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Computational 
scientists developing 
software for HPC 
systems face 
unique software 
engineering issues. 
Attempts to transfer 
SE technologies to 
this domain must 
take these issues 
into account.

F
or the past few years, we’ve had the opportunity, as software engineers, to ob-
serve the development of computational-science software (called codes) built for 
high-performance-computing (HPC) machines in many different contexts. Al-
though we haven’t studied all types of HPC development, we’ve encountered a 

wide cross-section of projects. Despite these projects’ diversity, several common traits exist:

Many developers receive their software train-
ing from other scientists. Although the scien-
tists often have been writing software for many 
years, they generally lack formal software en-
gineering (SE) training, especially in managing 
multiperson development teams and complex 
software artifacts.
Many of the codes aren’t initially designed to 
be large. They start small and then grow on the 
basis of their scientific success.
Many development teams use their own code 
(or code developed as part of their research 
group).

For these reasons (and many others), development 

■

■

■

practices in this community differ considerably 
from those in more “traditional” SE.

We aim here to distill our experience about 
how software engineers can productively engage 
the HPC community. Several SE practices gener-
ally considered good ideas in other development 
environments are quite mismatched to the HPC 
community’s needs. For SE researchers, the keys 
to successful interactions include a healthy sense of 
humility and the avoidance of assumptions that SE 
expertise applies equally in all contexts.

Background
A list of the 500 fastest supercomputers (www.
top500.org) shows that, as of November 2007, the 
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most powerful system had 212,992 processors. Al-
though a given application wouldn’t routinely use 
all these processors, it would regularly use a high 
percentage of them for a single job. Effectively using 
tens of thousands of processors on a single project is 
considered normal in this community.

We were interested in codes requiring nontrivial 
communication among the individual processors 
throughout the execution. Although HPC systems 
have many uses, a common application is to simu-
late physical phenomena such as earthquakes, global 
climate change, or nuclear reactions. These codes 
must be written to explicitly harness HPC systems’ 
parallelism. Although many parallel-programming 
models exist, the dominant model is MPI (message-
passing interface), a library where the programmer 
explicitly specifies all communication. Fortran re-
mains widely used for developing new HPC soft-
ware, as do C and C++. Frequently, a single system 
incorporates multiple programming languages. We 
even saw several projects use dynamic languages 
such as Python to couple different modules written 
in a mix of Fortran, C, and C++.

In 2004, Darpa launched the High Productiv-
ity Computing Systems program (HPCS, www.
highproductivity.org) to significantly advance HPC 
technology by supporting vendor efforts to de-
velop next-generation systems, focusing on both 
hardware and software issues. In addition, Darpa 
also funded researchers to develop productivity 
evaluation methods that measure scientific output 
more realistically than does simple processor utili-
zation, the measure used by the Top500 list. Our 
initial role was to evaluate how newly proposed 
languages affect programmer productivity. In addi-
tion, one of us helped conduct a series of case stud-

ies of existing HPC projects in government labs to 
characterize these projects and document lessons 
learned.

The HPCS program’s significance was its shift in 
emphasis from execution time to time-to-solution, 
which incorporates both development and execution 
time. We began this research by running controlled 
experiments to measure the impact of different par-
allel-programming models. Because the proposed 
languages weren’t yet usable, we studied available 
technologies such as MPI, OpenMP, UPC (Unified 
Parallel C), Co-Array Fortran, and Matlab*P, us-
ing students in parallel-programming courses from 
eight different universities.1

To widen this research’s scope, we collected 
“folklore”—that is, the community’s tacit, un-
formalized view of what’s true. We collected it 
first through a focus group of HPC researchers, 
then by surveying HPC practitioners involved in 
the HPCS program, and then by interviewing a 
sampling of practitioners including academic re-
searchers, technologists developing new HPC 
systems, and project managers. Finally, we con-
ducted case studies of projects at both US govern-
ment labs2 and academic labs.3

The development world  
of the computational scientist
To understand why certain SE technologies are a 
poor fit for computational scientists, it’s important 
to first understand the scientists’ world and the con-
straints it places on them. Overall, we found that 
there’s no such thing as a single “HPC community.” 
Our research was restricted entirely to computa-
tional scientists using HPC systems to run simula-
tions. Despite this narrow focus, we saw enormous 

Table 1
HPC community attributes

attribute Values Description

Team size
Individual This scenario, sometimes called the “lone researcher” scenario, involves only one developer.

Large This scenario involves “community codes” with multiple groups, possibly geographically distributed.

Code life

Short A code that’s executed few times (for example, one from the intelligence community) might trade less devel-
opment time (less time spent on performance and portability) for more execution time.

Long A code that’s executed many times (for example, a physics simulation) will likely spend more time in develop-
ment (to increase portability and performance) and amortize that time over many executions.

Users

Internal Only developers use the code.

External The code is used by other groups in the organization (for example, at US government labs) or sold commer-
cially (for example, Gaussian, www.gaussian.com)

Both “Community codes” are used both internally and externally. Version control is more complex in this case 
because both a development and a release version must be maintained.
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variation, especially in the kinds of problems that 
people are using HPC systems to solve. Table 1 
shows four of the many attributes that vary across 
the HPC community.

the goal of scientists  
is to do science, not execute software

One possible measure of productivity is sci-
entifically useful results over calendar time. 
This implies sufficient simulated time and 
resolution, plus sufficient accuracy of the 
physical models and algorithms. (All quotes 
are from interviews with scientists unless 
otherwise noted.)

[Floating-point operations per second] 
rates are not a useful measure of science 
achieved.—user talk, IBM scientific users 
group conference4

Initially, we believed that performance was of 
paramount importance to scientists developing 
on HPC systems. However, after in-depth inter-
views, we found that scientific researchers focus 
on producing publishable results. Writing codes 
that perform efficiently on HPC systems is a 
means to an end, not an end in itself. Although 
this point might sound obvious, we feel that 
many in the HPC community overlook it.

A scientist’s goal is to produce new scientific 
knowledge. So, if scientists can execute their 
computational simulations using the time and re-
sources allocated to them on the HPC system, they 
see no need for or benefit from optimizing the per-
formance. They see the need for optimization only 
when they can’t complete the simulation at the de-
sired fidelity with the allocated resources. When 
optimization is necessary, it’s often broad-based, 
not only including traditional computer science 
notions of code tuning and algorithm modifica-
tion but also rethinking the underlying mathemat-
ical approximations and potentially fundamen-
tally changing the computation. So, technologies 
that focus only on code tuning are of somewhat 
limited utility to this community.

Computational scientists don’t view perfor-
mance gains in the same way as computer scien-
tists. For example, one of us (trained in computer 
science) improved a code’s performance by more 
than a factor of two. He expected this improve-
ment would save computing time. Instead, when he 
informed the computational scientist, the scientist 
responded that the saved time could be used to add 
more function—that is, to get a higher-fidelity ap-
proximation of the problem being solved.

Conclusion: Scientists make decisions based 
on maximizing scientific output, not program 
performance.

Performance vs.  
portability and maintainability

If somebody said, maybe you could get 20 
percent [performance improvement] out of 
it, but you have to do quite a bit of a rewrite, 
and you have to do it in such a way that it 
becomes really ugly and unreadable, then 
maintainability becomes a real problem. … 
I don’t think we would ever do anything for 
20 percent. The number would have to be 
between 2x and an order of magnitude. … 
Readability is critical in these codes: describe 
the algorithms in a mathematical language as 
opposed to a computer language.

Scientists must balance performance and develop-
ment effort. We saw a preference for technologies 
that let scientists control the performance to the 
level needed for their science, even by sacrificing 
abstraction and ease of programming. Hence their 
extensive use of C and Fortran, which offer more 
predictable performance and less abstraction than 
higher-level programming languages.

Conversely, the scientists aren’t driven entirely 
by performance. They won’t sacrifice significant 
maintainability for modest performance improve-
ments. Because the codes must run on multiple cur-
rent and future HPC systems, portability is a ma-
jor concern. Codes must run efficiently on multiple 
machines. Application scientists aren’t interested in 
performing machine-specific performance tuning 
because they’ll lose the benefits of their efforts when 
they port the code to the next platform. In addition, 
source code changes that improve performance 
typically make code more difficult to understand, 
creating a disincentive to make certain kinds of per-
formance improvements.

Conclusion: Scientists want the control to in-
crease performance as necessary but won’t sacrifice 
everything to performance.

Verification and validation  
for scientific codes

Testing is different. … It’s very much a qual-
itative judgment about how an algorithm is 
actually performing in a mathematical sense. 
… Finally, when the thing is working in a satis-
factory way—say, in a single component—you 
may then go and run it in a coupled applica-
tion, and you’ll find out there are some fea-

Scientists want 
the control 
to increase 

performance  
as necessary 

but won’t 
sacrifice 

everything to 
performance.
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tures you didn’t understand that came about 
in a coupled application and you need to go 
back and think about those.

Simulation software commonly produces an ap-
proximation to a set of equations that can’t be 
solved exactly. You can think of this development 
as a two-step process: translating the problem to 
an algorithm and translating the algorithm to code. 
You can evaluate these approximations (mapping a 
problem to an algorithm) qualitatively on the basis 
of possessing desirable properties (for example, sta-
bility) and ensuring that various conservation laws 
hold (for example, that energy is conserved). The 
approximation’s required precision depends on the 
nature of the phenomenon you’re simulating. For 
example, new problems can arise when you inte-
grate approximations of a system’s different aspects. 
Suddenly, an approximation that was perfectly ade-
quate for standalone use might not be good enough 
for the integrated simulation. Identifying and evalu-
ating an algorithm’s quality is a challenge. One sci-
entist we spoke with said that algorithmic defects 
are much more significant than coding defects.

Validating simulation codes is an enormous 
challenge. In principle, you can validate a code by 
comparing the simulation output with a physical 
experiment’s results. In practice, because simula-
tions are written for domains in which experiments 
are prohibitively expensive or impossible, validation 
is very difficult. Entire scientific programs, costing 
hundreds of millions of dollars per year for many 
years, have been built around experimental valida-
tion of large codes.

Conclusion: Debugging and validation are qual-
itatively different for HPC than for traditional soft-
ware development.

Skepticism of new technologies

I hate MPI, I hate C++. [But} if I had to 
choose again, I would probably choose the 
same.

Our codes are much larger and more com-
plex than the “toy” programs normally used 
in [classroom settings]. We would like to see 
a number of large workhorse applications 
converted and benchmarked.

The scientists have a cynical view of new technol-
ogies because the history of HPC is littered with 
new technologies that promised increased scien-
tific productivity but are no longer available. Some 

of this skepticism is also due to the long life of 
HPC codes; frequently, a code will have a 30-year 
life cycle. Because of this long life, scientists will 
embrace a new technology only if they believe it 
will survive in the long term. This explains MPI’s 
widespread popularity, despite constant grumbling 
about its difficulty.

Scientific programmers often develop code such 
that they can plug in different technologies to evalu-
ate them. For example, when MPI was new in the 
1990s, many groups were cautious about its long-
term prospects and added it to their code alongside 
existing message-passing libraries. As MPI became 
widely used and trusted, these older libraries were 
retired. Similar patterns have been observed with 
solver libraries, I/O libraries, and tracing tools.

The languages being developed in the Darpa 
HPCS program were intended to extend the fron-
tiers of what’s possible in today’s machines. So, we 
sought practitioners working on very large codes 
running on very large machines. Because of the 
time they’ve already invested in their codes and 
their need for long-lived codes, they all expressed 
great trepidation at the prospect of rewriting a code 
in a new language.

Conclusion: A new technology that can coexist 
with older ones has a greater chance of success than 
one requiring complete buy-in at the beginning.

Shared, centralized computing resources

The problem with debugging, of course, is 
that you want to rerun and rerun. The whole 
concept of a batch queue would make that a 
week-long process. Whereas, on a dedicated 
weekend, in a matter of hours you can pound 
out 10 or 20 different runs of enormous size 
and understand where the logic is going wrong.

Because of HPC systems’ cost, complexity, and 
size, they’re typically located at HPC centers and 
shared among user groups, with batch scheduling 
to coordinate executions. Users submit their jobs 
to a queue with a request for a certain number of 
processors and maximum execution time. This in-
formation is used to determine when to schedule 
the job. If the time estimate is too low, the job will 
be preemptively terminated; if it’s too high, the job 
will wait in the queue longer than necessary.

Because these systems are shared resources, 
scientists are physically remote from the comput-
ers they use. So, potentially useful tools that were 
designed to be interactive become unusably slow 
and are soon discarded because they don’t take 
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into account the long latency times of remote 
connections. Unfortunately for scientists, using 
an HPC system typically means interacting with 
the batch queue.

Debugging batch-scheduled jobs is also tedious 
because the queue wait increases the turnaround 
time. Some systems provide “interactive” nodes 
that let users run smaller jobs without entering the 
batch queue. Unfortunately, some defects mani-
fest themselves only when the code runs on large 
numbers of processors.

Center policies that use system utilization as 
a productivity metric might exacerbate the prob-
lem of the queue. Because utilization is inversely 
proportional to availability, policies that favor 
maximizing utilization will have longer waits.5 
As a counterexample, Lincoln Laboratories pro-
vides interactive access to all users and purchases 
excess computing capacity to ensure that users’ 
computational needs are met.2

Conclusion: Remote access precludes the use of 
certain software tools, and system access policies 
can significantly affect productivity.

Mismatches between 
computational science and SE
Repeatedly, we saw that SE technologies that don’t 
take the scientists’ constraints into account fail or 
aren’t adopted. The computer science community 
isn’t necessarily aware of this lesson. Software 
engineers collaborating with scientists should un-
derstand that the resistance to adoption of unfa-
miliar technologies is based on real experiences. 
For example, concepts such as CMMI aren’t 
well matched to the incremental nature of HPC 
development.

object-oriented languages

Java is for drinking.—parallel-programming 
course syllabus

Developers on a project said, “we’re going to 
use class library X that will hide all our array 
operations and do all the right things.” … Im-
mediately, you ran into all sorts of issues. First 
of all, C++, for example, was not transport-
able because compilers work in different ways 
across these machines.

OO technologies are firmly entrenched in the SE 
community. But in the HPC community, C and For-
tran still dominate, although C++ is used and one 
project was exploring the use of Java. We also saw 

some Python use, although never for performance- 
critical code.

Fortran-like Matlab has seen widespread adop-
tion among scientists, although not necessarily in 
the HPC community. To date, OO hasn’t been a 
good fit for HPC, even though the community has 
adopted some concepts. One reason for the lack of 
widespread adoption might be that OO-based lan-
guages such as C++ have been evolving much more 
rapidly than C and Fortran in recent years and are 
therefore riskier choices.

Conclusion: More study is needed to identify 
why OO has seen such little adoption and whether 
pockets exist in HPC where OO might be suitable.

frameworks

If you talk about components in the Com-
mon Component Architecture or anywhere 
else, components make very myopic deci-
sions. In order to achieve capability, you 
need to make global decisions. If you allow 
the components to make local decisions, 
performance isn’t as good.

Frameworks provide programmers a higher level of 
abstraction, but at the cost of adopting the frame-
work’s perspective on how to structure the code. 
Example HPC frameworks include

Pooma (Parallel Object-Oriented Methods and 
Applications), a novel C++ OO framework for 
writing parallel codes that hides the low-level 
details of parallelism, and
CCA (Common Component Architecture), for 
implementing component-based HPC software.

Douglass Post and Richard Kendall tell how Los 
Alamos National Laboratory sought to modern-
ize an old Fortran-based HPC code using Pooma.6 
Even though the project spent over 50 percent of its 
code-development resources on Pooma, the frame-
work was slower than the original Fortran code. It 
also lacked the flexibility of the lower-level parallel 
libraries to implement the desired physics.

The scientist in our studies don’t use frame-
works. Instead, they implement their own abstrac-
tion levels on top of MPI to hide low-level details, 
and they develop their own component architecture 
to couple their subsystems.

Of all the multiphysics applications we encoun-
tered, only one used any aspect of CCA technol-
ogy, and one of that application’s developers was 
an active member of the CCA initiative. When we 

■

■
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asked scientists about the lack of reuse of frame-
works such as Pooma, they responded that such 
frameworks force them to adapt their problem to 
the interface supported by the framework. They 
feel that fitting their problem into one of these 
frameworks will take more effort than building 
their own framework atop lower-level abstractions 
such as MPI.

For many frameworks, a significant barrier to 
their use is that you can’t integrate them incremen-
tally. As we noted earlier, a common risk-mitigation 
strategy is to let competing technologies coexist 
with a code while they’re under evaluation. How-
ever, the nature of many frameworks makes this 
impossible.

Conclusion: Scientists have yet to be convinced 
that reusing existing frameworks will save them 
more effort than building their own from scratch.

Integrated development environments

IDEs try to impose a particular style of 
development on me, and I am forced into a 
particular mode.—US government laboratory 
scientist7

We saw no use of integrated development environ-
ments (IDEs) such as Eclipse because they don’t fit 
well into the typical workflow of a scientist run-
ning a code on an HPC system. For example, IDEs 
have no facilities for submitting jobs to remote HPC 
queues. IDEs also don’t support debugging and 
profiling for parallel machines. The Eclipse Parallel 
Tools Platform project (www.eclipse.org/ptp) is at-
tempting to provide this functionality.

In addition, although Eclipse supports HPC 
languages such as Fortran and C/C++, they’re sec-
ond-class citizens in the Eclipse ecosystem, which 
focuses on Java-related technologies. Whether the 
larger HPC-system community will adopt these 
technologies is an open question.

Conclusion: Unless IDEs support remote execu-
tion on batch-queued systems, HPC practitioners 
won’t likely adopt them.

But well-matched technologies are adopted

We’re astrophysicists, which seems to mean 
we disdain good software engineering prac-
tices until we get bit … hard … >10 times. 
Nevertheless, we are starting to learn the im-
portance of source control, regression testing, 
code verification, and more.8

We were using CVS until a few months ago. 
Now we migrated to Subversion. We’ve had 
version control since day 1.

FlashTest, the tool for nightly regression test-
ing of Flash, has been generalized to be usable 
with any code that uses steps similar to Flash 
in building.9

Roccom is an innovative object-oriented, 
data-centric integration framework devel-
oped at CSAR [the Center for Simulation of 
Advanced Rockets] for large-scale numerical 
scientific simulation.10

Scientists do embrace some SE techniques and 
concepts, when they’re a good fit. Every multi-
developer project we encountered used a version 
control system such as CVS or Subversion to co-
ordinate changes. We also saw some use of re-
gression-testing methods, including tests across 
platforms and compilers. We saw extensive re-
use-in-the-small, in the form of reusing exter-
nally developed libraries such as preconditioners, 
solvers, adaptive mesh refinement support, and 
parallel I/O libraries.

On multiphysics applications involving in-
tegration of multiple models maintained by in-
dependent groups, the scientists devoted much 
effort on software architecture for integrating 
these components, including using OO concepts. 
In one case, they explicitly used an OO language, 
C++. In another case, they implemented an OO 
architectural framework using a non-OO lan-
guage—Fortran 90.

Conclusion: Scientists working on large proj-
ects see the value of an architectural infrastruc-
ture, but they’re more disposed to build their 
own.

What SE can do to help scientists
So, how can we software engineers best apply our 
knowledge and talents to assist the computational-
science community?

Practices and processes

In our study of existing literature, our software 
environment is not entirely unique. Howev-
er, our desire to provide an environment that 
supports development from the inception of 
high-risk, high-payoff mathematical soft-
ware to eventual production quality tools is 
unusual.11
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We’re doing a loose version of Extreme Pro-
gramming or agile.

As software practitioners, we’re familiar with how 
the software development process affects produc-
tivity and quality. We can help in two ways.

First, we can tailor and transfer existing SE 
practices to the HPC community. We know from 
observation that larger projects have successfully 
adopted some mainstream practices. It’s impor-
tant to publicize these successes. Other SE prac-
tices, such as inspections, could be successfully 
adapted but haven’t been. Inspections are im-
portant here because of the challenges of verifi-
cation and validation, but they must be tailored 
for this domain. As always, it’s important to take 
into account this community’s environment and 
constraints to avoid mismatches such as the ones 
we’ve mentioned.

Second, we can help capture and disseminate 
computational-science-specific practices that have 
been successfully adopted.

Education

Education and outreach to create code that is 
parallelized—#1 user priority.12

Teaching people to use MPI is not very hard. 
Teaching people to write MPI effectively so 
that [they] can get performance out of their 
code is extremely difficult. That’s the differ-
ence between a first-year grad student and 
someone who has been at the center for four 
to five years.

For the professor whose job is to turn out stu-
dents, the correct metric is, how long does it 
take to take a grad student who just finished, 
say, their second year of coursework to be 
a productive researcher in the group? That 
involves a lot more than just actual runtime 
on the machine. It involves time picking up 
the skills to be a successful developer, picking 
up skills as a designer of parallel algorithms, 
picking up enough physics to understand the 
problem he’s solving and how parallelism 
applies to it.

We observed both parallel-programming classes 
and HPC practitioners in action. Although students 
learned the basic principles of HPC development 
in their courses, they weren’t properly prepared 
for the kind of software development they needed 
to do. So, there was a long learning curve to be-
coming productive, involving the apprenticeship 

model of working closely with more experienced 
practitioners.

At the university level, we can develop SE 
courses specifically for computational scientists. We 
can also work toward other models of disseminat-
ing SE knowledge in this domain. For example, to 
improve the quality of students’ assignments, we’ve 
developed materials for teaching them about HPC 
defects (www.hpcbugbase.org).

reuse-in-the-large

A lot of our project is getting all this infra-
structure put together that we didn’t have 
[before] and doing this from the ground up. A 
productive thing would be not to have to do 
that.

Although we could have painted a gloomy picture 
here about the prospects of large-scale reuse of 
frameworks, we believe these technologies could re-
duce programmer effort significantly. A framework 
that’s built on well-supported technologies such as 
MPI will have fewer adoption barriers than a new 
language.

As software engineers, we can run case studies 
of projects that attempt to adopt such frameworks. 
By documenting how and why the adoptions suc-
ceed or fail, we can better understand the important 
context variables for successful framework reuse.

T he scope of observations and conclusions 
we present here are limited to the popula-
tions with which we interacted. We spoke 

mainly to computational scientists in either aca-
demia or government agencies who use computers 
to simulate physical phenomena. There are many 
other applications for HPC (for example, signal 
processing, cryptography, and 3D rendering), and 
HPC is also used in industry (for example, movie 
special effects, automobile manufacturing, and oil 
production).

Scientific-software systems are growing larger 
and more complex. We’re finally starting to see in-
teraction among the computational-science and SE 
communities, but more dialogue and studies are 
necessary. We’ve much to learn from each other.
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