IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

141

Analyzing Error-Prone System Structure

Richard W. Selby, Member, IEEE, and Victor R. Basili,

Abstract—One central feature of the structure of a software system is
the nature of the interconnections among its components (e.g., subsystems,
modules). The concepts of coupling and strength have been used in
the past to refer to the degree of interconnection among and within
components. The purpose of this study is to quantify ratios of coupling
and strength and use them to identify error-prone system structure. We
use measures of data interaction, called data bindings, as the basis for cal-
culating software coupling and strength and analyzing system structure.
We selected a 148 000 source line system from a production environment
for empirical analysis. We collected software error data from high-level
system design through system test and from some field operation of
the system. We describe the methods used for gathering data during
the ongoing project and characterize the software error data collected.
We apply a set of five tools to calculate the data bindings automatically
and use a clustering technique to determine a hierarchical description of
each of the system’s 77 subsystems. A nonparametric analysis of variance
model is used to characterize subsystems and individual routines that had
either many or few errors or high or low error correction effort.

The empirical results support the effectiveness of the data bindings
clustering approach for localizing error-prone system structure. Routines
with the highest coupling/strength ratios had 7.0 times more errors
per KNCSS (1000 source statements excluding comments) than did rou-
tines with the lowest coupling/strength ratios. Subsystems with high
coupling/strength ratios had routines with 4.8 times more errors per
KNCSS than did subsystems with low coupling/strength ratios. The
interpretations span several areas: development methodology, inspection
methodology, data collection and analysis, size, coupling/strength, and
system structure.

Index Terms—Empirical measurement and evaluation, error analysis,
software inspections, software metrics, system decomposition, system
strength and coupling.

I. INTRODUCTION

EVERAL researchers have proposed methods for relating

the structure of a software system to its quality (e.g., [2],
[15], [11]). One pivotal step in assessing a system structure is
characterization of the nature of its component interconnections
using the concepts of coupling and strength. Intuitively, the
strength in a software system is the amount of interaction within
pieces (e.g., subsystems, modules) of a system. Correspondingly,
coupling in a software system is the amount of interaction across
pieces of a system. Various interpretations for coupling and
strength have been proposed [21]. In this paper, we present an
empirical study that evaluates the effectiveness of strength and
coupling principles in identifying error-prone system structure.
Our measurement of strength and coupling is based on intrasys-

Manuscript received October 25, 1988; revised September 27, 1990. Rec-
ommended by L.A. Belady. This work was supported in part by IBM
under the Shared University Research (S.U.R.) program, the National Science
Foundation under Grant CCR-8704311 with cooperation from the Defense
Advanced Research Projects Agency under Arpa Order 6108, Program Code
7T10, the National Science Foundation under Grant DCR-8521398, and the
Air Force Office of Scientific Research under Contract AFOSR-F49620-80-
C-001.

R. W, Selby is with the Department of Information.and Computer Science,
University of California, Irvine, CA 92717.

V.R. Basili is with the Institute for Advanced Computer Studies and the
Department of Computer Science, University of Maryland, College Park,
MD 20742.

IEEE Log Number 9040980.

0098-5589/91/0200-0141$01.00 © 1991 IEEE

tem interaction in term:
measurement of error-

Fellow, IEEE

of software data bindings [9], [14]. Our
roneness is based on software error data

collected from high-level system design through system test;
some error data from system operation are also included.

We have three primary goals for this study: 1) to quantify a
measure of system structure based on interactions among compo-

nents; 2) to validate the

usefulness of this measure for identifying

error-prone system structure; and 3) to use empirical error data in
the validation of the measure which were collected and analyzed
during an ongoing software project without negatively impacting

the developers.

The research approach was based on the application of a

data collection and ana
software environment.
definition of the requit
propriate data analysis
was conducted in three

lysis methodology in a large, production
The use of the methodology incorporates
ed data, collection of the data, and ap-
and interpretation. The research project
phases, and they roughly corresponded

to the activities of data definition, collection, and analysis and

interpretation.

A. Selected Software Project

The software project selected for study is the next release

of an internal software
system release contain
The production of the
modification of approx
total size of the next §
source lines. The analy
distinguishes between
release and code that v
has shown that there ar

library tool (see Fig. 1). The previous
1s approximately 113000 source lines.
next release requires the development or
imately 40000 source lines. Hence, the
system release is approximately 148 000
sis of the error-proneness in the system
code that was unchanged in the current
vas changed. This is because experience
¢ different error rates in base code versus

modified code, and that the structure of the interactions among

routines is adjusted to &

1ccommodate new functionality [4]. Note

that the design standards on the current system release and

previous releases were
routines and were unif
The system is writt

consistent in terms of interactions among
ormly enforced.
en in four languages: a high-level pro-

gramming language similar to PL/I, a language for operating
system executives, a user-interface specification language, and

an assembly language.

The static source code metrics discussed

later, including the data bindings analysis, pertain to only the

system portion written
portion constitutes appr

in the high-level source language. This
oximately 70% of the system and the vast

majority of the system logic and intrasystem interactions. Project
duration, including system and field test, spanned approximately
16 months and maximum staffing included 23 persons. The error

data analyzed were coll

ected during several years of the system’s

history, as well as during the current project.

B. System Characterization

There are 163 sourc

e code files in the system containing a

total of 451 source code routines. A routine is a main program,

procedure, or function.
file varies from 1 to 21.

The number of routines per source code
On the average, there are 2.8 routines per

142

Source code routines 451
Source code files 163
Subsystems 77
System size in lines of code including comments 148,754
System size in source statements excluding comments | 82,806

Fig. 1. Characterization of the software system analyzed.

source code file. There are 77 executable features in the system,
referred to as subsystems in the paper. These subsystems can
be thought of as groups of routines collected together to form
functional features of the overall system. The number of source
files linked together to form a subsystem varies from 1 to 82. On
the average, 26.3 source files are linked together into a subsystem.
The same source file is bound into 12.4 different subsystems on
the average. Subsystems averaged 19 000 source lines including
comments and 10749 source statements excluding comments.
Section II describes the data definition, collection, and analysis
methodology used. The software error data collected are summa-
rized in Section III, and the detailed error data are presented in
Appendixes B and C. The data bindings software analysis and
supporting tools are described in Section IV. The data analysis
appears in Section V, and the interpretations and conclusions
appear in Section VI. Appendix A contains definitions of the
error-related terminology. Appendix D presents some general ob-
servations and recommendations on data collection and analysis.

II. Data COLLECTION

The following three subsections give an overview of the data
definition, collection, and analysis methodology, an explanation
of the metric vector concept, and a description of the underlying
data collection forms. Appendix D summarizes the effectiveness
of the data collection process in gathering data during the
software project. Appendix D also presents some lessons learned
and recommendations based on the use of the data collection
and analysis methodology. Note that the data was collected and
analyzed at the same time the project took place. An important
goal was to minimize the impact of the data collection process
on the developers.

A. Data Collection and Analysis Methodology

The goal-question-metric paradigm [10], [7], [20]; [1] defines
a methodology for data collection and analysis and results
in a set of software product and process metrics, a “metric
vector” [3], sensitive to the cost and quality goals for a partic-
ular environment. There are several steps in the methodology
spanning software metric definition, collection, analysis, and
interpretation. The data collection and analysis methodology
consists of seven steps:

1) Define the goals of the data collection and analysis.
2) Refine the goals to determine a list of specific questions.
3) Establish appropriate metrics and data categories.
4) Plan the layout of the study and the statistical analysis
methods.
5) Design and test the data collection scheme.
6) Perform the investigation concurrently with data collection
and validation.
7) Analyze and interpret the data in terms of the goal-question
framework.
The first three steps in the methodology express the purpose of
an analysis, define the data that needs to be collected, and provide
a context in which to interpret the data. The formulation of a set

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

of goals constitutes the first step in a management or research
process. The goals qutline the purpose of the study in terms
of software cost and quality aspects. Refinement of the goals
occurs until they are| manifested in a set of specific questions.
The questions define the goals and provide the basis for pursuing
the goals. The information required to answer the questions
determines the development process and product metrics needed.
The organization of the defined metrics results in a set of software
metrics, referred to as a “metric vector.”

The following four steps involve analysis planning and data
collection, validation, |analysis, and interpretation. Before collect-
ing the data, the researchers outline the data analysis techniques.
The appropriate analysis methods may require an alternate layout
of the investigation or additional pieces of data to be collected.
The investigators then design and test the data collection method;
they determine the information that can be automatically moni-
tored and customize the data collection scheme to the particular
environment. The data collection plan usually includes a mixture
of collection forms, | automated measurement, and personnel
interviews. The investigators then perform the data collection
accompanied by suitable data validity checks. After preliminary
analysis to screen the|data, they apply the appropriate statistical
and analytical methods. They organize the statistical results and
interpret them with respect to the goal-question framework. The
analysis of the collected data can sometimes lead to the expansion
of the original sets of| questions, possibly resulting in more goal
areas. Once all seven| methodology steps have been completed,
researchers can apply |another iteration of the methodology with
a new set of goals.

B. Metric Vector

The set of metrics defined was described in terms of a
“metric vector” [3], |consisting of seven dimensions: {effort,
nonerror changes, errors, size, data use, execution, environment}.

These seven dimensio
time expended in pro

ns are defined as follows: 1) effort—the
ducing the software product; 2) nonerror

changes—the modifications made to the product; 3) errors—the

mistakes made during

development or maintenance that require

correction; 4) size—the various aspects of the product bulk and

complexity; 5) data u
use of data; 6) execu
the program; and 7) e
the development and

se—the various aspects of the program’s

ion—information about the execution of

nvironment—a quantitative description of

maintenance environment. Each of these

dimensions has a variety of metrics associated with it. These
metrics depend upon the specific goals and questions articulated
for the project. Both a metric vector containing all metrics defined

“and a vector containing a minimal number of metrics to collect

were outlined for this study.

The metric data was collected in two ways: 1) data collection
forms, which are discussed in the next section, and 2) automated
data bindings analysis, which is discussed in Section IV.

C. Data Collection Forms

The collection of the data was conducted so as to affect
minimal interference on the project personnel. We obtained a
consensus from project management and development process
coordinators on what metrics were already collected, what new
metrics could be collected, and how they should be collected. The
metrics defined by the methodology were categorized according
to their natural collection source. We worked within existing,
established procedures using existing forms, as far as possible,
to collect the new data. Fig. 12 in Appendix A outlines the data

SELBY AND BASILI: ERROR-PRONE SYSTEM STRUCTURE

collections forms used in the various development phases. The
collection of the metrics was based on a variety of sources,
including the existing set of data collection forms: inspection
forms, error summary worksheets (ESW), system trouble re-
ports (STR), and trouble reports (TR). These data sources are
summarized below.

1) Inspections: Two kinds of formal inspections are held
during development: design inspections and engineering in-
spections [12], [13]. Design inspections are held during the
high-level and low-level design phases. Engineering inspections
are code inspections that are held after the completion of unit
testing. Inspection forms represent all data recorded during
formal inspections and during rework activity following the
inspections.

2) Error Summary Worksheets: The Error Summary Work-
sheet (ESW) form was introduced for the purpose of recording
error and change data during the coding, unit testing, and
primitive/transaction testing phases (primitive/transaction testing
is similar to integration testing).

3) System Trouble Reports: System Trouble Report forms
(STR’s) are used during system testing. The collection form is
the same as the trouble report (TR) form.

4) Trouble Reports: These are problems reported against
working, released code. They are typically user-reported. Trouble
report forms are also used to report errors found by developers
during field testing. The corrections are either implemented
immediately or included as part of the development of the
next release.

5) Surveys and Interviews: The collection and validation of
certain data items are supported by the use of developer sur-
veys. A researcher interviewed developers to acquire the survey
information.

IIT. CHARACTERIZATION OF SOFTWARE ERROR DaTA

This section summarizes the software error data collected
from the trouble reports (TR’s) and software inspections. For
further detail, see the tables in Appendixes B and C that contain
the inspection error data and the trouble report error data. The
error terminology used in this paper is defined in Appendix A.
Throughout this paper, the term “error” is used to indicate the
root cause of a problem in the software system. Rediscoveries of
the same error are not counted as separate errors.

There were 770 software errors reported from the 170 inspec-
tions with an average overall detection rate of 4.5 (= 770/170)
errors per inspection [see Appendix B, parts 1)—3)]. An analysis
of the errors showed that inspections were more effective in
finding high severity errors than low severity errors (56% =
433/770 versus 44% = 337/770) [see Appendix B, part 2)] and
that design inspections were more effective than engineering in-
spections. That is, design inspections detected 58% (= 450/770)
of all inspection-detected errors and 63% (= 275/433) of the
major severity errors [see Appendix B, part 2)]. Design inspec-
tions had an overall detection rate three times (= 8.3/2.8) greater
than engineering inspections and a major severity detection rate
of three and a half times (= 5.1/1.4) greater [see Appendix B,
part 3)].

With regard to inspection error type, twice (= 111/55) as many
of the “missing” errors were of major severity than of minor
severity, and one and a half times (= 31/18) as many of the
“extra” errors were of minor severity than of major severity [see
Appendix B, part 5)].

143

There were 54 valid trouble reports, and 70% (= 32/46) of the
TR-errors were in the “wrong” category, which was consistent
with the results for inspection-reported errors (inspections had
70% = 501/716 “wrong” errors) [see Appendix B, part 5) and
Appendix C, parts 1) and 2)]. As might be expected, there were
proportionately more “extra” errors and fewer “missing” errors
found in inspections than there were in TR’s [see Appendix B,
part 5) and Appendix C, part 2)]. (In inspections, 7% = 49/716
of the errors were “extra” and 23% = 166/716 were “missing”;
while in TR’s, 2% = 1/46 of the errors were “extra” and 28% =
13/46 were “missing”.)

With regard to TR-error type, isolating a TR-error required
almost twice (= 6.3/3.7) as much effort as did fixing it, and
correcting (both isolating and fixing) a “wrong” error required
more effort than did correcting a “missing” error (10.9 versus
8.1 hours) [see Appendix C, part 3)]. Correspondingly, the iso-
lation of a “wrong” TR-error required the most effort. Note that
the isolation costs would have been zero if the errors reported
on TR’s had been found during inspections.

The effort for fixing a “missing” TR-error could be counted as
development effort, as opposed to error correction effort. With
this interpretation, the error correction effort for “missing” errors
includes only the isolation effort. In this view, the error cor-
rection effort (isolation plus fix) for “wrong” errors is 2.6 times
(= 10.9/4.2) the correction effort (isolation only) for “missing”
errors [see Appendix C, part 3)]. Hence, it was less costly overall
to leave out a design or code segment, rather than to include an
incorrect one.

IV. Dara BINDINGS ANALYSIS

A. Clustering with Data Bindings

One primary goal for this study was to investigate the rela-
tionship of “software data bindings” to software errors. “Data
bindings” are measures that capture the data interaction across
portions of a software system. The theoretical background for
the measures is described in [14]. Earlier studies have revealed
insights about the usefulness of data bindings in the character-
ization of software systems and their errors [9], [14]. In order
to describe the data bindings analysis process applied, we first
introduce some terminology (see also [14]).

An actual data binding is defined as an ordered triple (p, z, q)
where p and ¢ are procedures and x is a variable within the
static scope of both p and ¢, where p assigns a value to = and
q references x. The calculation of actual data bindings counts
those instances where there may be a flow of information from
p to ¢ via the varjable z. The possible orders of execution
for p and g are not considered. That is, there may be other
factors (e.g., control flow conditions) which would prevent such
communication. Although stronger levels of data bindings have
been defined, we calculated actual data bindings in this study
because they offer an adequate measure of similarity while not
requiring complex data flow analysis that stronger levels need.
Essentially, we are erring in the direction of safety (as done, for
example, by code optimizers) by assuming that procedures may
influence one another unless we can show otherwise.

First, we calculated the actual data bindings in the system.
Then, we applied an iterative clustering technique to the data
bindings information to produce a hierarchical description for
the software system (see Fig. 2). The clustering takes place
in a bottom-up manner. The process iteratively creates larger
and larger clusters, until all the elements have collapsed into a

144

Fig. 2. Example hierarchical cluster based on software data bindings. Rou-
tines (e.g., procedures, functions) are denoted by p;, and clusters are denoted
by circles. The smaller clusters are relatively tighter (and form earlier), while
the larger clusters are relatively looser (and form later). The clusters define a
system hierarchy in the form of a tree: the smaller clusters at the leaf nodes
and the largest cluster at the root node.

single cluster. The elements in the clusters are the procedures
and functions in the system. The elements with the greatest
interaction, in terms of actual data bindings, cluster together first.
Clustering techniques have been applied previously to partition
a large system into subsystems in [2]. Hierarchical clusters have
been formally defined in [17].

B. Data Bindings Analysis Software

A set of five software tools was developed to calculate
these hierarchical, data bindings clusters and applied to the
77 subsystems in the selected project. (As defined in Section I,
a subsystem in the selected project is a large collection of
routines that are linked together to form an executable system
feature; subsystems averaged 19000 source lines.) Four of the
five tools are language independent; the other tool—a major
one—is language dependent. All of the tools are written in the
C programming language [18].

The tools determine the data bindings that occur among the
procedures and functions in the source code and then use them
in cluster analysis as a measure of similarity. The tools therefore
conduct source code analysis and cluster analysis. Due to the fact
that almost all large systems consist of many separately compiled
units, there must also be a program to gather the information
from several compilation units and combine it, somewhat similar
to a linker.

The five tools convert the source code into a hierarchical
system description. The first two programs correspond roughly
to the standard compile and link paradigm. The first program,
source_bind, reads the source code and produces a file containing
information about the variable usage of the procedures and
functions, from which the data bindings will be determined. This
first program is built specifically for the source language, and
hence, is language dependent. The second program, link_bind,
takes the outputs from one or more runs of source_bind and
combines the information together in much the way that a link
editor does, giving each data object a unique name. The third
program, matrix_bind, takes the output of link_bind and builds a
matrix that contains a row and a column for each procedure and
function in the source code. The matrix entries are the number of
actual data bindings between a pair of procedures or functions.
The fourth program, fold_bind, reads the output of matrix_bind
and creates a dissimilarity matrix (a nonnegative, real, symmetric
matrix with zeros on the diagonal [17], [14]) that contains the
binding information in a format that cluster programs require. The
fifth program, cluster_ program, reads the output of fold_bind and

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

produces a description of the system as a tree. The tree gives a
view of the hierarchy| of the system with respect to data usage.

V. Dara ANALYSIS

The data collection and analysis methodology was successful
in producing a wide range of statistically significant results.

1) Terminology: - Throughout the analysis and interpretation,
we use the terms subsystems and routines. A routine is a main

program, procedure,
code routines in the

r function. There are a total of 451 source
system. A subsystem is a large set of

routines that are linked together to form an executable system
feature. Any routine may be a part of several features. There are
77 executable features in the system, and they average 19000
source lines including comments and 10749 source statements

excluding comments.
on the average.
Rather than analyz
analysis tools describ
descriptions for each
hierarchical descriptig

A routine is linked into 12.4 subsystems

ing the system as a whole, we used the
ed in Section IV to produce hierarchical
of the 77 subsystems (see Fig. 2). The
ns are rooted, connected trees that reflect

the internal subsystem structure. Each routine in a subsystem

occurs as a leaf node
groupings of routines

in the tree exactly once. Subtrees indicate
that form natural clusters based on the data

bindings criteria. There is a one-to-one correspondence between

subtrees and clusters.

A cluster can contain either routines or

other clusters. In other words, the root node of a subtree can
have as its children either leaf nodes (i.e., routines) or the root

node of another subts
form a smaller cluste

In the software syst
into more than one su
separate hierarchical d
the hierarchical descr
linked. A routine may
different subsystems.

Each cluster in a su
with it which reflects
numerical value is th

number of
within the

ee (i.e., a subset of its own routines that
1).
em being analyzed, a routine may be linked
bsystem. Each of the 77 subsystems has a
lescription. Therefore, a routine appears in
iption of each subsystem into which it is
y cluster with different sets of routines in

ibsystem has a numerical value associated
the binding nature of its routines. This
e following ratio:

data bindings between routines
cluster and those outside of it

number of data bindings between routines within the cluster’

In other words, the n
tween routines in a cl
binding”) in relation
cluster (i.e., “internal
the following ratio:

lumerical value measures the binding be-
uster and those outside of it (i.e., “external
to the binding between routines within a
binding”). This number is interpreted as

the coupling of the cluster with other clusters in the subsystem

the internal strength of the cluster

That is, the number

cluster of routines wi
in a bottom-up manne
the lowest coupling/s
clusters with the next
and so forth. In earl

captures the coupling/strength ratio for a
hin a subsystem. The clusters are formed
rin the analysis process. The clusters with
rength ratios form in the first iteration, the
lowest ratios form in the second iteration,
ier work, alternate measures having less

straightforward interpretations were used to capture the binding

nature among routine
The lower a cluster

relative coupling with

s [14].
’'s coupling/strength ratio is, the lower the
other clusters -and the higher the relative

strength of binding within the cluster. The higher a cluster’s

coupling/strength rati

o is, the higher the relative coupling with

SELBY AND BASILI: ERROR-PRONE SYSTEM STRUCTURE

other clusters and the lower the relative strength of binding within
the cluster. Software engineering principles generally suggest that
it is desirable to have low coupling and high strength, which in
this context means a low coupling/strength ratio [21}].

The data bindings analysis produced 77 trees corresponding
to the subsystems which included a total of 4211 clusters con-
taining 5045 routine occurrences. Recall that there were a total
of 451 routines in the system—each routine was bound into
12.4 subsystems on the average (see Section I). We calculated
three different measures based on the clusters resulting from
the data bindings analysis. For each routine occurrence, we cal-
culated the following two measures. Routine coupling/strength
ratio—The coupling/strength ratio of the first cluster to form
that included the routine as a member. This metric is intended
to capture the relationship of a routine to other routines in a
subsystem in terms of coupling and strength. Routine location
in subsystem’s data binding tree—The depth in the tree of the
first subtree (i.e., cluster) to form that included the routine as a
member. More precisely, it is the depth in the tree of the root of
that subtree. This metric is intended to characterize the location of
a routine in a data binding tree. This location information is useful
to know when data binding trees are used as an alternative form
of system documentation. For each subsystem, we calculated
the following measure. Subsystem coupling /strength ratio—The
median of the coupling/strength ratios for the clusters within the
subsystem. We use a nonparametric statistic here, i.e., a median,
because the coupling/strength ratios are relative measures. This
metric is intended to characterize the overall coupling and
strength within a subsystem.

A. Data Analysis Method

A nonparametric analysis of variance model was used to
characterize subsystems and routines that had either many/few
errors or high/low development effort spent in error correction.

Primary Factors and Interactions: The analysis of variance
model considered numerous factors simultaneously [19]. When

~ defining the levels for some of the factors, we used nonparametric
statistics (e.g., quartiles) since the coupling/strength ratios are
relative measures and the data bindings trees have different
overall depths. Some thresholds between factor levels (e.g.,
routine size of 142 statements) were selected to create groups
approximately equal in size. Subsystem size and routine size are
included as factors in the analysis because eatlier analyses have
indicated a relationship between size and software effort and error
data (e.g., [5], [8], [22]). Also included as a factor is whether or
not a routine was changed as part of the current system release,
because earlier studies have indicated that system structure varies
between base code and modified code [4].

The primary factors and their respective levels in the
model were as follows. 1) Subsystem size: Small—Subsystems
with less than or equal to 6090 source statements, excluding
comments. Large—Subsystems with greater than 6090 source
statements, excluding comments. 2) Subsystem coupling/strength
ratio: Low—Subsystems with a coupling/strength ratio below
the median. High—Subsystems with a coupling/strength
ratio above the median. 3) Individual subsystem’s -attributes:
One level for each of the 77 subsystems. 4) Routine size:
Small—Routines with less than or equal to 142 source
statements, excluding comments. Large—Routines with greater
than 142 source statements, excluding comments. 5) Routine
coupling [strength ratio: a_Highest—The uppermost quartile of
the coupling/strength ratios for the clusters in a subsystem.

145

b_High—The next lower quartile of the coupling/strength ratios
for the clusters in a subsystem. ¢ Low-—The next lower quartile
of the coupling/strength ratios for the clusters in a subsystem.
d_Lowest—The lowest quartile of the coupling/strength ratios
for the clusters in a subsystem. 6) Routine location in subsystem’s
data binding tree: a_Root—The uppermost quartile (nearest
the root of the tree) of the clusters in a subsystem’s data
binding tree (quartiles are based on the number of nodes in
a tree). b_Shallow—The next lower quartile of the clusters
in a subsystem’s data binding tree. c_Deep—The next lower
quartile of the clusters in a subsystem’s data binding tree.
d_Deepest—The lowest quartile (furthest from the root of
the tree) of the clusters in a subsystem’s data binding tree.
7) Whether or not routine was changed as part of the current
system release: Yes— Routine was changed; code was added or
modified. No—Routine was unchanged from previous release.

Four two-way interactions were also included in the
model. 8) Interaction of subsystem size with subsystem
coupling/strength ratio. 9) Interaction of routine size with routine
coupling/strength ratio. 10) Interaction of routine size with
routine location in subsystem’s data binding tree. 11) Interaction
of routine coupling/strength ratio with routine location in
subsystem’s data binding tree.

Dependent Variables: There were four dependent variables
examined with the 'analysis of variance model. 1) Total er-
rors—The total number of inspection, trouble report (TR),
system trouble report (STR), and error summary worksheet
(ESW) errors in a routine. 2) Total errors per KNCSS—-The total
number of inspection, TR, STR, and ESW errors in a routine per
1000 source statements excluding comments (i.e., “noncommen-
tary source statemernts”). 3) Error correction effort—The total
amount of effort (in hours) spent correcting TR and ESW errors
in a routine. 4) Error correction effort per KNCSS—The total
amount of effort (in hours) spent correcting TR and ESW errors
in a routine per 1000 noncommentary source statements.

In general, the discussion will focus on the errors per KNCSS
and the error correction effort per KNCSS measures of the
routines as opposed to the absolute numbers. This factors out
possible underlying | correlations between size and number of
errors or amount of error correction effort. The statistics for
all four measures ate reported, however. The measure of size
used in the primary factors and dependent variables is noncom-
mentary source statements, as opposed to source lines including
comments. This is because there are wide variations in the
proportion of comments across the routines and there tend to
be relatively few major errors in comments compared to their
rate in executable code. The discussion will tend to highlight
results that demonstrated a statistically significant difference, as
opposed to those where there was no statistical difference. A
primary result in each subsection will be italicized for emphasis.

B. Subsystem Characterization

In the source code portions of the system (see Section I), there
was a total of 299 distinct errors recorded from inspections, error
summary worksheets (ESW’s), system trouble reports (STR’s),
and trouble reports (TR’s). Data on the effort required for error
correction were available for 204 distinct errors recorded on
ESW’s and TR’s. As mentioned in Section III, these errors
are unique root causes of problems in the software system.
Rediscoveries of the same error are not counted as separate errors.
In the subsequent figures, all inspection, ESW, STR, and TR
errors are counted equally.

146 IEEE TRANSACTIONS ON SOFTWARE|ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

Subsystem Errors Error correction hours
coupling/ || per KNCSS Total per KNCSS Total
strength || Mean Std [Mean Std | Mean Std | Mean Std

High 283 7.87| 0.44 099 | 445 11.10] 0.88 269
Low 060 220 0.15 0.52] 1.55 7.62 | 0.42 239
Overall 240 7101 0.38 092 3.82 10.52| 0.78 2.63

Fig. 3. Distribution of errors and error correction effort by subsystem
coupling/strength ratios.

Subsystem Errors Error correction hours
size per KNCSS Total per KNCSS Total
Mean Std | Mean Std || Mean Std | Mean Std
Large 282 730 044 099 445 11.05] 0.88 2.66
Small 086 609 0.14 049 1.57 7.91 0.42 249
Overall 240 710} 0.38 0.92 | 3.82 1052 0.78 2.63

Fig. 4. Distribution of errors and etror correction effort by subsystem size.

In the following sections we analyze the number of errors and
the error correction effort-in the subsystems. The characterization
of the subsystems is based on subsystem coupling/strength ratio,
subsystem size, and interactions across these two factors.

Subsystem Coupling/ Strength Ratio: Fig. 3 presents the er-
rors and error correction effort in the routines in subsystems with
different coupling/strength ratios. This figure and the following
analogous figures give the means and standard deviations for
1) the number of errors per 1000 noncommentary source state-
ments (KNCSS), 2) the number of errors, 3) the error correction
effort per KNCSS, and 4) the error correction effort in the
routines. Subsystem coupling/strength ratio was a statistically
significant factor with respect to errors per KNCSS and error
correction hours per KNCSS (o < 0.0002 and a < 0.002,
respectively).! The subsystems with high coupling/strength ratios
had routines that averaged 2.89 errors per KNCSS and 4.45
error correction hours per KNCSS, which were greater than the
averages of 0.60 errors per KNCSS and 1.55 error correction
hours per KNCSS for the other subsystems. Subsystems with
high coupling/strength ratios had routines with 4.8 (= 2.89/0.60)
times as many errors per KNCSS than did subsystems with low
coupling/strength ratios.

Subsystem Size: Fig. 4 presents.the errors and error correc-
tion effort in the routines in subsystems with different sizes.
Subsystem size was a statistically significant factor with respect
to errors per KNCSS and error correction hours per KNCSS
(o < 0.0001 for both). The subsystems with large size had
routines that averaged 2.82 errors per KNCSS and 4.45 error
correction hours per KNCSS, which were greater than the small
subsystem averages of 0.86 errors per KNCSS and 1.57 error
correction hours per KNCSS. A plot of errors per KNCSS versus
subsystem size appears in Fig. 5.

Interactions Across Subsystem Coupling/Strength Ratio and
Size: Fig. 6 presents the errors and error correction effort in the
routines in subsystems with different coupling/strength ratios and
different sizes. Combining different subsystem coupling/strength
ratios and different sizes did not result in a statistically significant
interaction for either errors per KNCSS or error correction hours
per KNCSS (a > 0.05 for both). However, both individual
factors are statistically significant for the two measures of error-
proneness (see the previous two subsections), resulting in the

IThe F-test significance levels reported in this and later sections are
based on the use of Type IV partial sums of squares [19]. Any statistical
difference discussed will at least be significant at the o < 0.05 level, unless
otherwise noted.

error-pronenesses averages to be notably higher for large subsys-
tems with high coupling/strength ratios since the individual ef-
fects are combined. These subsystems had routines that averaged
3.04 errors per KNCSS, as compared to the combined average
of 0.92 (= (1.50 + 0.74 + 0.53)/3) errors per KNCSS for the
other subsystems. The large subsystems with high coupling/
strength ratios had routines that averaged 4.73 error correction
hours per KNCSS, as compared to the combined average of
1.65 (= (1.79 4+ 1.72 + 1.45)/3) error correction hours per
KNCSS for the other subsystems. Large subsystems with high
coupling/strength ratios had routines with 5.7 (= 3.04/0.53)
times as many errors per KNCSS than did small subsystems with
low coupling/strength ratios.

C. Routine Characterization

In the following sections we analyze the number of errors and
the error correction effort in the routines. The characterization of
the routines is based on routine coupling/strength ratio, routine
size, routine location in the data binding tree, and interactions
across these three factors. As mentioned in Section V-B there
were 299 distinct errors, counting all inspection, ESW, STR, and
TR errors equally; 204 of them had data on error correction effort.

Routine Coupling[Strength Ratio: Fig. 7 presents the errors
and error correction |effort in the routines with different
coupling/strength ratios. As before, this figure and the following
analogous figures give the means and standard deviations
for 1) the number of |errors per 1000 noncommentary source
statements (KNCSS), |2) the number of errors, 3) the error
correction effort per KINCSS, and 4) the error correction effort
in the routines.

The routine coupling/strength ratio statistically affected the
errors per KNCSS and |error correction hours per KNCSS in the
routines (o < 0.0001 for both). The routines in coupling/strength
region a_ HIGHEST had the most errors per KNCSS (an average
of 4.14) and the highest error correction hours per KNCSS (an
average of 9.15). In terms of errors per KNCSS, the routines with
coupling/strength ratios in region b_HIGH had the second most
and those in region ¢_LOW had the third most.?

In terms of error correction hours per KNCSS, the routines
with coupling/strength ratios in either region b_HIGH or c_LOW
had the second most, and these two regions were not statistically
different. Those routines in region d_LOWEST had the fewest
errors per KNCSS (an average of 0.59) and the least error
correction hours per KNCSS (an average of 0.42).3 The routines
with the highest coupling[strength ratios had 7.0 (= 4.14/0.59)
times as many errors per KNCSS and 21.7 (= 9.15/0.42) times as
many error correction hpurs per KNCSS than did routines with the
lowest coupling/strength ratios. These results empirically support
the software engineering principle of desiring low coupling and
high- strength.

Routine Size: Fig. 8| presents the errors and error correction
effort in the routines| with different sizes. The routine size
statistically affected the errors per KNCSS and error correction
hours per KNCSS for the routines (¢ < 0.0001 for both).
Routines of large size had an average of 5.08 error correction

2Even though the sample mean—a parametric statistic—in Fig. 7 seems to
show that ¢ LOW is greater than b_HIGH in terms of errors per KNCSS, the
nonparametric test—a “ranking” statistic—indicates that b_HIGH is actually
greater.

3All multiple comparison Tesults, such as the one in the previous four
sentences, were conducted with Tukey’s multiple comparison statistic [19],
[16]. All of the pairwise statistical comparisons of these four categories are
statistically significant at the o < 0.05 level simultaneously.

SELBY AND BASILI: ERROR-PRONE SYSTEM STRUCTURE

Average errors per KNCSS

147

11 +
A
10 +
9 +
8 +
A
A
? +
6 +
A
5 + A
B A
4 +
3 + AA
A
A AaA A
2 4 c A B
A A A A A
B A A A a a A
A
1 + A A A A
AA A
C B AAA A A
FEC AAA BA A
0 CA
R o + o -t - + ———t— + + O - +- St
0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 33000 36000 39000
Source statements excluding comments (NCSS) in the subsystem
Fig. 5. Relationship between errors per KNCSS (1000 noncommentary source statements) in the routines and subsystem size. Legend: A = 1 observation,

B = 2 observations, etc.

Subsystem | Subsystem Errors Error correction hours
coupling/ size per KNCS3 Total per KNCSS Total
strength Mean _ Std | Mean Std | Mean Std | Mean Std

High Large 3.04 7.60 | 047 102 473 11.33] 0.93 2.70
Small 1.50 10.00| 0.13 046 179 8.10 | 043 251

Low Large 0.74 233 | 0.17 0.36§ 1.72 7.26 | 0.44 221
Small 0.53 2.00 | 0.14 051} 145 7.80 | 0.42 248

Overall 240 7.0 { 0.38 0.92] 3.82 10.52[0.78 263

Fig. 6. Distribution of errors and error correction effort across subsystem
coupling/strength ratios and subsystem size.

Routine Errors Error correction hours
coupling/ |{ per KNCSS Total per KNCSS Total
strength || Mean Std [Mean Std [Mean Std [Mean Std

aHighest || 4.14 8891 0.539 104 9.15 16.09] 1.94 4.20
b_High 214 6.00] 03¢ 074 345 10.10{ 0.72 254
cLow 281 8.69! 0.44 118 265 7.03 { 049 161

dLowest | 0.59 2.36] 0.15 049} 042 2.00 | 0.06 0.29
Overall 240 7.10] 038 0.92f 3.8 10.52| 0.78 2.63

Fig. 7. Distribution of errors and error correction effort by routine
coupling/strength ratios.

hours per KNCSS which was more than did those of small size
(an average of 2.15 error correction hours per KNCSS). In terms
of errors per KNCSS, routines of large size had more errors per
KNCSS than did those of small size. However, note that if a
parametric statistical test is applied instead of the nonparametric
“ranking” statistical test (which is used throughout the paper),
then the routines of small size had more errors per KNCSS than

Srnall 2.69 4

Routine Errors Error correction hours
size per KNCSS Total per KNCSS Total
Mean Std | Mean Std | Mean Std | Mean Std
Large 2.18 474 048 0981 5.08 12.72] 1.22 3.38

.35 024 0.80 | 215 6.14 | 0.20 0.61

Overall | 2.40 7

10f 038 092 3.82 10.52{ 0.78 2.63

Fig, 8. Distribution of errors and error correction effort by routine size.

did those of large si
the median errors pe
the median of small
of small routines is

ze. The interpretation of this result is that
r KNCSS of large routines is greater than
routines, but the mean errors per KNCSS
greater than the mean of large routines.

This basically says that a relatively minor portion of the small

routines were much

more error-prone than the large routines,

while the majority of them were not (wWhich is supported by the

large standard deviai

ion of 9.35). A separate study of a different

environment has indicated, however, that smaller routines may

be more error-prone
another environment
be more error-prone

than larger routines [6]. A third study of
has also indicated that smaller routines may
than larger routines {22]. A plot of errors

per KNCSS versus routine size appears in Fig. 9.

Routine Location
errors and error co.

n Data Binding Tree: Fig. 10 presents the
rection effort in the routines with differ-

ent data binding tree locations. The routine location in the
data binding tree statistically affected the errors per KNCSS
and error correction| hours per KNCSS in the routines (o <
0.015 and o < 0.0001, respectively). Routines in tree location

148

Average errors per KNCSS

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

110 + A
100 +
90 +
80
70 4
60
50 +
G
40 H
30 +
A
SaA A
E c
20 + A
I
A A A
A A A
10 +
F G CI BE
J AAD A AA [
GA HNDA A L A A A A
0 + CECBNDLOF22ZIJNDBF CB DB BDEDBDA C BA A A A A
+ e + + + + -+ = + + = + +-
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Fig. 9. Relationship between errors per KNCSS (1000 noncommentary source statements) in the routine
B = 2 observations, etc. Note: 50 observations hidden behind 2

Source statements excluding comments (NCSS) in

Fig. 10. Distribution of errors and error correction effort by routine location
in data binding tree.

region b_SHALLOW had the most errors per KNCSS (an average
of 3.30) and the most error correction hours per KNCSS (an
average of 5.64). Routines in tree location region c_DEEP had
the second most errors per KNCSS and the second most error
correction hours per KNCSS. Routines in region d_DEEPEST
had the third most in each measure, and those in region a_ROOT
had the fewest errors per KNCSS (an average of 1.72) and the
fewest error correction hours per KNCSS (an average of 2.21).
One interpretation for there being fewer error correction hours
per KNCSS in regions a_ROOT and d_DEEPEST may be the
following. The structure of the system at the highest level (i.e.,
initial stages of problem decomposition) and the lowest level
(e.g., formulation of abstract data types) may be better understood
than the intermediate levels of system development. The effect of
the less understood intermediate levels is compounded in larger
subsystems, as was seen in Section V-B.

Interactions Across Routine Coupling/Strength Ratio, Size,

Routine Errors Error correction hours and Location in Data
tree per KNCSS Total per KNCSS Total
location § Mean Std | Mean Std || Mean Std | Mean Std . .
a_Root 1.72 5371 030 077 221 732 | 037 1.39 Z()ﬁlpl;n%/st;ength ratios
b.Shallow | 3.30 841|051 112 564 1316| 1.19 3.36 of the three two-wa
¢ Deep 1.68 477! 027 063 3.88 10.92| 0.83 2.82
d Deepest || 2.53 838 | 038 096 2.8¢4 793 | 0.57 1.95 routine tree location, 1
Overall 240 710 038 092 3.82 10.52|.0.78 2.63 statistically affected the

the routine

s. and routine size. Legend: A = 1 observation,
&4
’s.

Binding Tree: Fig. 11 presents the er-

rors and error correction effort in the routines with different

and different data binding tree locations.
y interactions (routine coupling/strength

ratio with routine size, routine coupling/strength ratio with

outine size with routine tree location)
errors per KNCSS and error correction

hours per KNCSS for the routines (all at oz < 0.0001, except @ <

0.005 for routine size W

vith tree location for errors per KNCSS).

Routines with the highest coupling/strength ratios (a_HIGHEST)

«

and a location in the
(b_SHALLOW or c_DE,
per KNCSS (a combinec

D. Data Bindings for Sy
Dialog with project

central portion” of the data binding tree
EP) had the most error correction hours
d average of 9.82 = (10.56 + 9.09)/2).

stem Documentation and Evaluation

personnel regarding the data binding

trees resulted in the following observations. The data binding

clusterings were able to
data binding clusterings

detect major system data structures. The
seemed to provide a different view of the

system than that provided by the system documentation, which
included textual documents and a calling hierarchy. Analyzing

the clusters of data bindj
and maintenance team.

VI. INTERP
In this study, we ha

ings provided insights to the development

RETATIONS AND (CONCLUSIONS

ve merged three goals: 1) to apply data

SELBY AND BASILI: ERROR-PRONE SYSTEM STRUCTURE

Routine | Routine Errors Brror correction hours
coupling/ tree per KNCSS Total per KNCSS Total
strength | location [Mean Std | Mean Std || Mean Std | Mean Std
a_Highest | a_Root 428 8961 0.55 1.07| 6.36 12.05| 110 2.74
bShallow || 4.27 9.24 | 063 1.06 {| 10.56 17.59 | 2.33 4.68
¢ Deep 266 519 | 045 0.63} 9.09 1644 2.10 449
dDeepest || 191 269 | 083 118 038 054 | 0.17 0.24
b_High a_Root 0.00 000 { 0.00 0.00(0.00 0.0 | 0.00 0.00
bShallow || 2.57 7.73 | 036 095) 1.80 632 | 027 1.29
c_Deep 218 535 | 0.36 0.68| 544 13.23| 1.21 3.41
dDeepest | 1.95 534 [032 0.64 | 2.77 824 | 0.58 2.08
cLow a_Root 0.00 000 | 0.00 0.00(0.00 0.0 [000 0.00
bShallow || 3.84 9.10 | 0.68 1.53) 249 574 | 044 0.9
c_Deep 1.66 500 [0.25 0.69 239 666 | 042 1.63
d Deepest | 3.24 10.35| 0.47 1.19{ 3.35 832 | 065 2.00
d_Lowest | a_Root 0.75 1.82 | 023 060 052 216 | 0.07 0.32
bShallow | 020 1.86 | 0.03 0.21} 021 153 | 0.03 0.21
cDeep 028 186 { 005 023y 032 195 004 024
dDeepest || 0.94 537 { 011 043} 035 175] 0.06 0.30
Overall 240 710 | 038 092 3.82 1052 0.78 2.63
Fig. 11. Distribution of errors and error correction effort across routine

coupling/strength ratios and routine tree location.

bindings analysis to characterize error-prone system structure;
2) to investigate the software engineering principles of cou-
pling and strength and their relationship to software errors
and error correction effort; and 3) to collect and analyze data
from an ongoing software project without negatively impacting
the software developers. This study highlights and empirieally
supports several software engineering principles. Some of them
are widely recognized and some are not. The interpretations span
several areas: development methodology, inspection methodol-
ogy, data collection and analysis, size, coupling/strength, and
system structure.

A. Development Methodology

It is better to leave it out than do it incorrectly, and it is better
to do only what is necessary. In other words, it is less costly
to leave out part of the design or code than to include incorrect
design or code. It is cost effective to eliminate extraneous design
and unexecutable code.

* Errors of omission (“missing”) are 74% [= 8.1/10.9 from
Appendix C, part 3)] of the cost of errors of commission
(“wrong”). Moreover, when you consider that fixing errors
of omission is actually postponed development cost, errors
of omission are actually 39% [= 4.2/10.9 from Appendix C,
part 3)] the cost of errors of commission.

e It is worthwhile finding “extra” design or code during
inspections, especially design inspections, since the asso-
ciated life cycle costs, e.g., development and testing, are
eliminated. Seven percent [= 49/716 from Appendix B,
part 5)] of the errors found during inspections were “extras.”

B. Inspection Methodology

Design and engineering inspections are cost effective vehicles
for error detection, and design inspections are more effective
than engineering inspections.

* It is less expensive to find errors during inspections than
via trouble reports (TR’s) since it is 1.7 [= 6.3/3.7 from
Appendix C, part 3)] times more expensive to isolate errors
than to fix them.

* If you are not using inspections, you are better off starting
with design inspections since they were 3.0 [= 8.3/2.8 from
Appendix B, part 3)] times more effective in terms of errors
found per inspection than engineering inspections. Design
inspections were 3.6 [= 5.1/1.4 from Appendix B, part 3)]
times more effective in finding major severity errors.

149

C. Data Collection and Analysis

Data can be gathered and analyzed during an ongoing software

project without hin@ering the developers.

* Software proj#ct personnel should be motivated by the
purpose of data collection and briefed on the results of data
analysis. |

« Data collection forms should be simple, few in number, and
generalized with clearly indicated required and optional sec-
tions. Data should be collected at the appropriate granularity
for analysis and kept on-line.

* An in-house dhta collection coordinator helps catalyze the
data collectioni process and validate data.

D. Size

Subsystem size seems to be at least as important, if not
more important, than routine size. Hence, maybe the software
community has bed‘n worrying about the wrong issue.

+ Smaller subsystems had routines with 3.3 (= 2.82/0.86
from Fig. 4) times fewer errors per KNCSS than did larger
subsystems. |

* Smaller routines had a slightly higher average (2.69 versus
2.18 from Fig. 8) of errors per KNCSS than did larger
routines, but tbeir error-proneness was statistically greater
only when a parametric statistical test was used (but not
otherwise). Overall, errors in smaller routines were 2.4
(=5.08/2.15 fi}om Fig. 8) times less expensive to fix.

E. Coupling/Strength

Low coupling and high strength are desirable.

* Routines w1thwthe lowest coupling/strength ratios had 7.0
(= 4.14/0.59 ﬁrom Fig. 7) times fewer errors per KNCSS
than routines Wlth the highest coupling/strength ratios and
errors were 21, 7 (- 9.15/0.42 from Fig. 7) times less costly
to fix.

* Subsystems w1th low coupling/strength ratios had rou-
tines with 4. 8 (= 2.89/0.60 from Fig. 3) times fewer er-
rors per KNCSS than did subsystems with high coupling/
strength ratios.

F. System Structuré Hierarchy: Data Bindings View

The structure of the system at the highest level, i.e., initial
stages of problem decomposmon and lowest level, e.g., formu-
lation of abstract data types, appear to be better understood than
the intermediate levels of abstraction and specification.

* The errors wete 47% (= 1.0 — (2 21+ 2.84)/(5.64 + 3.88)
from Fig. 10) less costly to fix in routines at the shallowest
and deepest levels of the data bindings view of the system
structure hierarchy than at the middle levels, and there were
15% (= 1.0 — (1.72 4+ 2.53)/(3.30 4 1.68) from Fig. 10)
fewer errors per KNCSS.

Further analysis and interpretation of the data are underway.

The authors are 1nterested in replicating the results on other
projects.

‘ ApPENDIX A
Data CotrectioN ForMs AND TERMINOLOGY
Fig. 12 outlines the data collections forms used in the project.

The definitions used in the paper for several error-related con-
cepts are as follows.

150

[Development phase

Data collection form

High-level design

Design inspection

Low-level design

Design inspection

Coding and unit test

Error summary worksheet (ESW)

After unit test completion

Engineering inspection

Integration test

Error summary worksheet (ESW)

System test

System trouble report (STR)

Field test and operation

Trouble report (TR)

IEEE TRANSACTIONS ON SOFTWARE I

Fig. 12. Data collection forms used in the development phases.

1) Error-related effort: Error isolation effort—How long it
takes to understand where the problem is and what must be
changed. Error fix effort—How long it takes to implement a
correction for the error. Error correction effort— How long it
takes to correct an error, which is the sum of error isolation
effort and error fix effort.

2) Error type: Wrong—Implementation requires a change.
The existing code or logic needs to be revised; the functionality is
present but it is not working properly. Extra— Implementation
requires a deletion. The error is caused by existing logic that
should not be present. Missing—Implementation requires an
addition. The error is caused by missing logic or function.

3) Error severity (trouble reports): Level 1 —Program is un-
usable; it requires immediate attention (bypass, patch, or replace-
ment). Level 2:—Program is usable, but functionality is severely
restricted and there is no work-around; prompt action is required.
Level 3:—Program is usable, but has functionality limitation
that is not critical; it can be avoided, bypassed, or patched.
Level 4:—Problem is minor, e.g., message or documentation
error, and is easily avoided, bypassed, or patched.

4) Error severity (inspections): Major—Error could lead
to a problem reported in the field on a trouble report.
Minor— Anything that is less than “major” severity, e.g., minor
reorganizations, some typographical mistakes and misspellings.

5) Error reporter type (trouble reports): User—Error is te-
ported by field user or found by a developer while using the
product. Developer—Error is discovered by a developer during
field testing or when looking at the source code or searching for
errors in a released system.

6) Inspection type: Design inspections—These are inspec-
tions held during the high-level and low-level design phases.
Engineering inspections—These are code inspections that are
held after the completion of unit testing.

ArpENDIX B
INspEcTION ERROR DaATA

1) Distribution of inspection type:

ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

Inspection type

Severity Design Engineering All
Major 158 433
Minor 162 337
All 320 770

3) Distribution of ay
inspection) by severity

and inspection type:

erage error detection rates (errors

per

Inspection type

Severity Design Engineering All
Major 14 2.5
Minor 1.4 2.0
All 2.8 45

4) Distribution of err

spection type:

ors (inspections) by error class and in-

Inspection type

Error class Design Engineering All
Wrong 228 497
Missing 68 161
Extra 24 49
All 320 707

Inspection type

Design | Engineering All

Number of inspections 54 116 170

2) Distribution of errors (inspections) by severity and inspec-
tion type:

5) Distribution of err

o1s (inspections) by severity and error

class:
Error class
Severity Wrong Missing Extra All
Major 246 111 18 375
Minor 255 55 31 341
All 501 166 49 716

SELBY AND BASILI: ERROR-PRONE SYSTEM STRUCTURE

ArpEnDIX C
TroUBLE REPORT ERROR DatA

1) Distribution of errors (TR’s) by reporter type and severity:

Severity
Reporter type 1 2 3 4 All
User 2 10 12 2 26
Developer 0 7 10 11 28
Total 2 17 22 13 54

2) Distribution of errors (TR’s) by reporter type and error

class:
Error class
Reporter type Wrong Missing Extra All
User 14 7 0 21
Developer 18 6 1 25
Total 32 13 1 46

3) Distribution of average TR error correction effort (isolation
effort plus fix effort) in hours by error class. The “extra” class
is omitted from the table because of the small sample size (there
was only one such error):

Error class
Average effort Wrong Missing All
Isolation effort 7.2 42 6.3
Fix effort 3.7 39 3.7
Total correction effort 10.9 8.1 10.0

4) Distribution of errors (TR’s) by severity and error class.

Error class
Severity Wrong Missing Extra All
1 2 0 0 2
2 12 3 1 16
3 11 8 0 19
4 8 3 0 11
All 33 14 1 48

151

ArpenDIX D
Dara CoLLECTION| RECOMMENDATIONS AND LESSONS LEARNED

Several retrospective observations help assess the effectiveness
of the data collection process. 1) The number of data collections
forms submitted by |the project personnel was reasonable, based
on experience with other projects. 2) Sixty-one (9%) of the
665 data collection iforms submitted had some form of incom-
plete data. 3) Interviews with project personnel confirmed that
the errors that occux‘lred were getting reported on data collection
forms. 4) The project personnel seemed to experience a learning
effect that over time would continue to increase data accuracy
and to decrease colFection cost.

Several recommeFdations and lessons learned resulted from

the application of the data collection and analysis methodology in
the production envifonment. Project personnel were interviewed
during and after the development process in order to document
their reactions to the data collection methodology. The inter-
views, along with other informal discussions, allowed the authors
to make clarifications and suggestions regarding the collection
methods. Included here are comments from interviews of the
development personnel and observations from the authors.

Benefits: The software project manager identified several ben-
efits from the data collection process and coupling/strength
analysis: 1) the emphasis on a data collection process; 2) the
empirical results from the final analysis; 3) the intermediate
presentation of results prior to project completion; 4) the im-
provement in the development project as a result of the data
collection process; and 5) the identification of valuable metrics
and analysis methods.

The project man\fger also made the following observations.
6) A data collection process needs to be a “grass roots effort,”
including an in—hou‘pe coordinator to catalyze the process and a
sincere interest on the part of the development personnel in the
accuracy of the data, 7) The quantification of information greatly
facilitates the planning and scheduling of future activities, phases,
and projects. 8) Dévelopers need to be able to assess quality
without unnecessarile impacting the project.

Project personnel responsible for data collection coordination
made these observations. 1) The data collection “benefits every-
body.” 2) You have|better control over what will or may impact
your current system and also what is “waiting in the wings” for
future releases. 3) The data collection can be used “to assess the
defect removal and show quality certification.” 4) Without the
data collection, the managers have nothing tangible for assessing
project quality.

General Recommendations: The application of the methodol-
ogy resulted in the following set of general recommendations for
data collection and ﬁnalysis. 1) Having software project members
motivated by the pdrposes of the data collection process is a key
component of its success. 2) The data collected on paper forms
should be put on—lid‘e for access and analysis purposes. 3) Fewer,
more general data collection forms with clearly indicated required
and optional sectioq‘s advance the simplicity of the collection and
help reduce the paper flow. 4) The appropriate granularity of the
data collection (e.g., what data to collect at the level of routines,
subsystems, or projhcts) is driven by the goals of the study and
the intended analysis methods. 5) The people participating in the
data collection effort should be briefed on the results of the work.

ACKNOWLEDGMENT

The authors are very grateful to several persons on the selected
software project for their assistance and support in this research.

152

IEEE TRANSACTIONS ON SOFTWARE E

Their names cannot be mentioned because of a nondisclosure
agreement. The authors appreciate the assistance of D. Hutchens
in developing the data bindings analysis tools and S. Wilkin in
collecting the data.

(1]

(3]

[4
(51
6]

—_

7

(8]

(]

[10]

(1]
(12]

[13]
(4]

[15]

[16]
(17]
(18]
(19]

REFERENCES

V.R. Basili, “Quantitative evaluation of software engineering
methodology,” in Proc. First Pan Pacific Computer Conf,,
Melbourne, Australia, Sept. 10—13, 1985; also available as Tech.
Rep. TR-1519, Dep. Comput. Sci., Univ. Maryland, College Park,
July 198sS.

L.A. Belady and C.J. Evangelisti, “System partitioning and its
measure,” J. Syst. Software, vol. 2, no. 1, pp- 23-29, Feb. 1982.
V.R. Basili and E. E. Katz, “Metrics of interest in an ada develop-
ment,” in Proc. IEEE Workshop Software Engineering Technology
Transfer, Miami, FL, Apr, 1983, pp. 22~-29.

L.A. Belady and M.M, Lehman, “A model of large program
development,” IBM Syst. J., vol. 3, pp. 225-252, 1976.

B.W. Boehm, Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, 1981.

V.R. Basili and B.T. Perricone, “Software errors and complex-
ity: An empirical investigation,” Commun. ACM, vol. 27, no. 1,
p. 42-52, Jan. 1984.

V.R. Basili and R.W. Selby, “Data collection and analysis in
software research and management,” in Proc. Amer. Statist. Assoc.
and Biometric Soc. Joint Statistical Meetings, Philadelphia, PA,
Aug. 13-16, 1984,

V.R. Basili, R. W. Selby, and T. Y. Phillips, “Metric analysis and
data validation across Fortran projects,” IEEE Trans. Software Eng.,
vol. SE-9, no. 6, pp. 652-663, Nov. 1983.

V.R. Basili and A.J. Turner, “Iterative enhancement: A practical
technique for software development,” JEEE Trans. Software Eng.,
vol. SE-1, no. 4, Dec. 1975.

V.R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Trans. Software Eng., vol. SE-10,
no. 6, pp. 728-738, Nov. 1984.

T. Emerson, “A discriminant metric for module cohesion,” in Proc.
Seventh Int. Conf. Software Eng., Orlando, FL, 1984, pp. 294-303.
M.E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Syst. J., vol. 15, no. 3, pp. 182-211,
1976.

» “Advances in software inspections,” IEEE Trans. Software
Eng., vol. SE-12, no. 5, pp. 744—751, July 1986.

D. H. Hutchens and V.R. Basili, “System structure analysis: Clus-
tering with data bindings,” IEEE Trans. Software Eng., vol. SE-11,
no. 8, Aug. 1985.

S. Henry and D. Kafura, “Software quality metrics based on
interconnectivity,” J. Syst. Software, vol. 2, no. 2, pp. 121-131,
1981.

Statistical Analysis System (SAS) User’s Guide. SAS Inst., Cary,
NC, Tech. Rep., 1982.

N. Jardine and R. Sibson, Mathematical Taxonomy. New York:
Wiley, 1971.

B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

H. Scheffe, The Analysis of Variance. New York: Wiley, 1959.

NGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

[20] R.W. Selby, “Evaluations of software technologies: Testing, clean-
room, and merics,” Ph.D. dissertation, Dep. Comput. Sci., Univ.
Maryland, College Park, Tech. Rep. TR-1500, 1985.

[21] W.P. Stevens, G.J.
design,” IBM Syst. J.,
[22] V.Y. Shen, T.J. Yu, §

Mpyers, and L.L. Constantine, “Structural
vol. 13, no. 2, pp. 115-139, 1974.
.M. Thebaut, and L. R. Paulsen, “Identifying

error-prone software——An empirical study,” IEEE Trans. Software

Eng., vol. SE-11, no.

in 1

and
ifo

4, pp. 317-324, Apr. 1985.

Richard W. Selby (S°’83-M’85) received the
B.A. degree in mathematics and computer sci-
ence from Saint Olaf College, Northfield, MN,

981 and the M.S. and Ph.D. degrees in com-

puter science from the University of Maryland,
College Park, in 1983 and 1985, respectively.
He is an Assistant Professor of Information

Computer Science at the University of Cal-

nia, Irvine. His research interests include
methodologies for developing and testing soft-
ware, techniques for empirically evaluating soft-

ware methodologies, and software environments.
Dr. Selby is a member of the Association for Computing Machinery
and the IEEE Computer Society.

fes

the
He

sett
and|

Victor R. Basili (M’83-SM’84—-F90) is a Pro-

or in the Institute for Advanced Computer

Studies and the Department of Computer Sci-
ence
Park. He was involved in the design and devel-
opment of several software projects, including

at the University of Maryland, College

SIMPL family of programming languages.
is currently measuring and evaluating soft-

ware development in industrial and government

ngs and has consulted with many agencies
organizations, including IBM, GE, CSC,

GTE, MCC, AT&T, Motorola, HP, Boeing, NRL, NSWC, and NASA.

He is one of the founders
Laboratory, a joint venture b
the University of Maryland,
lished in 1976. He has been

and principals in the Software Engineering
etween NASA Goddard Space Flight Center,
and Computer Sciences Corporation, estab-
working on the development of quantitative

approaches for software management, engineering and quality assurance
by developing models and metrics for the software development process

and product. He has author
Outstanding Paper Award f]
ENGINEERING for his paper

Dr. Basili is currently the
ON SOFTWARE ENGINEERIN
conferences including the
Engineering, He has serve

ed over 90 papers. In 1982, he received the
rom the IEEE TRANSACTIONS ON SOFTWARE
on the evaluation of methodologies.

Editor-in-Chief of the IEEE TRANSACTIONS
G and was Program Chairman for several
6th International Conference on Software
d on the editorial board of the Journal of

Systems and Software. He Is a member of the Board of Governors of

the IEEE Computer Societ

Y.

