge and talents to assist the computational-
science community?

Practices and processes

In our study of existing literature, our software
environment is not entirely unique. Howev-
er, our desire to provide an environment that
supports development from the inception of
high-risk, high-payoff mathematical soft-
ware to eventual production quality tools is
unusual.11

�	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

We’re doing a loose version of Extreme Pro-
gramming or agile.

As software practitioners, we’re familiar with how
the software development process affects produc-
tivity and quality. We can help in two ways.

First, we can tailor and transfer existing SE
practices to the HPC community. We know from
observation that larger projects have successfully
adopted some mainstream practices. It’s impor-
tant to publicize these successes. Other SE prac-
tices, such as inspections, could be successfully
adapted but haven’t been. Inspections are im-
portant here because of the challenges of verifi-
cation and validation, but they must be tailored
for this domain. As always, it’s important to take
into account this community’s environment and
constraints to avoid mismatches such as the ones
we’ve mentioned.

Second, we can help capture and disseminate
computational-science-specific practices that have
been successfully adopted.

Education

Education and outreach to create code that is
parallelized—#1 user priority.12

Teaching people to use MPI is not very hard.
Teaching people to write MPI effectively so
that [they] can get performance out of their
code is extremely difficult. That’s the differ-
ence between a first-year grad student and
someone who has been at the center for four
to five years.

For the professor whose job is to turn out stu-
dents, the correct metric is, how long does it
take to take a grad student who just finished,
say, their second year of coursework to be
a productive researcher in the group? That
involves a lot more than just actual runtime
on the machine. It involves time picking up
the skills to be a successful developer, picking
up skills as a designer of parallel algorithms,
picking up enough physics to understand the
problem he’s solving and how parallelism
applies to it.

We observed both parallel-programming classes
and HPC practitioners in action. Although students
learned the basic principles of HPC development
in their courses, they weren’t properly prepared
for the kind of software development they needed
to do. So, there was a long learning curve to be-
coming productive, involving the apprenticeship

model of working closely with more experienced
practitioners.

At the university level, we can develop SE
courses specifically for computational scientists. We
can also work toward other models of disseminat-
ing SE knowledge in this domain. For example, to
improve the quality of students’ assignments, we’ve
developed materials for teaching them about HPC
defects (www.hpcbugbase.org).

reuse-in-the-large

A lot of our project is getting all this infra-
structure put together that we didn’t have
[before] and doing this from the ground up. A
productive thing would be not to have to do
that.

Although we could have painted a gloomy picture
here about the prospects of large-scale reuse of
frameworks, we believe these technologies could re-
duce programmer effort significantly. A framework
that’s built on well-supported technologies such as
MPI will have fewer adoption barriers than a new
language.

As software engineers, we can run case studies
of projects that attempt to adopt such frameworks.
By documenting how and why the adoptions suc-
ceed or fail, we can better understand the important
context variables for successful framework reuse.

T he scope of observations and conclusions
we present here are limited to the popula-
tions with which we interacted. We spoke

mainly to computational scientists in either aca-
demia or government agencies who use computers
to simulate physical phenomena. There are many
other applications for HPC (for example, signal
processing, cryptography, and 3D rendering), and
HPC is also used in industry (for example, movie
special effects, automobile manufacturing, and oil
production).

Scientific-software systems are growing larger
and more complex. We’re finally starting to see in-
teraction among the computational-science and SE
communities, but more dialogue and studies are
necessary. We’ve much to learn from each other.

Acknowledgments
We thank the students who were subjects in the par-
allel-computing classes we studied (Iowa State Univ.;
Univ. of Maryland; Mississippi State Univ.; Mas-
sachusetts Inst. of Technology; Univ. of California,
Santa Barbara; University of California, San Diego;
University of Southern California; and University

Larger
projects have
successfully
adopted some
mainstream
practices.

It’s important
to publicize

these successes.

	 July/August 2008 I E E E S o f t w a r E 	 �

of Hawaii). We also thank the code teams we inter-
viewed, including the US Department of Energy ASC
(Advanced Simulation and Computing) Alliance cen-
ters (California Inst. of Technology, Stanford Univ.,
Univ. of Chicago, Univ. of Illinois Urbana-Cham-
paign, and Univ. of Utah). We thank the high-per-
formance-computing community, including users at
SDSC, members of the High Productivity Computing
Systems program, and others for their contributions
to our understanding of HPC folklore. We thank
Darpa and the US Department of Energy for funding
this research. Finally, we thank Bill Dorland for his
feedback on an earlier draft of this article.

References
 1. L. Hochstein et al., “Parallel Programmer Productivity:

A Case Study of Novice Parallel Programmers,” Proc.
Int’l Conf. High Performance Computing, Network-
ing, and Storage (SC 05), IEEE CS Press, 2005, p. 35.

 2. J. Carver, “Post-Workshop Report for the Third Inter-
national Workshop on Software Engineering for High
Performance Computing Applications (SE-HPC 07),”
Sigsoft Software Eng. Notes, vol. 32, no. 5, 2007,
pp. 38–43.

 3. L. Hochstein and V.R. Basili, “The ASC-Alliance Proj-
ects: A Case Study of Large-Scale Parallel Scientific
Code Development,” Computer, Mar. 2008, pp. 50–58.

 4. T. Logan, “Highlights from Scicomp-13, the IBM Sci-
entific Users Group,” Arctic Research Supercomputing
Center HPC Users Newsletter, no. 366, 2007, www.
arsc.edu/support/news/HPCnews/HPCnews366.shtml.

 5. A. Snavely and J. Kepner, “Is 99% Utilization of a Su-
percomputer a Good Thing?” Proc. 2006 ACM/IEEE
Conf. Supercomputing, ACM Press, 2006, article 37.

 6. D.E. Post and R.P. Kendall, “Software Project Manage-
ment and Quality Engineering Practices for Complex,
Coupled Multiphysics, Massively Parallel Computation
Simulations: Lessons Learned from ASCI,” Int’l J. High
Performance Computing Applications, Winter 2004,
pp. 399–416.

 7. J. Carver et al., “Software Development Environments
for Scientific and Engineering Software: A Series of
Case Studies,” Proc. 29th Int’l Conf. Software Eng.,
IEEE CS Press, 2007, pp. 550–559.

 8. B. Messer, “Petascale Supernova Simulation,” pre-
sentation at 2006 Petals (Petascale Laboratory for
Simulation Science) Workshop, 2006, www.jics.utk.
edu/petals/Messer.pdf.

 9. Year 9 Activities Report, ASC/Alliances Center for As-
trophysical Thermonuclear Flashes, Univ. of Chicago,
2006, http://flash.uchicago.edu/website/information/
AnnualReport06.pdf.

 10. 2004 Annual Report, ASC/Alliances Center for Simu-
lation of Advanced Rockets, Univ. of Illinois, 2004,
www.csar.uiuc.edu/annual_reports/AnnReport04/
index.html.

 11. J.M Willenbring, M.A. Heroux, and R.T. Heaphy,
“The Trilinos Software Lifecycle Model,” Proc. 3rd
Int’l Workshop Software Eng. for High Performance
Computing Applications (SE-HPC 07), IEEE CS Press,
2007, p. 6.

 12. A. Zimmerman and T.A. Finholt, TeraGrid User
Workshop Final Report, Collaboratory for Research
on Electronic Work, School of Information, Univ. of
Michigan, 2006, www.crew.umich.edu/research/
teragrid_user_workshop.pdf.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Victor R. Basili is a professor of computer science at the University of Maryland
and a research fellow at the Fraunhofer Center for Experimental Software Engineering. He
works on measuring, evaluating, and improving the software process and product. Basili
received his PhD in computer science from the University of Texas at Austin. Contact him at
basili@cs.umd.edu.

Jeffrey C. Carver is an assistant professor in Mississippi State University’s Depart-
ment of Computer Science and Engineering. His research interests include empirical software
engineering, software engineering for computational science, software architecture, re-
quirements engineering, process improvement, and computer security. Carver received
his PhD in computer science from the University of Maryland. He’s a member of the IEEE
Computer Society, the ACM, and the American Society for Engineering Education. Contact
him at carver@cse.msstate.edu.

Daniela Cruzes is a postdoctoral fellow at the University of Maryland and Fraun-

hofer Center for Experimental Software Engineering, Maryland. Her research interests
are empirical software engineering, data mining, systematic reviews, data analysis, and
knowledge management. Contact her at dcruzes@fc-md.umd.edu.

Lorin M. Hochstein is an assistant professor in the Department of Computer Science
and Engineering at the University of Nebraska at Lincoln, where he’s a member of the Lab-
oratory for Empirically Based Software Quality Research and Development. His research inter-
ests include empirical software engineering and software engineering for high-performance
computing. Hochstein received his PhD in computer science from the University of Maryland.
He’s a member of the IEEE Computer Society and the ACM. Contact him at lorin@cse.unl.edu.

Jeffrey K. Hollingsworth is a professor in the Computer Science Department at
the University of Maryland, College Park, and is affiliated with the University’s Department
of Electrical Engineering and Institute for Advanced Computer Studies. His research interests
include instrumentation and measurement tools, resource-aware computing, high-performance
distributed computing, and programmer productivity. Hollingsworth received his PhD in com-
puter science from the University of Wisconsin. He’s a senior member of the IEEE and a member
of the ACM. Contact him at hollings@umd.edu.

Forrest Shull is a senior scientist at the Fraunhofer Center for Experimental Software
Engineering, Maryland, and director of its Measurement and Knowledge Management divi-
sion. His research interests include software inspections and empirical software engineering.
Shull received his PhD in computer science from the University of Maryland. Contact him at
fshull@fc-md.umd.edu.

Marvin V. Zelkowitz is a research professor in the University of Maryland’s
Computer Science Department. His research interests include technology transfer and
experimental software engineering. Zelkowitz received his PhD in computer science from
Cornell University. He’s a member of the ACM and a fellow of the IEEE. Contact him at
mvz@cs.umd.edu.

