
May 2001 91

S O F T W A R E M A N A G E M E N T

I n the January 2001 issue of Com-
puter (pp. 135-137), we published
the Software Defect Reduction Top
10 List—one of two foci pursued by
the National Science Foundation-

sponsored Center for Empirically Based
Software Engineering (CeBASE).

COTS-based systems (CBS) provide
the other CeBASE focus. For our intent,
COTS software has the following char-
acteristics: The buyer has no access to the
source code; the vendor controls its
development; and it has a nontrivial
installed base (that is, more than one cus-
tomer; more than a few copies).

Criteria for making the list are that
each empirical result has

• significant current and future impact
on software dependability, timeli-
ness, and cost;

• diagnostic value with respect to
cost-effective best practices; and

• reasonable generality across appli-
cations domains, market sectors,
and product sizes.

These are the same criteria we used for
our defect-reduction list, but they are
harder to evaluate for CBS because it is a
less mature area.

CBS’s roller-coaster ride along Gartner
Group’s visibility-maturity curve (http://
gartner11.gartnerweb.com/public/static/
hotc/hc00094769.html) reveals its rela-
tive immaturity as it progresses through a
peak of inflated expectations (with many
overenthusiastic organizational mandates
to switch to CBS), a trough of disillusion-
ment, a slope of enlightenment, and a
plateau of productivity.

We present the CBS Top 10 List as
hypotheses, rather than results, that also

serve as software challenges for enhanc-
ing our empirical understanding of CBS.

HYPOTHESIS ONE
More than 99 percent of all executing
computer instructions come from COTS
products. Each instruction passed a mar-
ket test for value.

• Source. The more than 99 percent
figure derives from analyzing De-
partment of Defense data (B. Boehm,
“Managing Software Productivity
and Reuse,” Computer, Sept. 1999,
pp. 111-113).

• Implications. Economic necessity
drives extensive COTS use. Nobody
can afford to write a general-pur-
pose operating system or database
management system. Every project
should consider the CBS option, but
carefully weigh CBS benefits, costs,
and risks against other options.

“Market test” means that someone
willingly pays to install the COTS
component, not that every instruc-
tion is used or proves valuable.

HYPOTHESIS TWO
More than half the features in large
COTS software products go unused.

• Source. According to Torii laboratory
data reported at the 2000 Inter-
national Software Engineering Re-
search Network Workshop, indi-
viduals working alone used 12 to 16
percent of Microsoft Word and
PowerPoint measurement features,
whereas a 10-person group used 26
to 29 percent of these features.

• Implications. Adding features is an
economic necessity for vendors, but
it introduces complexity for COTS
adopters. This added complexity
can require expanded computer
resources, such as speed and mem-
ory, to provide functionality that is
not used or needed. These unused
features are, however, available
gratis, when you need them.

HYPOTHESIS THREE
The average COTS software product
undergoes a new release every eight to
nine months, with active vendor support
for only its latest three releases.

• Source. Ron Kohl’s surveys, pre-
sented at Ground System Archi-
tectures Workshops 99, 00, and 01,
show average release frequencies of
6.3, 8.5, and 8.75 months, respec-
tively. The number of supported
releases is anecdotal. However, wide
variations occur around these aver-
ages.

• Implications. Using COTS products
will solve many infrastructure change
adaptation problems. Vendors must
evolve their products to sustain the
market’s competition, depending on
their perceptions of fluctuating mar-
ket demands. If your product’s devel-
opment is inconsistent with the
market’s evolution, your applications
will have nontrivial adaptive main-
tenance costs, even during produc-
tion, and can introduce new risk.

COTS-Based
Systems Top 10 List
Victor R. Basili, University of Maryland
Barry Boehm, University of Southern California

This list offers
hypotheses for
examining CBS
project decisions
in light of empirical
data samples.

92 Computer

S o f t w a r e M a n a g e m e n t

HYPOTHESIS FOUR
CBS development and postdeployment
efforts can scale as high as the square of
the number of independently developed
COTS products targeted for integration.

• Source. Integrating n COTS prod-
ucts involves potentially n(n − 1)/2
interfaces. The theoretical justifica-
tion for this relationship stems from
the architectural incompatibilities
that pose difficulties in integrating
any two COTS products. Although
most empirical evidence is anecdotal
so far, projects required to integrate
various COTS products—such as
NASA’s EOSDIS project—have
experienced effort expenditures not
inconsistent with this relationship.

• Implications. Beware of proliferat-
ing excessive COTS products in
your system—four can be too many
(D. Garlan et al., “Architectural
Mismatch: Why Reuse Is So Hard,”
Software, Nov. 1995, pp. 17-26).
Making the scaling law approxi-
mately linear involves using sound
interface standards, modular domain
architectures, wrappers around
COTS products, and well-planned
multi-COTS-product refresh cycles.
Check for architectural incompati-
bilities and monitor the products’
technical efficacy and business
health.

HYPOTHESIS FIVE
CBS postdeployment costs exceed CBS
development costs.

• Source. We are only beginning to
accumulate sufficient empirical data
to support this hypothesis. Consider

the adaptive maintenance costs for
legacy systems: These costs relate to
the need to adapt your applications
to changes in the COTS platform.
Considerable anecdotal evidence
supports the hypothesis, except for
short-lifetime systems.

• Implications. Although similar to
the life-cycle cost distribution for
non-CBS software, this relationship
comes as a surprise for CBS devel-
opers and policymakers who expect
to pay just acquisition costs. There’s
an added hazard: A cost-con-
strained developer on a 27-month
project might be tempted to present
a maintainer from a different orga-
nization with about-to-become-
unsupported COTS products. Not
adapting to three release cycles dur-
ing development saves development
costs but causes the system to
deplete COTS vendor support by
month 27.

HYPOTHESIS SIX
Although glue-code development usually
accounts for less than half the total CBS
software development effort, the effort
per line of glue code averages about three
times the effort per line of developed-
applications code.

• Source. The mean and standard devi-
ations of major CBS effort sources—
excluding functional development
effort—for COTS-directed software
development activities consume the
resources shown in Table 1. The
large standard deviations indicate
that no one-size-fits-all distribution
of these CBS cost sources exists. The
median CBS productivity rate for the
20-project COCOTS database is
about 100 glue-code source lines of
code per person-month of CBS
effort. The median applications pro-
ductivity rate for the 161-project
Cocomo II database is about 270
SLOC per person-month. The pro-
ductivity rate for developing glue
code depends on at least the 13 cost
drivers in the COCOTS glue-code
model including COTS supplier and
integrator capabilities, COTS prod-
uct maturity and interface complex-

ity, and degree of mismatch between
desired system qualities and the qual-
ities the COTS products provide.
Similarly, applications-code produc-
tivity varies as a function of several
often different cost drivers.

• Implications. First, don’t assume that
the bulk of the CBS effort involves
glue code. COTS assessment invest-
ments can reduce glue-code and
overall CBS costs and risks. Risk con-
siderations—benchmarking, proto-
typing, trial use, and reference
checking—can determine adequate
assessment. Second, the factor of 3
for developing glue code over appli-
cation code is a general range-check-
ing factor. Although it provides
important input for cost estimation,
we don’t apply this factor to a pro-
ject’s application-productivity rate to
determine its CBS productivity rate.

HYPOTHESIS SEVEN
Nondevelopment costs, such as licensing
fees, are significant, and projects must
plan for and optimize them.

• Source. A number of CBS nonde-
velopment effort costs need to be
factored into the cost-benefit-risk
analyses. The SEI identified three
significant CBS activity areas—ven-
dor relationships, license adminis-
tration, and training and cultural
transition. Technical papers report
the expenditure and savings of mil-
lions of dollars for COTS licensing.
For example, one opportunity to
optimize costs is enterprise-wide
COTS licensing. Northrop saved
more than $1 million annually by
pooling its tool licenses and using
basic ordering agreements.

• Implications. Organizations should
modify their technical and manage-
ment processes to address CBS
issues and opportunities and plan
for nondevelopment activities. For
example, most object-oriented analy-
sis and design methods don’t ad-
dress COTS.

HYPOTHESIS EIGHT
CBS assessment and tailoring efforts vary
significantly by COTS product classes—

Table 1. Effort required to complete
various COTS-directed development
activities.

Average ± Standard
Activity effort (%) deviation (%)

Glue code 37 ± 36
Tailoring 26 ± 30
Assessment 24 ± 20
Volatility 13 ± 11

May 2001 93

non-CBS software overruns. Yet many
systems have used COTS successfully for
cost reduction and early delivery.

• Source.The Standish Group’s CHAOS
report (http://www.scs.carleton.
ca/~beau/PM/Standish-Report.html)
cited median applications software
cost overruns of about 50 percent,
with 4 percent of the projects over-
running beyond 400 percent. The
report documented median applica-
tion software schedule overruns of
about 100 percent, with 1 percent of
the projects having schedule over-
runs beyond 400 percent. CBS anec-
dotal overrun data seems similar for
COTS applications serving as the
applications platform, but with more
overruns exceeding 400 percent for
systems in which COTS products
comprise the applications software.
The lack of visibility in COTS prod-
ucts, vendors’ temptations to over-
promise on vaporware, and the
difficulty of estimating glue-code size
in source code lines combine with
overoptimism and desire to please to
produce unrealistic CBS cost and
schedule commitments. On the other
hand, the US Air Force Scientific
Advisory Board provided examples
of 38 large software-intensive sys-
tems, such as AWACS, that managed
the risk associated with COTS (SAB-
TR-99-03, Apr. 2000). Many such
systems have integrated COTS pack-
ages to provide the required func-
tionality.

• Implications. Validate CBS cost and
schedule estimates frequently, using
expert judgment, task breakdowns,
emerging estimation models, and
analogies with previous CBS pro-
jects. Treat estimation accuracy as

operating system, database management
system, user interface, device driver, and
so forth.

• Source. Table 2, drawn from the
COCOTS database, reveals the
median amount of tailoring efforts
and number of tailored-product
data points for various COTS
product classes in the COCOTS
database. Each class has at least a
factor of 4, ranging from maximum
to minimum, indicating the wide
distribution of CBS effort.

• Implications. The small samples and
large variations in the COCOTS
data do not offer precise boundaries
between the assessment, tailoring,
and glue-code development activi-
ties. Thus, the values are only
appropriate for range-checking and
as starting points for a more robust
basis of estimation.

HYPOTHESIS NINE
Personnel capability and experience
remain the dominant factors influencing
CBS-development productivity.

• Source. Both expert Delphi consen-
sus on COCOTS glue-code cost dri-
vers and anecdotal experience
support this assertion. The largest
COCOTS Delphi productivity
ranges are for COTS product and
integration experience, personnel
capability, and personnel continu-
ity, each with about a factor of 2
productivity range. A strong corre-
lation (R2 = 0.89) exists between
COTS glue-code productivity esti-
mates and actual values using these
factors in the medium range—2,000
to 100,000 SLOC of glue code—in
the COCOTS database.

• Implications. Don’t tackle difficult
COTS integration challenges with-
out skilled support. If you contract
for software acquisition, don’t sad-
dle your organization with COTS
products that it has neither the capa-
bility nor the experience to maintain.

HYPOTHESIS TEN
CBS is currently a high-risk activity, with
effort and schedule overruns exceeding

another risk to be mitigated by pro-
totyping, benchmarking, reference
checking, and so forth. Substantiate
estimates and improve future pre-
dictions by gathering data. CBS pro-
jects are excellent for applying
Experience Factory approaches (V.
Basili et al., “The Experience
Factory,” Encyclopedia of Software
Engineering, John Wiley & Sons,
New York, 1994) to empirically
based software-project management
and organizational improvement.

Empirical knowledge of CBS is at an
early stage of maturity compared
with software-defect reduction. The

initial quantitative values or ranges in the
CBS Top 10 List represent preliminary
hypotheses for validity-checking CBS
project decisions against small empirical
data samples with explained variability
sources. Although not ideal, it is better
than having one or zero data points with
no explained variability sources.

This list provides a starting point from
which the software community can
develop solid empirical methods for cop-
ing with COTS-based data. It comple-
ments the more general SEI CBS Web site
at http://www.sei.cmu.edu/cbs. We wel-
come your comments and contributions
to the CeBASE CBS Web site at http://
www.cebase.org/cots. ✸

Victor R. Basili is a professor in the Com-
puter Science Department at the Univer-
sity of Maryland and director of the
Fraunhofer Center-Maryland. Contact
him at basili@cs.umd.edu.

Barry Boehm is director of the Univer-
sity of Southern California Center for
Software Engineering. Contact him at
boehm@sunset.usc.edu.

Table 2. Tailoring effort for various COTS product classes.

Product class Person-months Products

Database management systems 38 11
GUIs 14 6
Networking 13 8
Device drivers 3 11
Operating systems 2 37

