
An Operational Process for Goal-Driven
Definition of Measures

Lionel C. Briand, Member, IEEE, Sandro Morasca, Member, IEEE Computer Society, and

Victor R. Basili, Fellow, IEEE

Abstract—We propose an approach (GQM/MEDEA) for defining measures of product attributes in software engineering. The

approach is driven by the experimental goals of measurement, expressed via the GQM paradigm, and a set of empirical hypotheses.

To make the empirical hypotheses quantitatively verifiable, GQM/MEDEA supports the definition of theoretically valid measures for the

attributes of interest based on their expected mathematical properties. The empirical hypotheses are subject to experimental

verification. This approach integrates several research contributions from the literature into a consistent, practical, and rigorous

approach.

Index Terms—Software measurement, software quality, goal-question-metric paradigm.

æ

1 INTRODUCTION

MEASURES can help address some of the most critical
issues in software development and provide support

for planning, monitoring, controlling, and evaluating the
software process. In the recent literature, a large number of
measures have appeared for capturing software product
attributes in a quantitative way. However, few measures
have successfully survived the initial definition phase and
are actually used in the industry. This is due to a number of
problems related to the theoretical and empirical validity of
many measures, the most relevant of which are summar-
ized next.

. Measures are not always defined in the context of
some explicit and well-defined measurement goal
derived from an objective of industrial interest they
help reach, e.g., reduction of development effort or
faults present in the software products.

. Even if the goal is made explicit, the experimental
hypotheses are often not made explicit, e.g., what do
you expect to learn from the analysis?

. Measurement definitions do not always take into
account the environment or context in which they will
be applied, e.g., would you use a complexity
measure that was defined for non-object-oriented
software in an object-oriented context?

. A reasonable theoretical validation of the measure is
often not possible because the attribute that a

measure aims to quantify is often not well defined,
e.g., are you using a measure of complexity
(attribute) that clearly models your intuition about
complexity?

. A large number of measures have never been subject
to an empirical validation, e.g., how do you know
which measures of size predict effort best in your
environment?

This situation has frequently led to some degree of

fuzziness in the measure definitions, properties, and under-

lying assumptions, making the use of the measures difficult,

their interpretation hazardous, and the results of the various

validation studies somewhat contradictory [29], [31].
The above problems are inherent to any young disci-

pline, especially one that is human intensive. Software

measurement is currently in a phase in which terminology,

principles, and methods are still being defined and

consolidated. The human-intensive nature of software

engineering makes its measurement somewhat closer to

that of the social sciences rather than the physical sciences.

The phenomena that are studied involve a number of

variables that depend on human behavior and cannot be

controlled easily. We should not expect to find quantitative

laws that are generally valid and applicable, and have the

same precision and accuracy as the laws of Physics, for

instance. As a consequence, the identification of universally

valid and applicable measures may be an ideal, long term

research goal, which cannot be achieved in the near future,

if at all.
These characteristics do not imply that quantitative

progress cannot be made in the software measurement field.

On the contrary, a disciplined approach to the definition of a

measure allows practitioners and researchers to

1. build upon a solid theoretical basis,
2. link the measure to the application at hand,
3. provide a clearer rationale of the underlying defini-

tion of a measure and its applications,

1106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

. L.C. Briand is with the Systems and Computer Engineering Department,
Carleton University, Colonel By Dr., Canada, ON, K1S 5B6.
E-mail: briand@sce.carleton.ca.

. S. Morasca is with the Dipartmento di Scienze, Chimiche, Fisiche e
Matematiche, Università degli Studi dell’Insubria, Via Valleggio 11,
I-22100 Como, Italy. E-mail: sandro.morasca@uninsubria.it.

. V.R. Basili is with the Computer Science Department, University of
Maryland, College Park, MD 20742. E-mail: basili@cs.umd.edu.

Manuscript received 8 May 2001; accepted 20 Feb. 2002.
Recommended for acceptance by K. El-Emam.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 114108.

0098-5589/02/$17.00 ß 2002 IEEE

4. judge whether it is necessary to define a new
measure or instead reuse an existing one for a
specific application, and

5. interpret the results of an experiment or a case study,
especially when one does not obtain the expected
results.

This paper introduces (based on our experience [12], [17],
[9], [16], [20], [19]) a measure definition process (GQM/
MEDEA: GQM/MEtric DEfinition Approach), usable as a
practical guideline to design and reuse technically sound
and useful measures. The focus here is the construction of
prediction systems, i.e., models that establish a correspon-
dence between measures for software attributes. One of
these measures quantifies the dependent variable and is
usually related to a product or process attribute of
industrial interest (e.g., software fault-proneness, cost,
time-to-market). The other measures quantify various
product and process attributes (e.g., coupling of the
components) and are the independent variables of the
model. Based on knowledge of the application environ-
ment, an explicit definition of the specific goal(s) to be
addressed, and a set of experimental hypotheses that need
to be validated, we identify attributes of interest and define
theoretically valid measures for them. These measures are
subsequently used to validate the experimental hypotheses.

Prediction systems are a crucial application of measure-
ment as evidenced by the industry driven, ISO/IEC
standard [30] on software product quality. The standard
states that internal product measures should be related to
external product quality in order to be useful and mean-
ingful. This implies that a prediction model must be built to
explain the relationship between internal product measures
and external quality measures.

It is our position that software engineering measurement
is not about defining new measures, but about building new
theories that can help solve practical problems. The value
added by the definition of a new measure is not the
measure itself, but the fact that there is a theory in which the
new measure is used to help explain some phenomenon of
interest. Our proposal shows how this theory building can
be carried out, what steps are required or useful, and what
intermediate (e.g., measurement goals, initial empirical
hypotheses) and final results (e.g., validated hypotheses,
measures) are produced.

The GQM/MEDEA approach derives from experience
gathered on a number of projects in different environments.
In this paper, we illustrate our measure definition approach
via two industrial applications. In the first one, a well-
consolidated and measurement-oriented environment was
already in place, while, in the second one, measurement
was a new activity for the development environment. The
two case studies focus on the high-level design and
specification phase, respectively, to illustrate the applic-
ability of the approach to other phases than coding.

We advocate the need for a formal definition of the
mathematical properties of measures [18]. However, the
definition of a measure is itself a very human-intensive
activity, which cannot be described and analyzed in a fully
formal way. We expect GQM/MEDEA to be refined and

tailored to fit the needs of different application contexts, as
we gain experience in applying it.

Our framework takes advantage of several research
contributions of the literature. Basili and Weiss [5], [6] have
provided templates for defining operational experimental
goals for software measurement. Our proposal can be seen
as an extension of the GQM paradigm [2], [5], [6], which
provides a mechanism for generating models, the most
challenging part of the paradigm. Melton et al. have studied
product abstraction properties [33]. Weyuker [42] and Tian
and Zelkowitz [40] have studied desirable properties for
complexity measures. Fenton and Melton [25] and Zuse [43]
have investigated the use of measurement theory to
determine measurement scales. Schneidewind has pro-
posed a validation framework for measures [38].

Also, our approach draws many ideas from the theory of
designing experiments and empirical studies in general
[39]. GQM/MEDEA should be considered a proposal for
discussion about a measure definition approach that can be
accepted and used in software engineering. We believe that
an intellectual process is necessary to define sound and
useful software measures, supported by a solid theory
which facilitates their review and refinement.

The paper is organized as follows: In the next section, we
provide an overview of the GQM/MEDEA approach and a
conceptual model of all the principles involved. Section 3
contains a concise description of the two application cases
that we will use to illustrate our measure definition
approach. Sections 4–7 illustrate the steps of the GQM/
MEDEA approach in detail. Through a few examples,
Section 8 shows how GQM/MEDEA helps identify the
causes of problems that may be encountered during
measure definition. Section 9 concludes and outlines the
directions for future work.

2 OVERVIEW OF GQM/MEDEA

We first model the steps of the proposed method using Data
Flow Diagrams (DFDs) [22] and then provide a static model
of the concepts we define using a UML class diagram. The
former is aimed at showing the operational structure of
GQM/MEDEA and the latter helps formalize the concepts
defined and their relationships.

In DFDs, bubbles denote activities, boxes external
information sources/sinks, and arrows data flows. An
activity may be executed as soon as its inputs (or a subset
of them, depending on the activity) are available. Thus,
arrows also provide an idea of the order in which the
activities are executed, though, during the execution of an
activity, any other activity may be resumed or started as
long as its inputs are available. A bubble may be refined by a
DFD, provided that the incoming and outgoing data flows
of the bubble and its refining DFD are the same. Fig. 1 shows
the Context Diagram, i.e., the interactions of the measure
definition process with information sources and sinks.

In Fig. 1, the GQM/MEDEA process receives inputs from
the management, so that the measures are defined to help the
software organization achieve one or more of its corporate
objectives (e.g., “reduce development costs”), at least
partially.

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1107

The project personnel provide important information
about the context of the study, as a relevant part of the
knowledge is in the developers’ minds. This knowledge can
be elicited in many ways (e.g., structured interviews,
questionnaires) which can be rigorous and repeatable.

The experience gathered and distilled on previous
projects through the experience factory [3], [4], [7] is an
invaluable asset of the software organization. Ideally, it
provides the organization with a variety of information
relevant to the way an organization develops software, e.g.,
quantitative prediction models, lessons learned from past
projects, measurement tools and procedures, or even raw
project data. The measurement process itself should
contribute to the experience factory with new artifacts, in
the form of abstractions, measure properties, and measures,
stored for later use.

The literature provides information about measurement
programs carried out at other development sites. Properties
of the attributes that need to be studied, abstractions, and
measures may be reused if relevant to the current
measurement program.

Fig. 2 shows the high-level structure of the approach.
Each high-level step of Fig. 2 is refined in the DFDs of Fig. 3.
In addition to the information flows explicitly shown,
environment-specific information from the project teams
and the experience factory is available to almost every
activity of Figs. 2 and 3. We have not represented the
corresponding data flows explicitly in Figs. 2 and 3 since
they would have cluttered the diagrams.

The four high-level steps of Fig. 2 can be described as
follows:

1. Setting of the empirical study (refined in Fig. 3a and
illustrated in Section 4). Corporate objectives are
refined into measurement goals, based on knowl-
edge about the environment provided by the project
teams and the experience factory, which help
identify processes and products that measurement
should address. Based on the measurement goals, a
set of empirical hypotheses are established that
relate (independent) attributes of some entities
(e.g., software components) to other (dependent)
attributes of the same or different entities. Depen-
dent attributes are usually external quality attributes
of software systems or parts thereof, e.g., reliability,
maintainability, effort. Independent attributes cap-
ture factors that are assumed to have a causal
relationship with the dependent attribute. (Example:

Consider the measurement goal to predict develop-
ment effort. The empirical hypothesis says product
size is positively related to effort.) This is similar to
the principle that designing experiments requires the
definition of precise, testable research goals before
any measurement is taken or any empirical study is
proposed [39]. Clear goals lead to the definition of
clear dependent and independent attributes, as they
are referred to in software measurement.

2. Definition of measures for the independent attributes

(refined in Fig. 3b and illustrated in Section 5).
Independent attributes are formalized via sets of

generic properties that characterize their measures

(e.g., mathematical properties such as additivity).

Entities are formalized via abstractions (e.g., depen-

dency graphs) which are chosen based on the

entities, the independent attributes, and the generic

properties. The generic properties are then instan-

tiated on the abstractions and refined to take into
account additional assumptions that depend on the

specific application environment. Based on this

refined set of properties, measures are defined or

selected for the attributes of entities. Additional

checks may be required to verify whether the

defined measures really comply with the refined

and generic properties. (Example: Consider size as

measured by lines of code.)

3. Definition of measures for the dependent attributes

(refined in Fig. 3c and illustrated in Section 6). The

GQM/MEDEA approach deals with independent

and dependent attributes of entities in much the

same way. (Example: Consider effort as measured in

staff months.) In the context of experimental design,

steps 2 and 3 correspond to the step of defining

measurement procedures that optimize what is
referred to as construct validity [39], i.e., the fact that

a measure adequately captures the attribute it

purports to measure. Although construct validity is

key to the validity of an experiment, few guidelines

exist to address that issue.

1108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

Fig. 1. Interactions of GQM/MEDEA with information sources and sinks.

Fig. 2. High-level steps of GQM/MEDEA.

4. Hypothesis refinement and verification (refined in
Fig. 3d and illustrated in Section 7). The empirical
hypotheses are verified using the measures defined
for the independent and dependent attributes. They
may be refined by providing a specific functional
form for the relationship between independent and
dependent measures, e.g., an exponential relation-
ship. These new, more specific empirical hypotheses
are then used to build the predictive model based on
actual development data. This model can be used to
1) verify the plausibility of empirical hypotheses and
2) as a prediction model. (Example: Consider the
hypothesis that the number of staff months is a
curvilinear function of lines of code. Consider
analyzing staff month versus lines of code data to
build the functional relationship. This can be used to
verify the specific curvilinear relationship and

predict the staff months on the project of interest.)
The definition of such a model will strongly
influence the likelihood of obtaining significant
results. For example, it may be important to
explicitly take into account the presence of interac-
tions among independent variables through, for
example, the specification of multiplicative terms
in a regression equation [32]. Typically, additional
data analysis problems have to be addressed such as
outlier analysis [1] or the statistical power [14] of the
study. Briand and Wuest [12] provide detailed
guidelines on these matters and an empirical
validation procedure for software product measures.

Figs. 2 and 3 show that most of the outputs (e.g.,

abstractions, measures) of the steps defined above are

reusable. They should be packaged and stored so that they

can be efficiently and effectively reused, thus reducing the

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1109

Fig. 3. Refinement of the high-level steps.

cost of measurement in an organization [5]. In a mature
development environment, inputs for most of the steps
should come from reused knowledge.

Some of the steps that are made explicit in GQM/
MEDEA are often left implicit during the definition of a
measure. We have made them explicit to show all the
logical steps that are carried out to identify all potential
sources of problems. The main contribution of GQM/
MEDEA to GQM is the definition of an organized process
for the definition of software product measures based on
GQM goals.

To further formalize the concepts involved in the GQM/
MEDEA process, we provide in Fig. 4 a UML class diagram.
The diagram can be seen as a starting point for the object-
oriented design of a tool supporting the methodology and
the reuse of measurement program information.

In Fig. 4, we see that TacticalGoals relating to a
CorporateObjective are {ordered} as are Measur-

ementGoals relating to TacticalGoals, showing that
such goals are prioritized. MeasurementGoals have a
Viewpoint, Purpose, and Environment, as described by
the GQM goal template. The quality focus is modeled by an
association of the same name between MeasurementGoal

and Attribute. TacticalGoal and MeasurementGoal

are not expected to share associations and attributes and
this is why no Goal superclass is defined.

A MeasurementGoal entails the measurement of
Attributes, which are then associated with Measures.
Attributes have Properties and are involved in
empirical hypotheses (EmpiricalHypothesis) describ-
ing relationships among two or more Attributes. A
MeasurementGoal is part of a MeasurementProgram

which consumes Resources, e.g., People. Measures are
involved in PredictiveModels either as independent or
dependent variables (modeled by an {OR} constraint).

Measures are taken on Abstractions (e.g., Directed-
Graph) which are analyzable representations of Entities
(e.g., Component). Measures can be defined based on
other Measures, hence the reflexive association on the
class. PredictiveModels are defined based on refined
hypotheses (RefinedHypothesis), which refine pre-
viously defined empirical hypotheses.

GQM filled the gap between goals and measures by
means of questions and models [13], and gave recommen-
dations on how to define them. GQM/MEDEA does not
rely on questions to fill that gap, but it defines the steps to
carry out, the relationships among them, the sources of
information, and shows the integrated use of hypotheses,
abstractions, and theoretical and empirical validation.

3 TWO APPLICATIONS

First, we concisely describe the context information for the
two applications that we will use as case studies to illustrate
our approach. Other information about the applications
(e.g., characteristics of the languages used, goals, empirical
hypotheses, etc.) will be provided in the description of the
specific steps for which it is relevant.

Like many other software engineering empirical studies,
our case studies may be classified as correlational, field
studies.

Case Study 1. We studied three software systems
developed at the Software Engineering Laboratory. The
first system studied (GOADA) is an attitude ground
support software for satellites developed at the NASA
Goddard Space Flight Center (GSFC). The second one
(GOESIM) is a dynamic simulator for a geostationary
environmental satellite. These systems are composed of
525 and 676 Ada units, 90 Klocs, and 170 Klocs, respec-
tively, and have a fairly small reuse rate (around 5 percent

1110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

Fig. 4. Conceptual model using a UML class diagram.

of the source code lines have been reused from other
systems, verbatim or slightly modified). The third system
we studied (TONS) is an onboard satellite navigation
system, which has been developed in the same environment
and is about 180 Ada units and 50 Klocs large, with an
extremely small rate of reuse (2 percent of the source code
lines have been reused from other systems, verbatim or
slightly modified). We selected projects with lower rates of
reuse in order to make our analysis of design factors more
straightforward by removing what we think is a major
source of noise in this context. Additional information
about this study can be found in [19].

Case Study 2. The system was developed within the

framework of the ESSI project ELSA, which involved

Politecnico di Milano, TXT, and ENEL. The application

domain was that of embedded systems for real-time

applications for hydroelectric power plant control. Our

study focused on the specification phase. The specification

produced contained 33 TRIO+ classes (an object-oriented

formal specification language, see Section 4.1.2), developed

by five people: All of them were already experienced in

both the application domain and the specification language.

The process essentially followed the waterfall model, and

the overall project lasted 18 months. The application

domain (hydroelectric plants) was not new for the corpora-

tion, but this was the first time in which software

measurement was used. Additional information about this

study can be found in [16].
Sections 4–7 detail the high-level steps of the GQM/

MEDEA approach shown in Fig. 2. For illustration
purposes, each section contains three subsections:

. Description of the step,

. Examples taken from the two application cases,

. Practical guidelines and common issues.

4 SET-UP OF THE EMPIRICAL STUDY

The definition of the measurement goals and empirical
hypotheses are the fundamental phases since all the other
steps in our approach are affected by them. Therefore, extra
care must be used when setting goals and empirical
hypotheses. Accurate descriptions of the software develop-
ment process and knowledge acquisition techniques [10]
can be used to better understand the issues that are most
relevant and problematic in a given organization.

4.1 Define Measurement Goals

4.1.1 Description

Measurement goals are defined based on the general
corporate objectives (e.g., reduce cycle time), the available
information about the development environment (e.g.,
weaknesses, problems), and the resources available to carry
out the empirical study.

The corporate objectives are of a strategic nature, in that
they provide the company’s general business directions for
software development. Corporate objectives need to be
prioritized, for instance, based on the nature of the
business domain. For instance, reduction of time-to-market
may be more important than product quality in a specific

business domain, while the converse may be true in other
business domains. The measurement activities should be
carried out in the context of the most important corporate
objectives. The first, obvious reason is that the measure-
ment program would bring a higher payoff to the
corporation. The second reason is that the measurement
program is more likely to be successful since it is more
likely to receive adequate support.

Information about the development environment, e.g., a

process assessment results, can point to specific problem

areas, whether processes or products, that need to be

addressed. The corporate objectives and the information

about the specific environment lead to the generation of

tactical goals, which are narrower and better focused than

corporate objectives, to whose achievement they contribute.

For instance, in the context of a corporate objective such as

“reduce development cost,” a first tactical goal may be to

“monitor testing effort” if the information about the specific

environment points out problems in the testing phase effort.

Several tactical goals may be established for the same

corporate objective and they should be prioritized before

defining measurement goals, based on their importance in

the context of the corporate objectives and available

resources.
The tactical goals and the knowledge of the environment

then lead to the establishment of measurement goals.
Again, the measurement goals should be ranked based on
their perceived relevance to the tactical goals, the resources
they entail, and their feasibility with respect to building a
useful prediction model (e.g., enough observations can be
collected).

When proceeding from corporate objectives to tactical
goals and to measurement goals, one should take into
account the resources available for measurement, e.g., the
number and skills of people involved, the tools that can be
used to analyze software artifacts, and the resources of the
software organization, which may not allow for certain
kinds of empirical studies. For instance, it is unlikely that a
software company will develop the same software in two
different ways so that two different software design
methods can be studied and compared.

This step requires a careful prestudy, e.g., process
analysis and assessment, before measurement-related activ-
ities start. The information needed for defining measure-
ment goals does not necessarily have to be quantitative in
nature. However, it has to be clear and detailed enough so
that one can establish sensible (i.e., relevant and attainable)
goals and, then, interpret the experimental results. The
existing documentation on the corporation and environ-
ment may be a useful starting point, especially if comple-
mented with knowledge provided by the people involved
in the development environment.

Performing this step in a systematic manner requires
goal definition techniques. We use the Goal/Question/
Metric (GQM) paradigm [13], [2], [5], [6], which provides a
template and guidelines to define measurement goals and
refine them into concrete and realistic questions, which
subsequently lead to the definition of measures. Here is a
summary of templates that can be used to define goals:

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1111

. Object of study: products, processes, resources, ...

. Purpose: characterization, evaluation, prediction,
improvement, ...

. Quality focus: cost, correctness, defect removal,
changes, reliability, ...

. Viewpoint: user, customer, manager, developer,
corporation, ...

. Environment: team, project, product, ...

These five goal dimensions have a direct impact on the
remaining steps of the measure definition approach and the
data collection program.

The object of study helps determine the

. entities that must be modeled by abstractions so as to
be analyzable, e.g., a UML class diagram [41] for a
program design;

. hypotheses that may be relevant because they are
related to the object of study, e.g., reducing coupling
among classes improves maintainability.

The object of study might not completely specify the set
of entities that need to be studied since

. other entities may need to be studied as well (e.g.,
entities whose attributes are believed to significantly
influence the attribute of the object of study that
appears in the quality focus, such as the designers’
experience when studying a UML class diagram);

. the object of study may need to be studied at a finer
granularity level than that mentioned in the GQM
goal template (e.g., if the object of study is a software
system, we may want to study the modules of which
it is composed).

The purpose shows the intended use of the measures to
be defined. Though here we concentrate on prediction
systems, several measurement process characteristics are in
general affected by the purpose dimension of a GQM goal.
For the sake of discussion, we compare how these
characteristics are affected by the prediction purpose and
the characterization purpose (i.e., understanding the typical
distributions of data in a given environment [5], [13]). The
purpose helps determine the

. type of data to be collected, e.g., as opposed to
characterization, prediction requires data that can
be accurately collected or estimated at the time of
prediction;

. amount of data to be collected, e.g., prediction usually
requires more data than characterization so that
possibly nonlinear, complex relationships have a
chance to be statistically detected;

. need for empirical validation, e.g., if the measurement
model is predictive, as is our case, empirical
validation of the assumptions (e.g., functional shape
of the prediction model) is necessary, but not if the
purpose is characterization.

The quality focus helps determine the

. dependent attribute used in the hypotheses, e.g.,
development cost;

. hypotheses describing the relationship between the
attributes of the object of study and the dependent
attribute, e.g., cost is related to system size.

The viewpoint helps determine

. the point in time at which predictions should be
carried out and, therefore, what information will be
available to define abstractions and measures;

. the definition of descriptive models for the quality focus
[13], that is the relevant dependent attributes: For
example, from the user’s point of view, reliability
may be defined as the mean time to failure, whereas,
from the tester’s point of view, it may be defined as
the number of faults detected over a period of time;

. what information is costly or difficult to acquire and,
consequently, what information should possibly be
left out of the model.

The environment helps determine the

. context in which the study is carried out;

. scope in which the results of the study are valid and
can be generalized.

As the measurement goal definition phase is the most
important one, since it influences all other steps, it is not
surprising that one may return to it from the other step of
the “Setting of the Empirical Study” phase. One may need
to fine-tune the variables of the GQM goal template, based
on the empirical hypotheses defined. For instance, this is
what happened in our Case Study 1 (Section 4.2).

4.1.2 Examples

We now illustrate the description above with our two case
studies.

Case Study 1. We focused on one general corporate
objective:

. reduce the number of defects in the end product.

Given the application domain of GSFC, product quality
was the highest priority for software development. This is a
very broad objective, in that it may cover the entire software
development process. Based on information on the process
and evidence on the projects, our tactical goal required that,
among the several process- or product-related entities (e.g.,
process phases or activities, or artifacts) that were in
principle worth studying in our environment, we study
the high-level design, which was believed to greatly
influence the final product’s quality, as also commonly
believed in software engineering. Studying the high-level
design was believed to be feasible with our resources and
constraints; studying other entities that we could presume
were as influential as the high-level design would have
required more resources and case studies that were difficult
to undertake.

In our application, we model the high-level design of a
software system as a collection of Ada83 interfaces of
packages and procedures (which we will call Ada mod-
ules), related to each other via

. USES relationships (e.g., package/procedure A
USES package B if A uses computational services
that package/procedure B makes available) and

. IS_COMPONENT_OF relationships (e.g., package/
procedure A IS_COMPONENT_OF package/proce-
dure B if A is defined within B).

1112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

Precise and formalized information on Ada module
bodies is not available this early in the lifecycle.

Ada modules belong to higher-level aggregations,
represented as library module hierarchies. In a library
module hierarchy, nodes represent Ada modules, arcs
between nodes represent IS_COMPONENT_OF relation-
ships, and there is exactly one top-level node, which is a
package. In this paper, we define attributes and measures
that can be applied to both modules and library module
hierarchies, which are the most significant syntactic
aggregation levels below the subsystem level. We use the
term software part (sp) to denote either a module or a library
module hierarchy.

Our measurement goal was defined as:

Goal 1.1

Object of study: high-level design of Ada software systems

Purpose: prediction

Quality focus: fault-proneness of the implemented systems
Viewpoint: project leader and development team

Environment: software projects at the GSFC Flight Dynamics

division

After the empirical hypotheses were made explicit, Goal 1.1
was modified (see Section 4.2.2).

Case Study 2. Among others, two general corporate
objectives were deemed important in this context:

. reduce the number of defects in the end product;

. plan software development better.
The first corporate objective is the most important one

because of the application domain, where failures may be
disastrous. The second corporate objective, though not as
important as the first one, was studied because the
empirical study was seen as a good opportunity for the
software organization to start acquiring quantitative in-
formation on which to base software development resource
planning. Quantitative information on this specific type of
applications (and on projects where formal methods are
used) was not available.

We restricted our tactical goal to studying the above
objectives in the specification phase, which is carried out in
time-critical systems with greater care than in other
systems, so it was by far the most important one in the
development process. Also, the design and implementation
phases were quite straightforward once the TRIO+ specifi-
cation was available because of the formal nature of TRIO+
and the fact that many TRIO+ clauses of the specification,
whose form was precondition!postcondition, afforded
direct translation into software code, in the form “if

precondition then action to achieve the postcondition”).
These two GQM goals were identified.

Goal 2.1

Object of study: TRIO+ specification

Purpose: prediction

Quality focus: effort required to write the specification
Viewpoint: project leader

Environment: development of software for hydroelectric

plants

Goal 2.2

Object of study: TRIO+ specification

Purpose: prediction

Quality focus: changes in the specification

Viewpoint: project leader

Environment: development of software for hydroelectric
plants

Identifying the factors that contribute to effort and

changes may allow the corporation to carry out appropriate

actions to reduce both and help plan specification effort and

stability.
The object of study for both goals is a TRIO+ specifica-

tion. To make the paper self-contained, we now provide a

brief introduction to the TRIO+ specification language.

TRIO+ is an object-oriented formal specification language

based on temporal logic that can be used to capture time-

related specifications along with functional specifications in

an integrated manner. This characteristic is of crucial

importance for describing real-time systems. TRIO+ also

satisfies several expressive requirements relevant to large

systems, such as possibility of encapsulation, information

hiding, existence of different levels of abstraction, etc.,

which are fundamental for the building of specifications of

large systems. Fig. 5 (taken from [35]) shows a simple

example of a TRIO+ specification for a power station in both

graphical and textual form.
Here is a short summary of the TRIO+ definitions

relevant to this paper:

Class is an encapsulation mechanism that allows informa-

tion hiding. A class may contain instances of other

classes, called modules. In the example of Fig. 5, class

powerStation contains (clause module) modules unit,

sluice, actuator.

Items are predicates, variables, functions, and constants.

Local items are only available to the class where they are

defined; visible items are also available to other classes.

In Fig. 5, items width, open, close, increase, decrease are

visible items for class powerStation (clause visible); Items

actuator.go, sluice.go, etc. are visible items for the

modules, but local items for powerStation.

Connections state that two items belonging to different

classes are actually the same item. As an example, there

is a connection between actuator.go and sluice.go.

Axioms are temporal logic expressions stating properties

that must hold for a TRIO+ class. For instance, an axiom

(describing the opening of a gate) for class sluiceGate is

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1113

Fig. 5. A TRIO+ specification.

move_up: position = mvUp and go(down)!
9t(NextTime(position = up,t)

and Futr(Lasts(position = mvDown,�)

and Futr(position = down,�,t))

where

. move_up is the name of the axiom,

. NextTime, Futr, and Lasts are operators provided by
the TRIO language [35],

. up, mvUp, down, and mvDown are possible values for
position,

. � is a constant.

4.1.3 Discussion

The use of a goal-oriented paradigm such as the GQM
paradigm provides two important results:

. The data are collected for a purpose, so they are
ensured to respond to the specific needs of the
software organization.

. The derivation of measures from explicit goals
allows the analyst to specify a priori the interpreta-
tion mechanisms associated with the collected data.

To illustrate the impact of measurement goals in our
approach, take Goal 1.1 as an example. We know from the
object of study that we have to define relevant mathematical
abstractions for high-level design. We know from the
purpose of measurement that we need to collect enough
data about the quality focus to allow for a statistically
significant validation of the relationships between the
measures of attributes of the object of study and quality
focus. This requires that we better define our quality focus:
fault-proneness. Very likely, we need to determine precisely
how to count defects, e.g., what testing and inspection
phases should be taken into account; are all faults equal or
should they be weighted according to a predefined fault
taxonomy? Such questions are also dependent on the
particular viewpoint. In our example, the project leader
and the development team want to find out where faults are
located. In other cases, the project leader and the develop-
ment team might be particularly interested in critical faults
(according to their own definition of criticality). Therefore,
faults will have to be “weighted” according to the level of
criticality of their consequences. The environment shows the
(minimal) scope in which the results of the empirical study
are valid, i.e., software projects in the flight dynamics
division of GSFC (as explained in Section 4.2.1, this
dimension was changed to low-reuse projects in the flight
dynamics division of GSFC). The results may be valid in
other environments, but a careful study of their similarities
and differences with the original environment should be
carried out first.

4.2 Define Empirical Hypotheses

4.2.1 Description

We state hypotheses on aspects of the software process that
are relevant to the experimental goals. An empirical
hypothesis is a statement believed to be true about the
relationship between one or more attributes of the object of
study and the quality focus. A hypothesis captures one’s

own intuitive understanding of the studied phenomena

and needs to be explicit so it can be discussed, questioned,

and refined. Various sources of information can be very

useful for devising pertinent hypotheses, such as a

thorough understanding of the working procedures,

methodologies, and techniques used in the development

environment (i.e., process description), as well as product

information and domain experts’ knowledge (e.g., obtained

through interviews) [10].
At this point, several different empirical hypotheses may

be defined. The verification of empirical hypotheses will

show which hypotheses are plausible (in a statistical sense).

4.2.2 Examples

We provide a few examples of hypotheses taken from the

two case studies. Other hypotheses were defined as well,

but not all of them were supported by empirical evidence

(see Section 8).
Case Study 1. Hypothesis 1 (coupling and fault-proneness):

The larger the import coupling of a software part, the larger

its fault-proneness. (“Import” coupling refers to the

dependence of a software part on other software parts.)
Hypothesis 1 states a common belief in software

engineering that was also considered true in our application

context; it is widely accepted that a software system should

be composed of modules with a small degree of coupling.
The study of this empirical hypothesis required that we

identify and remove possible factors (confounding factors)

that could mask or inflate the effect of coupling on fault-

proneness. We identified a high level of reuse as a potential

confounding factor, so we narrowed the environment of our

study to low-reuse projects (< 5 percent). Thus, we went

back to the previous phase and modified the environment

variable to “low-reuse software projects at GSFC.” The

GQM goal becomes

Goal 1.1

Object of study: high-level design of Ada software systems

Purpose: prediction

Quality focus: fault-proneness of the implemented systems

Viewpoint: project leader and development team
Environment: low-reuse software projects at GSFC

As a part of the “Define Measurement Goals” step, we

checked the feasibility of the goal, by checking if there was a

sufficient statistical basis for the validation of the empirical

hypothesis in the new context. As this was the case, we

proceeded to execute the subsequent phases.
Case Study 2. Hypothesis 2 (class axiom size and effort): The

larger the size of a TRIO+ class in terms of axioms, the

higher the effort required to write it.
The basic idea is that each additional TRIO+ axiom

requires additional effort to be written and additional effort

to check its consistency with the other axioms.
Hypothesis 3 (class axiom size and changes): The larger the

size of a TRIO+ class in terms of axioms, the higher the

amount of changes in it.
The idea of the hypothesis is that each additional TRIO+

axiom is likely to cause more inconsistencies.

1114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

4.2.3 Discussion

The above hypotheses may be deemed too simple; for
instance, they do not describe a specific functional
correspondence between two variables. However, this is
not possible at this point in the measure definition process
since the empirical hypotheses involve attributes of entities,
and not measures. In the Instantiate and Refine Empirical
Hypotheses step, more precise hypotheses may be made after
measures for the independent and dependent attributes
have been defined.

Empirical hypotheses help identify the measurement
attributes (e.g., size, complexity, cohesion, coupling, like-
lihood) that are believed to be relevant to the goal. In
general, a hypothesis may involve several independent
attributes and one dependent attribute. Also, empirical
hypotheses allow us to better identify artifacts, activities, or
parts thereof that must be taken into account for the
definition of suitable abstractions.

The empirical hypotheses we state are different from
those that are defined in statistical test of hypotheses. First,
our empirical hypotheses are defined in terms of attributes,
while statistical hypotheses are defined in terms of
measures. Second, a statistical test of hypotheses requires
that two exhaustive and mutually exclusive hypotheses be
tested, the null hypothesis and the alternative hypothesis,
which is usually the hypothesis that the experimenter
would like to support through the experiment. Our
empirical hypotheses are akin to the alternative hypotheses
and the counterpart of the null hypothesis of statistical test
of hypothesis is not made explicit here, but it is the logical
negation of the empirical hypothesis stated. Our empirical
hypotheses eventually lead to the statement of statistical
hypotheses that are subject to statistical testing (in Step 4).
At any rate, it is important to describe the empirical
hypotheses as precisely and unambiguously as possible.
This facilitates the process for defining measures and the
interpretation of results.

5 DEFINITION OF MEASURES FOR INDEPENDENT

ATTRIBUTES

Based on the entities and attributes appearing in the
empirical hypotheses and on process and product informa-
tion, a new measure is defined or an existing one is selected
as the result of this phase. This measure should

1. comply with a set of properties that are believed to
be true for all measures of the attribute it purports to
measure;

2. comply with a set of additional properties believed
to be true in the environment under study;

3. be measured based on a suitable mathematical
abstraction of the object of study.

5.1 Formalize Independent Attributes

5.1.1 Description

The independent and dependent attributes of entities that
appear in the hypotheses must be clearly identified, so the
characteristics of their measures can be formalized to the
extent possible. To describe the characteristics of measures

for a given attribute, we use mathematical properties, which
can be used to 1) constrain and guide the search for new
measures for the attribute and 2) accept existing measures
as adequate for that attribute. One should always make sure
that a measure exhibits properties that are essential for its
technical soundness. The properties that we use are
independent of both any specific abstraction and any
instantiation of the attribute into any specific measure, so
they are called generic.

The generic properties for the measures of an attribute
should be logically consistent. Also, these properties should
hold for the admissible transformations [26] of the level of
measurement (i.e., nominal, ordinal, interval, ratio, abso-
lute) on which one intends to define measures. In other
words, there should not be any contradiction between the
level of measurement assumed while using/interpreting a
measure and its generic properties. The choice of the level
of measurement must be based on the precision of the
results that one would like to obtain, i.e., on the measure-
ment goals and application needs. Thus, the choice of a
measurement level influences the kind of refined empirical
hypotheses one may state in the Instantiate and Refine
Empirical Hypotheses step. For instance, the investigation of a
refined empirical hypothesis that states a linear correlation
between an independent variable (i.e., a measure for the
independent attribute) and a dependent variable (i.e., a
measure for the dependent attribute) requires that both
measures be defined on at least an interval level of
measurement.1 Instead, the association between two vari-
ables can be studied even if the two variables2 are measures
defined on an ordinal level of measurement. A prediction
made through an association is less informative than one
carried out via a linear correlation, but it is less demanding
in terms of the hypotheses on the underlying measure
definition and precision.

5.1.2 Examples

We provide properties that are, in our opinion, generic for
size measures [18].3 Our properties are defined based on an
abstract graph-theoretic model since we may want to use
them on all artifacts produced during software develop-
ment. We do not intend to define sets of generic properties
that should hold for single-valued measures that capture all
aspects of size. Like in [26], we do not believe that such
measures exist. On the contrary, our sets of generic
properties should hold for a set of measures that address
a specific aspect of size.

Size is an attribute of a system, i.e., one can speak about
the size of a system. In our general framework—we want
these properties to be as independent as possible from any
specific abstraction—a system is characterized by its
elements and the relationships between them.

Definition 1. Representation of Systems and Modules. A
system S is represented as a pair <E;R> , where E represents
the set of elements of S, and R is a binary relation on EðR �
E� EÞ representing the relationships between S’s elements.

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1115

1. Though the problem is not as clear cut, as discussed in [15].
2. Computed using statistics such as Kendall’s Tau or Spearman Rank

Correlation Coefficient.
3. For brevity, we do not show the properties of [18] related to coupling.

Also, the reader is referred to [18] for a thorough discussion of these
properties and their comparison with those existing in the literature.

Given a system S ¼<E;R> , a system m ¼<Em;Rm> is a
module of S if and only if Em � E, Rm � Em � Em, and
Rm � R. This is denoted by m � S.

Size cannot be negative (property Size.1) and we expect it
to be null when a system does not contain any elements
(property Size.2). When modules do not have elements in
common, we expect size to be additive (property Size.3).

Definition 2: Size Measure. A measure of the size of a system
S ¼<E;R> is a function Size(S) that is characterized by the
following properties Size.1 - Size.3.

Property Size.1. Nonnegativity:

Size(S) � 0 (Size.I)

Property Size.2: Null Value

E ¼ � ! SizeðSÞ ¼ 0 (Size.II)

Property Size.3: Module Additivity

(m1 � S and m2 � S and E ¼ Em1 [Em2 and Em1 \ Em2 ¼ �)
! Size(S) = Size(m1) + Size(m2) (Size.III)

Properties Size.1-Size.3 are meaningful only for ratio
measures [26].

5.1.3 Discussion

Even though there might be wide consensus on some of
the above properties, acceptance of a set of properties for
an attribute is ultimately a subjective matter, like for any
formalization of an informal concept. As a matter of
convenience, a universal set of properties should be
defined for the most important attributes used by the
software engineering community, as is the case for more
mature disciplines. However, software engineering has
not yet reached a satisfactory definition of the properties
associated with most attributes. Therefore, it is important
that all properties be explicit and justified so that their
limitations may be understood and the discussion on their
validity may be facilitated. A wide consensus can only be
reached through the discussion and refinement of existing
sets of properties. For instance, different sets of properties
for complexity measures [42], [40] (though these are
defined with reference to software code) may be used as
an alternative to the set of properties defined in [18].
Thus, during the definition of measures, several choices
are possible, based on the application at hand and one’s
own intuition.

A set of properties like the ones above should be
interpreted as necessary, but not sufficient. Not all the
measures that satisfy a set of properties associated with an
attribute can be considered sensible measures for that
attribute. This is the case even for the sets of properties that
have long been accepted, such as the set of properties for
distance. However, those measures that do not satisfy the
set of properties associated with an attribute can safely be
excluded. In addition, an explicit definition of the set of
properties provides a formal means to reason about the
measures for an attribute.

Though the size properties we provided above are
meaningful for ratio measures, not all the measures that
satisfy them are ratio ones. If a measure M does not satisfy
the set of properties for an attribute A that are meaningful at

the ratio level of measurement, all that can be safely inferred
is that M is not a ratio measure for A. Satisfaction of a set of
properties meaningful at the ratio level of measurement can
at best be interpreted as supporting evidence for a measure
to be a ratio one. It is also possible to provide properties that
are meaningful for measures at other levels of measure-
ment, so the definition of measures need not be constrained
to the definition of ratio scales only [34].

Other ways of formalizing attributes may be used such
as Measurement Theory [26], [27]. As shown in [18], the use
of properties is not in contradiction with Measurement
Theory. In general, it is up to the person in charge of
defining a measure to identify the appropriate level and
way of formalization for the attribute he or she investigates.

5.2 Identify Abstractions for Measuring
Independent Attributes

5.2.1 Description

An abstraction is a mathematical representation of an entity,
e.g., a graph. An entity may be mapped into one or more
abstractions so it becomes analyzable and its relevant
attributes become quantifiable [33]. The choice of an
abstraction should be guided by the attributes, their
formalization, and the empirical hypotheses, since the
abstractions must help adequately capture the independent
attributes of the entities involved in the hypotheses. The
mapping from the entity to the abstraction needs to be
checked for completeness, e.g., does the abstraction contain
all the relationships between nodes that one wants to
capture? Is the level of granularity of the abstraction nodes
sufficient to represent the entity accurately? One way of
assessing the suitability of an abstraction is to study the
effect of relevant modifications on the entity (e.g., product)
and assess its impact on the abstraction, e.g., number of
nodes and edges added or removed, change of topology in
a graph. Abstractions capturing control flow, data flow, and
data dependency information are available in the literature
[36], [8], [37], and a large variety of abstractions can be
derived from software products.

5.2.2 Examples

Case Study 1. The entities to be studied are software parts,
and the attribute to be studied is coupling. Therefore, we
are interested in capturing coupling in an object-based
context, rather than a procedural one. We focus on the
dependencies among data declarations (i.e., types, vari-
ables, or constants) and procedures. These dependencies are
called interactions and are used to define measures captur-
ing coupling between software parts. For instance, a data
declaration A interacts with another data declaration B if A
appears in B’s declaration or in the righthand side of an
assignment in which B appears on the lefthand side. A data
declaration A interacts with a procedure C if A interacts
with at least one of C’s data declarations (e.g., with one of
C’s formal parameters). The interaction relationship be-
tween data declarations is transitive. (See [19] for more
detailed definitions.) Of the four possible kinds of interac-
tions (from data declarations to data declarations; from data
declarations to procedures; from procedures to procedures;
from procedures to data declarations), we take into account
only those interactions 1) from data declarations to data
declarations or 2) from data declarations to procedures that

1116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

can be detected from the high-level design of a software
system. The other two kinds of interactions are not
detectable at high-level design time.

The abstraction we use to model the elements and
relationships that are relevant for capturing coupling is the
interaction graph: Its elements are the data declarations of
the high-level design (including procedures’ formal para-
meters) and its relationships the data declarations interac-
tions. For instance, Fig. 6b contains the interaction graph for
the Ada fragment in Fig. 6a.

Case Study 2. To measure the size of TRIO+ classes in
terms of axioms, we used a simple abstraction. Each axiom
in a TRIO+ class is seen as an element of the system.
Axioms in the same class are linked by means of sequence
relationships (like lines of code in programs). Axioms
belonging to different classes are not linked to each other.

5.3 Instantiate and Refine Properties
(for Measures of Independent Attributes)

5.3.1 Description

The elements, relationships, and modules of abstractions
must be mapped onto the elements, relationships, and
modules of systems and modular systems. This correspon-
dence is sometimes straightforward. However, it must be
made explicit, at least in principle, to make sure that there
are no hidden problems in the transition from one step to
the other. Then, the set of properties associated with each
attribute is expanded by adding new properties, which
formalize additional knowledge on the characteristics of the
measures for that attribute in the specific context and allow
us to tailor the generic measurement attributes to any
particular quality focus. These properties are believed to be
true in a given context of measurement (i.e., goals,
attributes, empirical hypotheses, abstractions) and are
referred to as context-dependent properties. These additional
properties are often left implicit during measure definition.

5.3.2 Examples

Case Study 1. The elements, relationships, and Ada
modules of an interaction graph are mapped onto elements,
relationships, and modules of a modular system.

Context-Dependent Property 1: Coupling interactions (based on

hypothesis 1)

Given two software parts sp1 and sp2, if sp1 has at least as

many coupling interactions as sp2,

CouplingCouplingInteractions(sp1)

� CouplingCouplingInteractions(sp2).

CouplingCouplingInteractions represents a measure that

captures the coupling of a software part based on coupling
interactions.

Case Study 2. Axioms are mapped onto elements of a
system. Sequence relationships of axioms belonging to the
same class are mapped onto relationships of the system.

Context-Dependent Property 2: Axioms (based on hypotheses 2

and 3)

If a class C1 has at least as many axioms as another class C2,
then SizeAxioms(C1) � SizeAxioms(C2).

5.3.3 Discussion

The context-dependent properties above are not implied by
the generic properties for coupling and size discussed
above. For instance, Context-Dependent Property 2 is an
additional property, which basically implies that all axioms
should have the same “weight” as for the facet of size we
are interested in. Context-dependent properties must be
made explicit, though they are often kept implicit in articles
that propose new measures. Hypotheses and, consequently,
context-dependent properties, may be questioned and
refined in later research. For instance, based on the
experimental results obtained with the above empirical

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1117

Fig. 6. (a) Ada-like code fragment and (b) its interaction graph.

and context-dependent properties, one may draw the
conclusion that axioms should be given different “weights,”
depending on the number of predicate occurrences in an
axiom. This has the following consequences:

1. There exists a different hypothesis, in which the
occurrences of predicates in axioms are considered
relevant, instead of the set of axioms in classes.

2. A new abstraction needs to be built, where predicate
occurrences are the elements.

3. A new context-dependent property must be pro-
vided, e.g., to rank classes whose axioms differ by
the number of predicate occurrences.

4. New measures are defined.
5. A new empirical validation is required.

Therefore, a “small” change in terms of hypotheses and
context-dependent properties can have a dramatic influence
over the whole measure definition process.

One of the main difficulties of this step is to ensure that
the set of context-dependent properties is complete, i.e., any
pair of abstractions can be ordered by using the stated
properties. Sets of generic properties do not necessarily
provide a total order among entities, as not all abstractions
may be comparable with respect to a particular measure-
ment attribute [25], [24], so only a partial order can be
obtained [33]. Context-dependent properties further con-
strain the order relation among entities in such a way that a
total order can be obtained, though this is not true in
general. For instance, a total ordering of the entities may not
be obtained when dealing with multidimensional attributes,
or several aspects of the same attribute (e.g., data flow and
control flow complexity, or even control flow complexity
alone, as shown in [24]).

5.4 Define Independent Measures

5.4.1 Description

For each attribute of an entity, measures are defined by
using the abstractions’ elements and relationships, and are
checked against the attribute’s generic and context-depen-
dent properties. Management and resource constraints are
taken into account for defining convenient measures. This
step may require approximations which must be performed
explicitly, based on a solid theory, and in a controlled
manner.

5.4.2 Examples

Here, we report a few of the measures we identified in our
application cases.

Case Study 1. Two simple coupling measures are
obtained by counting the number of input interactions of
a software part. In this case, one may choose whether to
consider all such interactions (measure TIC) or only a subset
(measure DIC).

Measure TIC for Import Coupling. Given a software part
sp, Transitive Import Coupling of sp (denoted by TIC(sp))
is the number of interactions between data declarations
external to sp and the data declarations within sp.

Measure DIC for Import Coupling. Given a software part sp,
Direct Import Coupling of sp (denoted by DIC(sp)) is the
number of direct interactions, i.e., those that are not
obtained only through transitivity of interactions.

Case Study 2. A simple axiom-based size measure is

defined as follows:
Measure Axioms for Axiom Size. Axioms is the number of

axioms of a class.

5.4.3 Discussion

At this stage, we may not able to select the best among

alternative measures satisfying generic and context-depen-

dent properties. Empirical validation (Section 7.2) may help

perform such a selection, e.g., by identifying the best

predictor. As a necessary precondition to carrying out a

meaningful experimental validation, the level of measure-

ment of the measures must be determined. This prevents

measures from being misused (e.g., taking the average

value of an ordinal measure, which is meaningless from a

measurement theory standpoint).

5.5 Validate Independent Measures

Once measures have been defined, it must be proven that

they are consistent with the generic and context-dependent

properties.

5.5.1 Description

The measures for the independent attributes may not satisfy

the refined properties for the independent attributes. The

measure definition process—like any human-intensive

activity—is subject to errors and cannot provide 100 percent

certainty that correct results are always delivered. It is

useful to make sure that the measures for the independent

attributes comply with one’s formalized intuition. In

addition, before reusing existing measures, one should

check if they satisfy the refined properties for the attributes

they purport to measure.

5.5.2 Examples

It can be shown that the measures defined in the Define

Independent Measures step for both application cases

satisfy the refined properties for the attributes they

purport to measure. For the sake of brevity, we refer the

reader to [16], [19].

5.5.3 Discussion

The activity of this step can be useful in two ways:

1. Filter out and discard measures that do not comply
with one’s own intuition; execution of the process
may then resume from one of the previous steps, if
necessary.

2. Identify the extent to which measures agree with
one’s own intuition; measures that do not entirely
satisfy refined properties might not be discarded,
but one has a better idea of the strengths and
weaknesses of measures and their degree of approx-
imation of the attributes they try to measure.

6 DEFINITION OF MEASURES FOR DEPENDENT

ATTRIBUTES

The definition of measures for the dependent attributes

mirrors the activities shown in Section 5.

1118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

6.1 Formalize Dependent Attributes

6.1.1 Description

Dependent attributes are often better understood than
independent attributes, since they are usually more
tangible. For instance, an attribute such as cost is much
more easily understood than code complexity on an
intuitive level. Therefore, in most cases, the need for
formalizing the properties of measures for dependent
attributes is somewhat less felt than that for formalizing
the properties of measures for independent attributes.
However, this is the result of a longer acquaintance of
researchers and practitioners with those attributes during
their professional activities and in real life, and not always
the consequence of a greater ease in defining dependent
attributes. Also, even though not explicitly used, a
formalization of the properties for these attributes may
already be available, as we show next.

6.1.2 Examples

Case Study 1. The dependent attribute is fault-proneness of
a software part, which may be interpreted as the probability
to have at least one fault in a software part. We need to
provide properties that characterize the measures for the
probability attribute. Since probability has been studied and
used for centuries, these properties are already available
[28] and we can “reuse” them.

To introduce the properties for probability measures
formally, we first need to introduce the basic elements upon
which these properties are based. A random experiment
may have several outcomes. The set of all outcomes of a
random experiment is called the sample space of the random
experiment. A set of outcomes (i.e., a subset of the sample
space) is called an event. The sample space of a random
experiments is the set of its possible outcomes. Therefore,
the properties of probability measures are defined based on
a very simple—and general—set-theoretic model. We now
report the three properties that characterize probability
measures [28].

Definition 3: Probability. A probability measure is a real
valued set function defined on a sample space that satisfies the
following three properties (Probability denotes any such
measure).

Property Probability 1: Admissible Range

Given any subset A of the sample space S

0 � Probability(A) � 1

Property Probability 2: Maximum value

The probability measure of the whole sample space S is maximum

Probability(S) = 1

Property Probability 3: Additivity

The probability measure of the union of a finite or infinite

collection of disjoint events A1;A2; . . . is the sum of the

probabilities of the individual events

ProbabilityðA1 [A2 [. . .Þ
¼ ProbabilityðA1Þ þ ProbabilityðA2Þ þ . . .

Case Study 2. There are two dependent attributes, i.e.,
effort and amount of changes. They can both be interpreted

as facets of size, whose properties have been described in
Section 5.1.2.

6.1.3 Discussion

It is worth noting that properties for process attributes are
usually left implicit by researchers and practitioners. This is
not because of a lack of formalization or consensus, but
exactly for the opposite reason: probability is a well-
understood attribute, for whose meaning a wide consensus
exists, so the properties of its measures are taken for
granted. The goal of any formalization endeavor (such as
those based on the properties of [42], [18]) is to provide a
ground for discussion and, through modifications and
refinements, reach a wide consensus, as happened in the
past for many other attributes for which a widespread
agreement now exists.

6.2 Identify Abstractions for Measuring Dependent
Attributes

6.2.1 Description

Abstractions must be found to capture the entities’ relevant
aspects for capturing our dependent attributes, which are
referenced by the empirical hypotheses. The nature of these
abstractions may not be as rigorously mathematical as that
of the abstractions used for the entities of the independent
attributes, especially if the dependent attributes refer to
process entities such as phases or activities. However, the
relevant aspects of the abstractions (e.g., phase milestones)
need to be clearly identified since the measures and the data
collection process will be based on them.

6.2.2 Examples

Case Study 1. We need to study the final software systems
(entities) with reference to the faults (aspects) they may
contain. Thus, we need to clearly state what we mean by
fault in our context, i.e., we need precise rules so we can
unambiguously identify faults. For instance, we need to
decide how to handle “multiple” faults, i.e., those defects
that are replicated in the software code. Suppose that a
variable is incorrectly used instead of another variable in
several points of the software code. Does this represent a
single fault, or do we need to count each incorrect use of
that variable as an individual fault? Such a decision must be
made explicit and must be consistently applied in the
empirical study. In our application case, we used the
definitions for faults that had been used at the GSFC
Software Engineering Laboratory for a number of years.

Case Study 2. Two kinds of entities must be considered:
the specification process, whose relevant attribute is effort,
and the various versions of the specification, to identify the
changes from one version to the other. In both cases, it was
not deemed useful to model the specification process and
the various versions of the specification in detail. Effort was
simply modeled by recording the effort needed to write and
revise the specification. As for changes, the analysis
concentrated on massive modifications, or changes that
were deemed important by the specifiers and justified the
building of a new version. Thus, the existence of a new
version for a class in the TRIO+ specification was equated to
a significant change.

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1119

6.2.3 Discussion

The decision of the level of detail with which an abstraction
represents an entity depends on the expected results of the
measurement activity. For instance, in a more thorough
analysis, one might have decided to differentiate various
categories of faults (in Case Study 1), or take into account
the extent of changes (in Case Study 2). A greater level of
detail has to be justified by the accuracy required for the
predictive models and needs to be evaluated against the
available resources.

6.3 Instantiate and Refine Properties
(for Measures of Dependent Attributes)

6.3.1 Description

The generic properties for dependent attributes must be
instantiated and may be refined. In this case, instantiation
may be simpler than for independent attributes, due to the
nature of dependent attributes. Also, refinement may not be
required.

6.3.2 Examples

Case Study 1. The outcome of the random experiment is
instantiated as the absence/presence of at least one fault in
a software part.

Case Study 2. Since all specifiers had equivalent skills,
it was reasonable not to make any differences as for the
effort each of them spent in the specification phase. For
simplicity, all changes (i.e., the “differences” between to
consecutive versions of the same class) were considered of
the same extent.

6.4 Define Dependent Measures

6.4.1 Description

Measures for dependent attributes look more straightfor-
ward than those for independent attributes. Rigor and care
are still required, though problems may usually be solved
by using common sense.

6.4.2 Examples

Case Study 1. The probability of an event (in our case, the
presence of at least one fault) cannot be measured directly,
but it must be estimated. Depending on the specific random
experiment, different estimation mechanisms are used. For
instance, one estimates the probability pðeÞthat some event e
occurs by carrying out n trials and counting how many
times e occurs. If the number of occurrences of e is denoted
by x, the probability pðeÞ is estimated as p̂pðeÞ ¼ x=n, i.e., the
maximum likelihood estimate of pðeÞ. This shows that the
actual measure of a probability is necessarily a derived
measure (called indirect measure in [26]) and a formula
must be provided for it. In our case, we used Logistic
Regression, which is flexible enough to allow for the
modeling of a number of different relationships. Logistic
Regression is a classification technique for estimating the
probability that an object belongs to a specific class, based
on the values of the independent variables that quantify the
object’s attributes. The Logistic Regression equation shows
that data on faults must be collected to evaluate fault-
proneness. In this case, it is not required to count faults, but
only to record them.

For explanation purposes, we here address the case of a

dependent variable Y which can take only the two values 0

and 1, and any number of independent variables Xi. The

multivariate Logistic Regression model is defined by the

following equation (if it contains only one independent

variable, then we have a univariate Logistic Regression

model):

�ðX1;X2; . . . ;Xn; Þ ¼
eðC0þC1�X1þ...þCn�XnÞ

1þ eðC0þC1�X1þ...þCn�XnÞ
;

where �ðX1;X2; . . . ;XnÞ is the probability that Y ¼ 1 (there-

fore, 1ÿ �ðX1;X2; . . . ;XnÞ is the probability that Y ¼ 0).

Coefficients Ci are estimated through Maximum Likelihood

estimation. We use the following two statistics to describe

the experimental results:

. p, the statistical significance of the logistic regression
coefficients: The level of significance of the Logistic
Regression coefficient Ci provides the probability
that Ci is different from zero by chance, i.e., Xi has
an impact on �.

. R2, the goodness of fit, not to be confused with least-
square regression R2—they are built upon very
different formulae, even though they both range
between 0 and 1 and are similar from an intuitive
perspective. The higher R2, the higher the effect of
the model’s independent variables, the more accu-
rate the model. However, as opposed to the R2 of
least-square regression, a high value for R2 is rare for
logistic regression. R2 may be described as a
measure of the proportion of total uncertainty that is
attributed to the model fit.

Case Study 2. The effort to write a class was measured as

the person-days needed to write and modify the class. The

amount of change of a class was measured as the number of

versions of the class.

6.5 Validate Dependent Measures

In Section 5.5, the validation of independent measures was

shown to consist mainly of checking the measures against a

set of properties. This may not always be the case for

dependent measures since they usually cannot be precisely

characterized by a set of specific mathematical properties.

To provide support for the validity of the measures, it is

more useful to look carefully at the data collection

procedures and their integration into the development

process. Typical examples are checking defect counting

procedure to assess their completeness and consistency and

assessing whether an effort measurement includes all

relevant activities or is broken down into activities that

are clearly identifiable in the development process. Such a

validation is qualitative in nature and requires some

detailed knowledge of the development process in place.

However, in some cases, it is still possible to use theoretical

validation techniques. For instance, it can be shown that the

probabilities provided by Logistic Regression satisfy the

properties for probabilities of Section 6.1.2.

1120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

7 HYPOTHESIS REFINEMENT AND VERIFICATION

In this high-level step, the original empirical hypotheses
(see Section 4.2) must be instantiated and possibly refined,
based on the specific measures devised for both indepen-
dent and dependent attributes (Section 7.1). Then, data
must be collected to verify these hypotheses.

7.1 Instantiate and Refine Empirical Hypotheses

7.1.1 Description

The empirical hypotheses set in the Define Empirical
Hypotheses step involve attributes. They need to be
instantiated with the measures defined for both the
independent and the dependent attributes. Once measures
have been defined, it is possible to state more precise
empirical hypotheses on the kind of relationships between
independent and dependent measures, consistent with the
initial empirical hypotheses. For instance, instead of stating
a generic nondecreasing monotonic correspondence be-
tween the measure of the independent attribute and the
measure of the dependent attribute, one can hypothesize a
specific functional form, e.g., nondecreasing linear. This
refinement need not be carried out right after the instantia-
tion of the empirical hypotheses, but can be delayed until
further evidence is available on the verification of the
instantiated empirical hypotheses.

7.1.2 Examples

Case Study 1. Instantiation of the empirical hypotheses
means that the coupling measures are used as the
independent variables in the Logistic Regression equation
—the dependent variable being a measure of fault-prone-
ness. No further refinement of the empirical hypotheses
was carried out.

Case Study 2. The empirical hypotheses were instan-
tiated by replacing the axiom size attribute appearing in the
empirical hypothesis with the corresponding measure.
After the instantiated empirical hypothesis was confirmed
by the empirical validation (see Section 7.2), we proceeded
to build a refined empirical hypothesis, by hypothesizing a
linear correlation between the independent and the depen-
dent variables. The verification of this hypothesis is also
shown in the next step (Section 7.2).

7.1.3 Discussion

The refined hypotheses should logically imply the original
instantiated hypotheses, otherwise there is a contradiction.
For instance, suppose that the instantiated hypothesis
establishes a nondecreasing, monotonic correspondence
between the measure of the independent attribute and the
measure of the dependent attribute. If this hypothesis is
supported by the empirical verification, one should not
refine it by hypothesizing that there is a decreasingly linear
correspondence between the measure of the independent
attribute and the measure of the dependent attribute. On
the other hand, if the instantiated hypothesis is not
supported by the empirical verification, one should re-
examine the actions carried out during the whole measure
definition process, to find out where the problem lies.

Sometimes, the functional correspondence law between
independent and dependent measures is already provided

in the initial empirical hypotheses. However, this is possible
only when the measures that will be used to quantify
attributes are already known, so it is not necessary to go
through all the steps of our measure definition approach,
since the measures are already given.

7.2 Verify Empirical Hypotheses

7.2.1 Description

Based on the measures defined, data collection must be
carefully designed and carried out so as to make sure that
the data collected are actually consistent with the defined
measures and that all the necessary information is collected
to carry out the empirical validation.

Then, the data collected must be used to validate the
refined empirical hypotheses upon which the measures are
defined. The procedure to follow for experimental valida-
tion significantly depends on the purpose of measurement.
With a prediction focus, one needs to validate a stated
statistical relationship between independent and dependent
measures. If the refined empirical hypotheses are not
supported by the experimental results, one needs to
reconsider all the steps and identify the causes of the
problem, as we outline in Section 8.

7.2.2 Examples

We address data collection for each case in the correspond-
ing part. As for the validation of the empirical hypotheses in
both cases, we first carried out outlier analysis to remove
single data points that could overly influence the results, so
that they do not depend on one or a few data points. We
used univariate logistic regression to evaluate the impact of
each measure in isolation on the dependent variables. Only
variables whose statistical significance is less than 5 percent
(i.e., there is at least a 95 percent probability that they
actually have an impact on the dependent variable) and
explain a significant percentage of uncertainty in the data
set have been considered as relevant predictors. Then, to
build more accurate classification models, we performed
multivariate logistic regression, to evaluate the relative
impact of those measures that had been assessed suffi-
ciently significant in the univariate analysis and also
explained a significant percentage of the variation in the
data set (i.e., sufficiently high values for R2).

In Case Study 2, we also performed ordinary least-
squares (OLS) linear regression for both specification effort
and change analysis, to verify the refined empirical
hypotheses.

Case Study 1. Data collection was carried out by using
the software defect collection and tracking mechanism in
place at GSFC, which had been used for several years
before our empirical study was carried out. Thus, we
were confident that the problem reports were consistent
with each other. We took into account the defects
generated during integration testing, i.e., those that were
subject to reporting. The problem reports also identified
the software parts of the fault that caused the problem.
We developed a tool to extract the product measures on
the high-level designs.

The available data allowed us to validate the instantiated
empirical hypotheses and we now summarize the results

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1121

we obtained on the three projects we studied (more details
are in [19]).

In univariate analysis, DIC and TIC were found to be
significant predictors (at the 5 percent significance level) for
the fault-proneness of software parts across the three
projects, except for TONS, in which DIC and TIC were
not significant. A discussion on the reasons for this is
provided in Section 8. Also, the signs of the coefficients C1

estimated for the univariate Logistic Regression equations
confirmed the instantiated empirical hypotheses, i.e., the
fault-proneness of a software part increases when DIC and
TIC increase. The proportion of explained variation (R2) did
not exceed 0.15, which is still acceptable in the context of
Logistic Regression.

Multivariate analysis showed that DIC and TIC are part
of a multivariate Logistic Regression model, along with
two other variables, the number of software parts
imported (USES relation) by a software part, and the
average depth of the hierarchy of units contained in a
software part. These two additional measures too were
defined via the GQM/MEDEA approach. For multivariate
analysis, R2 was 183 percent, 171 percent, and 269 percent
of the best univariate R2, with a maximum value of 0.43
for TONS.

Case Study 2. Data collection was carried out by
recording the different versions and effort through a
simple reporting mechanism and by computing the
specification measures by hand, since the specification’s
size was not too large.

To use Logistic Regression, we discretized the effort and
version ranges (the dependent variables in the Logistic
Regression equation), with the first quartile, the median,
and the third quartile as thresholds.

Univariate Logistic Regression showed that Axioms was
a significant predictor for both effort and versions, along
with other measures that were also defined via the GQM/
MEDEA approach. At any rate, Axioms was by far the most
influential variable: its R2 value was more than 0.30. The
sign of the C1 coefficients estimated for the univariate
Logistic Regression equations also confirmed the instan-
tiated empirical hypotheses. We also built multivariate
Logistic Regression models for predicting the version
quartile of a TRIO+ class, according to the discretization
of the version range. This first analysis allowed us to
empirically validate the instantiated unrefined empirical
hypotheses.

We then carried out an OLS linear regression for both
effort and changes. The statistical analysis confirmed the
results obtained with Logistic Regression. In particular, we
were able to build a multivariate OLS model for the number
of versions whose linear regression R2 was 0.834.

7.2.3 Discussion

Our examples involve only two techniques (Logistic
Regression and OLS Linear Regression), but a number of
analysis techniques, both univariate and multivariate [12],
[38], [11], [9,] [23], exist in the statistical and machine
learning literature. These techniques aim at identifying and
modeling relationships between the independent measures
and dependent measures. They differ in the model structure
they assume, in their data fitting algorithms, and their ease

of interpretation. Different types of data and application
purposes may warrant the use of different modeling

techniques.
The instantiated and possibly refined empirical hypoth-

eses are validated through statistical test of hypotheses.

This statistical test of hypotheses may involve quantities
such as coefficients that are a part of regression models, for

which standard tests are usually used.
Since there is extensive literature on the empirical

validation of software measures subject, we will not discuss
this step any further. For instance, the interested reader may

consult [12], [38], [14] for a detailed discussions of issues

related to the empirical validation of software measures.

8 IDENTIFYING PROBLEMS

One of the strengths of a well-defined measure definition

approach is the support it can provide in locating and
identifying the causes of problems. Based on our applica-

tion cases, we now discuss the most common issues

encountered and provide a few examples in which GQM/
MEDEA helped us identify problems and the correspond-

ing steps by which they were introduced.
From a general perspective, GQM/MEDEA is helpful

mainly because it makes explicit all the decisions involved
in planning a measurement activity that aims at building a

prediction model. This facilitates the evaluation and

refinement of these measurement activities. To illustrate
the point, this is similar to the design stage of software

development itself where design artifacts record design

decisions, which can then be retrieved, reviewed, and
changed.

Steps: Define and Verify Empirical Hypotheses. Other

hypotheses were formulated and verified, in addition to

those shown in this paper. For instance, we stated the
following empirical hypotheses for Case Studies 1 and 2,

respectively.

1. The larger the size of the software part’s high-level
design, the higher its fault proneness.

2. The larger the coupling of a TRIO+ class, the higher
the amount of changes on that class.

These hypotheses seemed to be well-founded since there is

extensive literature that supports the idea that size is related

to faults (Case Study 1) and that a system should be made of
loosely coupled modules (Case Study 2). However, apply-

ing GQM/MEDEA, we were not able to find any empirical

evidence to support the instantiated hypotheses.
It is not a surprise that some hypotheses will not be

confirmed. However, one cannot reject them without first

considering the following issues, which are commonly

encountered in practice:

1. The relationship hypothesized may be true but the
measures may have poor construct validity, i.e., they
may not measure accurately the concept they
purport to measure. Because relatively little experi-
ence exists as compared to other, more mature
empirical fields, construct validity is an important
problem in software measurement.

1122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

2. The available sample or sample variance may be too
small to detect the effect at a statistically significant
level, i.e., there is insufficient statistical power [14].

3. The functional form assumed for the relationship
may be incorrect, e.g., exponential instead of linear.

4. Factors, other than the independent attribute con-
sidered, may blur the relationship which would only
be visible by looking simultaneously at several
relationships, i.e., by multivariate analysis.

There are several explanations for the negative results we
obtained for either hypothesis. In Case Study 1, we believe
that none of the four issues above are plausible, so the size
of the high-level design of a software part was not a
relevant factor in the prediction of the software part’s fault-
proneness in the final product.

1. The measure we used for high-level design size was
straightforward and satisfied all properties for size.

2. The sample size and variance were large enough so
that they cannot be claimed to justify the negative
result.

3. Logistic Regression does not constrain the relation-
ship between the independent measures and the
dependent measure much.

4. Multivariate analysis did not support the idea that
size could be related to fault-proneness.

In general, before concluding that a hypothesis is not
supported by the available data, it is important that all
plausible causes should be considered.

The most plausible explanation for Case Study 2 is
related to issue 2, i.e., the sample size was relatively small
and only strong (at the 5 percent significance level)
relationships could be detected with the power of the
statistical tests we used. Thus, we cannot exclude that the
hypothesis holds, even though the relationship was not
significant even at the 10 percent level. Further studies
should be performed to ascertain whether this relationship
is present.

In Case Study 1, the lack of significance of TIC in the
system TONS (at the 5 percent level) can be explained by a
lack of variability. TIC’s standard deviation as compared to
its mean is much smaller in TONS than in the other two
systems studied in [19]. TIC’s mean and median were also
smaller and so was the proportion of faulty software parts.
This seems to confirm that controlling TIC would indeed
reduce defects. However, no explanation was found for the
lack of significance of DIC in TONS. This shows that some
problems may remain unsolved.

In general, it is not easy to make sure that lack of
statistical power is the cause of a negative result. However,
when there is evidence that this is the case, it is usually not
possible to increase the number of data points in a
correlational study like the one we describe in this paper.
Therefore, one should try to replicate the empirical study,
although caution should be used to make sure that
differences across environments or software organizations
do not affect the results of the replications.

The somewhat mediocre values for R2 in Case Study 1
can be explained by the fact that we were assessing the
influence of the high-level design phase on the final

product’s fault-proneness. High values for R2 in Case
Study 1 would imply that one can accurately predict the
final product’s fault-proneness based only on high-level
design information. This would imply that the coding phase
has only a marginal influence on the final product’s fault-
proneness. Since this is unlikely to be true, we should not
expect a very high value of R2. In any case, we have
identified a number of high-level design characteristics that
are correlated with the final product’s fault-proneness in a
statistically significant way. In Case Study 2, we studied the
relationships between characteristics of specifications and
the fault-proneness and effort of the specification phase.
Therefore, we could expect to identify more accurate
models, as we actually did.

Step: Formalize Independent Attributes. In Case Study 1, the
properties for complexity measures of [42] did not satisfy
our intuition about the attributes contained in the empirical
hypotheses (e.g., coupling). Therefore, we formalized our
own intuition through a different set of properties for each
relevant attribute [18]. We “reused” these sets of properties
in Case Study 2.

From a general perspective, independent attributes
should be defined in a way that satisfies any specific
intuition we may have about them, at least until a well
accepted standard emerges. Well-defined independent
attributes help ensure the construct validity of their
measures and avoid difficulties in the validation of the
empirical hypotheses. We believe that a property-based
approach provides an adequate and rigorous characteriza-
tion of independent attributes [18], especially internal
product attributes. However, given the current state of the
art, it is often the case that existing properties do not fit
one’s own specific intuition and must be refined in the
particular context where the study is performed.

Step: Identify Abstractions (for defining independent mea-
sures). In Case Study 1, we started by using the interaction
graph (see Fig. 6b) for cohesion (the other independent
attribute we studied). We did not find it suitable for
cohesion because it did not adequately capture the kind of
relationships we wanted to capture among data declara-
tions and functions. Therefore, we introduced cohesive
interactions and cohesive interaction graphs [19]. The need
for this abstraction became apparent during the Instantiate
and Refine Properties step.

In general, when attribute properties cannot be properly
expressed with the defined abstractions, it is important to
modify the existing abstractions to allow for the definition
of properties that are as specific as intuition permits.

Step: Define Independent Measures. Before defining the RCI
measure for cohesion in Case Study 1 [19], we introduced a
few other measures that turned out not to comply with the
properties we believe necessary for cohesion measures.
Therefore, we discarded them. This problem arose during
the Verify Independent Measures step, well before the Verify
Empirical Hypotheses step. Our objective, once we identified
cohesion as a relevant attribute, was to verify whether
cohesion was really related to fault-proneness. Accepting
measures that did not satisfy our intuition on cohesion
would have made the interpretation of results difficult, if
not incorrect.

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1123

In general, one important lesson learned is that it is easy,
even for experienced researchers and practitioners, to be
misled and define measures that do not show appropriate
properties. Measures must be systematically analyzed and
verified to ensure they are measuring the attributes right.
Sets of properties, as defined in [18], are designed to
facilitate such a verification procedure.

In this section, we have illustrated some of the lessons
learned and advantages of using a systematic approach to
defining, assessing, and refining measures aimed at build-
ing prediction systems. Too often in our field, practitioners
and researchers rush through the measure definition steps
to focus on empirical prediction results. This is a risky
approach that may lead to results that are unexpectedly
negative, positive but spurious, difficult to interpret, or
difficult to build on in subsequent studies.

9 CONCLUSIONS AND FUTURE WORK

Software measures need to be defined in a rigorous and
disciplined manner based on a precisely stated experimen-
tal goal, assumptions, properties, and thorough experi-
mental validation. We propose a practical approach to
define software measures that implements these principles
(GQM/MEDEA) and integrates many of the contributions
from the literature. It results from experience and has been
validated through realistic examples and field studies [17],
[9], [12], [20], [19], [21]. Thus, this paper completes our
previous research [18], [19] and describes, in an operational
and practical way, some of the lessons learned resulting
from our experience.

As for its specific contributions, our framework

. provides a detailed description of the various
activities involved in the definition of measures
and of the information flow among these activities;

. links the definition of measures to corporate goals
and the development environment;

. shows that measures should not be defined per se,
but they should be defined in the context of a theory;

. helps better justify, interpret, and reuse measures;

. helps identify problems that may arise during the
definition of measures, taking into consideration that
it is a highly human-intensive process;

. provides a conceptual model that can be used for
implementing the schema of a repository that
contains all the knowledge relevant to measurement.

Our future work encompasses a more detailed study and
validation of each of the steps involved in the measure
definition approach. Specifically, we need to

. better understand how experimental results can be
used to guide the refinement of measures based
upon our increased understanding of the develop-
ment processes and their evolution;

. better identify what can be reused across environ-
ments and projects, e.g., measures, assumptions,
measurement concepts, abstractions;

. provide more accurate guidelines to help experi-
menters make some of the subjective decisions
involved in the GQM/MEDEA approach.

ACKNOWLEDGMENTS

We would like to thank William Agresti, Dieter Rombach,

Yong-Mi Kim, Bryan Hsueh, Wolfgang Heuser, Oliver

Laitenberger, and Manoel Mendonça for their help in

reviewing the early drafts of this paper. This work was

supported in part by NASA grant NCC5170, the

US National Science Foundation grant CCR9706157 and

grant CCR9706151, NSERC Canada, CNR, and MIUR. All

ISERN technical reports can be found on: http://

www.iese.fhg.de/ISERN.

REFERENCES

[1] V. Barnett and T. Price, Outliers in Statistical Data, Third ed., John
Wiley & Sons, 1995.

[2] R. Van Solingen, “The Goal/Question/Metric Approach,” En-
cyclopedia of Software Engineering—2 Volume Set, pp. 578-583, 2002.

[3] V.R. Basili, “The Experience Factory and its Relationship to Other
Improvement Paradigms,” Proc. Fourth European Software Eng.
Conf. (ESEC), Sept. 1993.

[4] V.R. Basili, G. Caldiera, and D.H. Rombach, “The Experience
Factory,” Encyclopedia of Software Eng.—2 Volume Set, pp. 511-519,
2002.

[5] V.R. Basili and D.H. Rombach, “The Tame Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans.
Software Eng., vol. 14, no. 6, pp. 758-773, June 1988.

[6] V.R. Basili and D. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Trans. Software Eng., vol. 10,
no. 11, pp. 758-773, Nov. 1984.

[7] V.R. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R.
Pajerski, “Special Report: SEL’s Software Process-Improvement
Program,” IEEE Software, vol. 12, no. 6, pp. 83-87, Nov. 1995.

[8] J. Bieman, A. Baker, P. Clites, D. Gustafson, and A. Melton, “A
Standard Representation of Imperative Language Programs for
Data Collection and Software Measures Specification,” J. Systems
and Software, vol. 8, pp. 13-37, 1988.

[9] L. Briand, V.R. Basili, and C. Hetmanski, “Developing Inter-
pretable Models with Optimized Set Reduction for Identifying
High Risk Software Components,” IEEE Trans. Software Eng.,
vol. 19, no. 11, Nov. 1993.

[10] L. Briand, V.R. Basili, Y.M. Kim, and D. Squier, “A Change
Analysis Process to Characterize Software Maintenance Projects,”
Proc. IEEE Conf. Software Maintenance, Sept. 1994.

[11] L. Briand, V.R. Basili, and W. Thomas, “A Pattern Recognition
Approach for Software Engineering Data Analysis,” IEEE Trans.
Software Eng., vol. 18, no. 11, Nov. 1992.

[12] L. Briand and J. Wuest, “Empirical Studies of Quality Models in
Object-Oriented Systems,” Advances in Computers, Academic Press,
2002.

[13] L. Briand, C. Differding, and D. Rombach, “Practical Guidelines
for Measurement-Based Process Improvement,” Software Process
Improvement and Practice, 1997, also available as Technical Report
ISERN-96-05, Fraunhofer Inst. for Experimental Software Eng.,
Germany, 1996.

[14] L. Briand, K. El Emam, and S. Morasca, “Theoretical and
Empirical Validation of Software Product Measures,” Technical
Report ISERN-95-03, Fraunhofer Inst. for Experimental Software
Eng., Germany, 1995.

[15] L. Briand, K. El Emam, and S. Morasca, “On the Application of
Measurement Theory to Software Engineering,” Empirical Software
Eng.–An Int’l J., vol. 1, no. 1, 1996.

[16] L. Briand and S. Morasca, “Software Measurement and Formal
Methods: A Case Study Centered on TRIO+ Specifications,” Proc.
First Int’l Conf. Formal Eng. Methods (ICFEM ’97), Nov. 1997.

[17] L. Briand, S. Morasca, and V.R. Basili, “Assessing Software
Maintainability at the End of High-Level Design,” Proc. IEEE
Conf. Software Maintenance, Sept. 1993.

[18] L. Briand, S. Morasca, and V.R. Basili, “Property-Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22,
no. 1, Jan. 1996.

[19] L. Briand, S. Morasca, and V.R. Basili, “Defining and Validating
Measures for Object-Based High-Level Design,” IEEE Trans.
Software Eng., vol. 25, no. 5, pp. 722-741, Sept./Oct. 1999.

1124 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002

[20] L. Briand, J. Wüst, S. Ikonomovski, and H. Lounis, “A
Comprehensive Investigation of Quality Factors in Object-Or-
iented Designs: An Industrial Case Study,” Proc. Int’l Conf.
Software Eng. (ICSE ’99), 1999.

[21] L. Briand, J. Wüst, J.W. Daly, and V. Porter, “Exploring the
Relationships between Design Measures and Software Quality in
Object-Oriented Systems,” J. Systems and Software, vol. 51, pp. 245-
273, 2000.

[22] T. De Marco, Structured Analysis and System Specification. Yourdon
Press Computing Series, 1978.

[23] W. Dillon and M. Goldstein, Multivariate Analysis: Methods and
Applications. Wiley & Sons, 1984.

[24] N. Fenton, “Software Measurement: A Necessary Scientific Basis,”
IEEE Trans. Software Eng., vol. 20, no. 3, pp. 199-206, Mar. 1994.

[25] N. Fenton and A. Melton, “Deriving Structurally Based Software
Measures,” J. Systems Software, vol. 12, pp. 177-187, 1990.

[26] N. Fenton and S. Pfleeger, Software Metrics, A Practical and Rigorous
Approach. Thomson Computer Press, 1996.

[27] D.A. Gustafson et al., “Software Measure Specification,” Proc.-
SIGSOFT Software Eng. Notes, vol. 18, no. 5, pp. 163-168, 1993.

[28] P.G. Hoel, Introduction to Mathematical Statistics. Wiley and Sons,
1984.

[29] D. Ince and M. Shepperd, “System Design Metrics: a Review and
Perspective,” Proc. 12th Int’l Conf. Software Eng., pp. 23-27, 1988.

[30] ISO/IEC 9126-1, “Software Product Quality,” Part 1: Quality
Model, 1991.

[31] B. Kitchenham, “An Evaluation of Software Structure Metrics,”
Proc. 12th Int’l Computer Software and Applications Conf.
(COMPSAC ‘88), 1988.

[32] M. Lewis-Beck, Applied Regression. SAGE Publications, 1980.
[33] A.C. Melton, D.A. Gustafson, J.M. Bieman, and A.A. Baker,

“Mathematical Perspective of Software Measures Research,” IEE
Software Eng. J., vol. 5, no. 5, pp. 246-254, 1990.

[34] S. Morasca and L. Briand, “Towards a Theoretical Framework for
Measuring Software Attributes,” Proc. IEEE Symp. Software Metrics
1997.

[35] A. Morzenti and P. San Pietro, “Object-Oriented Logical Specifica-
tion of Time-Critical Systems,” ACM Trans. Software Eng. and
Methodology, vol. 3, no. 1, pp. 56-98, Jan. 1994.

[36] L. Moser, “Data Dependency Graphs for Ada Programs,” IEEE
Trans. Software Eng., vol. 16, no. 5, pp. 498-509, May 1990.

[37] E.I. Oviedo, “Control Flow, Data Flow, and Program Complexity,”
Proc. Fourth Int’l Computer Software and Applications Conf. (COMP-
SAC ’80), pp. 146-152, Nov. 1980.

[38] N.F. Schneidewind, “Methodology for Validating Software Me-
trics,” IEEE Trans. Software Eng., vol. 18, no. 5, pp. 410-422, May
1992.

[39] P. Spector, Research Designs. SAGE Publications, 1981.
[40] J. Tian and M.V. Zelkowitz, “A Formal Program Complexity

Model and Its Application,” J. Systems and Software, vol. 17,
pp. 253-266, 1992.

[41] Specification of the Unified Modeling Language (UML),
version 1.4, http://www.omg.org, 2001.

[42] E.J. Weyuker, “Evaluating Software Complexity Measures,” IEEE
Trans. Software Eng., vol. 14, no. 9, pp. 1357-1365, Sept. 1988.

[43] H. Zuse, Software Complexity: Measures and Methods. Amsterdam:
de Gruyter, 1990.

Lionel C. Briand received the BSc and MSc
degrees in geophysics and computer systems
engineering from the University of Paris VI,
France. He received the PhD degree in compu-
ter science, with high honors, from the University
of Paris XI, France. He is with the Department of
Systems and Computer Engineering, Carleton
University, Ottawa, Canada, where he founded
and leads the Software Quality Engineering
Laboratory (http://www.sce.carleton.ca/Squall/

Squall.htm). Before that he was the software quality engineering
department head at the Fraunhofer Institute for Experimental Software
Engineering, Germany. Dr. Lionel also worked as a research scientist for
the Software Engineering Laboratory, a consortium of the NASA
Goddard Space Flight Center, CSC, and the University of Maryland.
He has been on the program, steering, or organization committees of
many international, IEEE conferences such as ICSE, ICSM, ISSRE, and
METRICS. He also belongs to the steering committee of METRICS, is
the coeditor-in-chief of Empirical Software Engineering (Kluwer), and is
a member of the editorial boards of Systems and Software Modeling
(Springer) and IEEE Transactions on Software Engineering. His
research interests include: object-oriented analysis and design, inspec-
tions and testing in the context of object-oriented development, quality
assurance and control, project planning and risk analysis, and
technology evaluation. He is a member of the IEEE.

Sandro Morasca received the DrEng degree
(Italian Laurea) Cum Laude from Politecnico di
Milano (1985), and the PhD degree in computer
science from the same university (1991). He is a
professor of computer science at the Università
degli Studi dell’Insubria, Dipartimento di Scienze
Chimiche, Fisiche e Matematiche. He held the
position of assistant professor from 1993 to 1998
and associate professor from 1998 to 2000 in
the Dipartimento di Elettronica e Informazione of

the Politecnico di Milano. From 1991 to 1993, Dr. Morasca was a faculty
research assistant at the Institute for Advanced Computer Studies of the
University of Maryland (UMIACS). He has authored several papers that
have appeared in international conferences and journals, including IEEE
and ACM transactions. He has also served on the program committee of
a number of international conferences, and he is on the editorial board of
Empirical Software Engineering: an International Journal. His current
research interests include: empirical studies in software engineering;
specification, verification, and validation of concurrent and real-time
systems; formal methods. He is a member of the IEEE Computer
Society.

Victor R. Basili is a professor of computer
science at the University of Maryland, College
Park, the executive director of the Fraunhofer
Center—Maryland, and one of the founders and
principals in the Software Engineering Labora-
tory (SEL). He works on measuring, evaluating,
and improving the software development pro-
cess and product and has consulted for many
organizations, including AT&T, Boeing, Daimler-
Chrysler, Ericsson, FAA, GE, GTE, IBM, Lucent,

MCC, Motorola, NRL, NSWC, and NASA. He is a recipient of a 1989
NASA Group Achievement Award, a 1990 NASA/GSFC Productivity
Improvement and Quality Enhancement Award, the 1997 Award for
Outstanding Achievement in Mathematics and Computer Science by the
Washington Academy of Sciences, and the 2000 Outstanding Research
Award from ACM SIGSOFT. He has authored more than 150 journal
and refereed conference papers, has served as editor-in-chief of the
IEEE Transactions on Software Engineering, and as program chair and
general chair of the Sixth and 15th International Conference on Software
Engineering, respectively. He is coeditor-in-chief of the International
Journal of Empirical Software Engineering, published by Kluwer. He is
an IEEE and ACM fellow.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dilb.

BRIAND ET AL.: AN OPERATIONAL PROCESS FOR GOAL-DRIVEN DEFINITION OF MEASURES 1125

